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A Basic Course in Network Analysis: Part 
11-Types of Problems and Sequencing 

H. Vos and F. F. G. de Bruin 

Abstract-In a previous paper an introductory course to Elec- 
tric Network Analysis was described. Some educational measures 
showed passing rates and students' insight to be unsatisfactory. 
In this paper we analyze problems that students have to solve. 
Examples of the difficulties that students have are presented. 
Several kinds of problems can be distinguished. Difficulties in 
concepts and some measures to support concept formation are 
discussed. Finally, a possible change in the overall sequence of 
problems is proposed. 

I. INTRODUCTION 

N a previous paper [ I ]  an introductory course to Electric I Network Analysis was described covering both time do- 
main and frequency domain analysis. The passing rates for 
this course are quite low. 

Shortcomings of the students' performance are of various 
origins. In the previous paper the lack of overview, as it 
showed up during examinations, was discussed. This is the 
most serious problem because attainment of an overview is 
the main objective of the course. 

This overview should enable the students to make a correct 
choice among the three methods of the course (differential 
equations, convolution integral, transfer function) in overview 
problems as discussed in [ l ] .  Of course, students also should 
be able to find a correct procedure to solve the problem and 
to execute this procedure. 

Difficulties on a lower level probably reduce the chance 
that students get an overview of the subject matter. These 
lower level inadequacies showed up during tutoring hours. 
The following categories are distinguished: insufficient prior 
knowledge, difficulties with the application of formal methods, 
and conceptual difficulties arising from the content of the 
course. 

After a discussion of these difficulties together with prob- 
lems in which they show up, support for concept formation is 
presented and a specific sequence of problems is proposed. 

11. INSUFFICIENT PRIOR KNOWLEDGE 

When students start the course they can calculate easily the 
resistance of three resistors in parallel, but most of them fail 
when asked to derive the rule they used from first principles 
and to apply this derivation to capacitors or inductances as in 
Problem I: 
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Fig. 1.  
the current i and the voltage 1'. 

Elements in parallel and in series (cf. Problem I ). The port carries 

Problem I :  Insufficient Prior Knowledge 

Calculate the relationship between the voltage v and the 
current i for the three ports in Fig. 1. What is the value of the 
equivalent single element? 

Students can use some high-school knowledge (like RI + 
R2 = R )  to solve the first part of Problem I. This tums 
out to be not more than a memorized trick; they fail to 
find the equations that are needed (and were used in high 
school) to derive the "trick" and that now are needed to solve 
parts two and three. This kind of prior knowledge has to be 
reactivated first. Other difficulties concem analytical methods 
of calculation. 

111. DIFFICULTIES I N  THE APPLICATION OF CONCEPTS 

Students show difficulties with formal methods. Some typ- 
ical examples are given in this section. 

Students find i t  difficult to derive one differential equation 
from a set of elementary equations and Kirchhoff s laws as 
in Problem 2. 
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Fig. 2. 
Input is voltage c , , , ( t ) ,  output is voltage v , , ( t ) .  

An input-output system in a second-order network (cf. Problem 2 ) .  

I 

Problem 2: How to Get to One Differential Equation 
Tvg(t) 3 A network is given as in Fig. 2. 

a) What is the order of the network? 
b) Derive the differential equations for the state variables. 
c) Derive the differential equation for the voltage U,. 

Many students get the two equations of Problem 2(b) 0 T3 

right, but fail to combine these equations with the resistor V,(t) am u(t) - U(t-T3) [VI 
equation. Students get here a nontrivial example of a resulting 
differential equation being of order I ,  while the network is of 
order 2. For the students the concept “differential equation” 
also is rather new. 

Analytical methods in convolution integrals lead to errors. 
Students make many mistakes in the choice of limits of 
integration when calculating convolution with the impulse 
response as in Problem 3. 

Problem 3: How to Simplib Boundaries of Integration -T1 0 T2 

For the linear time-invariant input-output-system of Fig. 3 
the output signal v o ( t )  can in general be calculated using the 
convolution integral. 

a) How can the integral be simplified for an arbitrary h(t) 

b) How can the integral be simplified for an arbitrary i ig( t )  

c) How can the integral be simplified with vy(t) and h(t) 

In the frequency domain there are also difficulties impeding 
insight. Students have problems with the representation of 
complex functions of the frequency variable by Bode diagrams 
(logarithmic plot), or a phasor diagram. For example, when 
asked where the frequency (dc) is on the Bode diagram, quite a 
few cannot give the correct answer. An example of difficulties 
with phasors is given in Problem 4. 

and with i is( t )  as given? 

and with h(t) as given? 

as given (without calculating the result)? 

Problem 4: Complex Representation in the Frequency Domain 

A port consists of two resistors and an inductor in series, 
as in Fig. 4. 

a) Calculate the complex impedance of the port. 
b) If the impedance is represented as in Fig. 4, what is a? 
c) Draw the complex representation of the admittance of 

Students find it difficult to express variables like a in terms of 
the port variables R and L, and many fail to understand the 
limit behavior for high and low frequencies. The admittance 
is derived from formulas, instead of from the impedance 
curve. Representations of complex functions as parametrized 
curves in the complex plane seem to be difficult to understand, 

the port. Indicate the values of the frequencies clearly. 

T3>Tl+TZ 

Fig. 3. 
Problem 3). o ( t )  represents the unit step signal. 

An input-output system, with input signal and impulse response (cf. 
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Fig. 4. 
Problem 4). The current and the voltage are in complex phasor notation. 

A simple port and the polar diagram of its complex impedance (cf. 

although complex numbers are part of a first trimester course 
in calculus. Probably the representation of a complex-valued 
function is not an easy generalization from the representation 
of complex numbers. 
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Part of these difficulties have to do with a lack of experience 
or with forgetting prior knowledge, but some might be related 
to conceptual difficulties. 

of amplitudes of input and output signals is constant). To 
get an idea of impulse response, they have to measure the 
impulse response by observing the limit of block responses of 
stepwise smaller and larger input signals. Next, they have to 
measure &ode diagrams and polar figures of several circuits, 
and to compare these measurements with calculations. These 
exercises might  help the students to construct a mental model 
of the concepts involved, in  terms of actions they should 
be able to make the concepts both mentally and practically 
operational, The concepts and actions should not only be 
practiced, but also become related, 

The relations are presented in the structural scheme (cf. [ 11) 
that should help students to get an overview. This scheme 
is difficult to understand for a beginning student. Therefore, 
the main structure (cf. Fig, is presented separately 

This introductory chapter (cf. Appendix, where the first part is 

gives an outline of its contents. The chapter contains special 
questions to enable students to verify for themselves if they 
understand what is  explained (cf. Problem 5).  

Iv .  DIFFICULTIES IN CONCEPTS 

Students have several difficulties with the concepts involved 
that originate from the difficulty to explain and elucidate the 
concepts. The first one concerns linearity. Linear elements 
constitute linear circuits and linear input-output systems, but 
examples are given to show that nonlinear elements might also 
constitute a linear input-output system. 

A source is not an input-output system in the usual sense 
in electrical engineering. A variable voltage Source might 
be considered an input-output system, but then the input is of 
the (often change Of the point. In along with an explanation that the student can understand. 
the last case the source may be considered linear or not, 

output. Formally, the elementary equation of a voltage source 
(!,,,(/) = E ( f )  doesn’t represent a linear element because zero 
input doesn’t give zero output. This poses problems to the 
lecturer in  explaining linearity in a clear way. 

The difficulties seem to find their origin in the principle 
of superposition. Very fundamental theorems, like Norton’s or 
Thevknin’s, are based on linearity and superposition. Active 
and passive elements play a different role here. Perhaps these 
conceptual difficulties can be solved by the use of the concept 
of a “complete model” of a network 121. Linearity is defined 
here for the “dead network’, i.e., the network without sources. 
Other difficulties are related to the first one. 

A difficulty lies in the concept of impulse. What is an 
impulse and an impulse response‘? The Dirac delta function is 
seemingly easy for students to understand, as long as one uses 
the sifting property only. It  is not a proper function, however, 
and therefore difficult to understand and use in other forms. For 
instance, why is an infinite current allowed in the concept of 
impulse, but not in other cases‘? What is the energy content of 
the impulse, and where does this energy go? These difficulties 
arise if an impulse response is derived by solving a differential 
equation. 

A third type of difficulty lies in the concept of a complex 
signal, needed to introduce the system transfer function. A 
complex signal is much difficult to represent than a 
complex number because of the time and frequency variables 
involved. After some time students become used to complex 
functions, but basically they don’t understand the need for 
those functions. 

were taken to meet these 

depending whether the Or the is considered the reproduced) explains to the students the goals of the and 

Probletn 5: Simple Appruisal Questions 

introduction ( ~ ~ ~ ~ ~ d i ~ ) .  
Questions to be put  after reading the first part of the 

I )  An input-output system consists of a voltage 
(voltage ,!I!,) and two equal resistors ( R )  in series. The 
input of the system is voltage o,,. the output is the voltage 
’rJ<> across one of the resistors. What are the impulse re- 
sponse, the transfer function and the differential equation 
for this input-output system‘? 

2 )  What is the impulse response of an input-output system 
without a memory (i.e., a system that cannot store 
energy)? 

The structure of the knowledge (how methods of the subject- 
matter are related), is explained first, before the student starts 
to study all methods in detail. First the map as a whole, then 
the roads separately. The map consists here of a “network” of 
methods, containing a conceptual network as an element. The 
introductory chapter coupled to the structural scheme of the 
methods should serve as a true, abstract advance organizer in 
the sense of Ausubel [6], [ 5 ] .  

Next the’connections between the three methods are made 
easier. For instance, when introducing the frequency domain 
with complex transfer functions (after the time domain with its 
operator-like convolution integrals), the input-output relation 

depicted as an operator on the input signal, changing both 
amplitude and phase. Then the transfer function is introduced 
as a mathematical operator doing the same. Finally, i t  is shown 
how easy It is to use complex harmonies from the beginning. 
Thus a contribution is made to insight in the relations between 
the various methods. 

The structural scheme can help to see all the possibilities 
for solving a problem. The overview of the methods also 
provides for a check on the answer, because often more than 
one method of calculation can be applied. and both should 

Special educational 
conceptual difficulties, These are outlined in the next sections. is first derived for real-valued harmonies. The network is 

v. OF CoNCEPT 
SESSIONS, INTRODUCTION, CONNECTIONS 

Some of the difficulties sketched above were anticipated at 
the time of construction of the course. To support concept for- 
mation, students have to attend a parallel course in laboratory 
exercises [ 3 ] ,  141. To let students get an idea what linearity is, 
they have to discover - by measurement - the nonlinearity 
of a circuit that seems to be linear at first measurement (ratio 
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Fig. 5. 
Input is I- , ,  and output is t ’ , , .  

An input-output system in a second-order network (cf. Problem 6). 

give the same answer. The presentation of the subject matter is 
based on the same principle, because a new method introduced 
is always shown to give the same results as an earlier method 
in simplified but rather general cases. The structural scheme 
can be of aid here, but learning an overview is not enough for 
solving problems. In order to help students solve problems, 
they should learn to travel the roads of the scheme and to 
make the right choices at the junctions. 

VI. PROBLEM SEQUENCING 

A way to enable both good and average students to con- 
struct knowledge of the principles of network analysis is by 
presenting the subject matter in carefully designed portions. 
Pieces of instruction or information are presented together with 
problems, because it is thought that processing information in 
solving problems produces knowledge. 

In examinations, and later in their study, students must not 
only be able to calculate currents and voltages along prescribed 
lines (the methods and procedures they learned), but they must 
be able to solve problems in a way they choose deliberately. 
The more strategic insight is attained, the easier new problems 
can be solved. However, it is very difficult to set problems in 
such a way that high level knowledge is produced. Problems 
that can be solved on a high level, where strategic insight 
and overview are products, can often be solved by using 
experience-based “tricks” that cannot be explained in any more 
detail, or by straightforward use of tedious calculations. 

Such tedious calculations can be used to solve, for example, 
Problem 6. One can write network equations and element 
equations and try to solve these. For a more insight producing 
solution, it is necessary to see that application of ThCvCnin’s 
theorem to the left of the dotted line in Fig. 5 leads to three 
complex impedances in series, providing the output voltage 
by voltage division. This insight is useful only if the student 
knows that the complexity of the problem is reduced. In 
other words, it is a prerequisite that the student can handle 
a (complex) voltage divider. 

Problem 6: Solving Equations or Showing Insight 

Derive the transfer function relating I I ,  to I+, for the network 
given in Fig. 5. 

The sequence should therefore be to first give exercises 
in complex voltage divisions and second in application of 
ThCvCnin’s theorem. This improves the possibilities to tackle 
problems on a higher level (application of ThCvCnin’s theorem) 
thus producing more strategic insight (knowing the correct, 
easiest and most reliable ways to solve problems). Only then 

it makes sense to take a further step and to consider the con- 
ditions for application of ThCvCnin’s theorem: nonharmonic 
signals or nonlinear circuits give wrong results (see Section 
IV) . 

Other kinds of questions are also designed to be an aid 
in the development of an overview. For instance, in Fig. 5, 
it is possible to ask questions concerning: (a) the order of 
the network; (b) the state variables; (c) differential equation 
relating input voltage 1 1 ~  and output voltage vo ;  (d) impulse 
response; (e) convolution of some vg(t) given to get v,(t); (f) 
transfer function; (g) Bode plot and polar plot of the transfer 
function; and (h) complex calculation of U,, for a given real 
harmonic tig, with all questions based on the same diagram. 
More far reaching is to generate a problem that can be solved 
by several alternative methods, and to ask the students to 
find several methods and to compare the relative merits of 
these methods. Thus a discussion among the students can be 
enhanced. 

Before overview problems can be tackled, procedural skills 
should have been developed by solving problems in which 
calculations are needed. Not all necessary information is 
usually given in the lecture notes. Separate tutoring notes 
can make the theory operational by giving hints or heuristics 
about the application of the concepts and calculations. For 
instance, in order to derive the differential equation for a 
network containing controlled sources, one has to preserve 
the control variables in the node or mesh equations ([7], pp. 

The foregoing also applies to prior knowledge. Students 
must know what they are supposed to know already. For 
instance, exercises with complex numbers are given before 
complex valued functions are introduced (see Section 111). 
Such exercises should preferably add to the knowledge of 
the students by giving unexpected conceptual difficulties or 
dilemmas. 

102- 103). 

VII. RECONCILING CONTRADICTIONS 

Along with the sequence of appraisal questions, procedural 
problems, strategic or overview problems, other problems are 
distinguished that raise understanding by their own nature. 
Such problems often contain “stumbling blocks.” The design 
of these problems is such that solving them by formal methods 
will lead to contradictions or to obviously wrong results as 
compared to other knowledge or other lines of thought. Solv- 
ing such a problem helps raising the level of understanding 
because the two roads of thinking need reflective thinking and 
discussion in order to be reconciled. 

These contradictions can be found on all levels of problems 
and for all kinds of representational means: diagrams, symbols, 
words, sentences. Problems in which these contradictions arise 
can be found in the literature or can be designed easily. An 
example about diagrams is presented in Problem 7. 

Problem 7: Beware of Short-circuits 

one-port in Fig. 6. 
Derive the relation between voltage v and current for the 
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Fig. 6 .  A port consihting of resistor.; (cf. Problem 7) 

Fig. 7. A ladder network consisting of voltage divlders (cf. Problem 8 ) .  

"1 "2 
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Fig. 8. A two-port with voltage-driven source (cf. Problem 10) 

Students often do not see short-circuits. Sometimes the 
pictorial representation of networks, as in a diagram, already 
introduces difficulties. Formal application of algebraic meth- 
ods in Problem 7 is tedious but redrawing Fig. 6 gives a 
one-port with three resistors in parallel, resulting in a better 
idea of 'what happens' in this case. 

Other examples of such problems do in fact suggest counter- 
examples of procedures or formulas (matching of examples 
[8]). Problem 8 gives an example in which a product of factors 
is suggested but not applicable. In Problem 9 an example is 
given of a formula that is allowed if considered in a certain 
sense. but considered otherwise not. 

Problem 8: I s  a View Valid? 

Two voltage dividers can be put in series as in Fig. 7. What 
is the ratio of the output voltage I ! , , ,  to the input voltage / I ( , ?  

Pmbletn 9: Is an E.rpression Valid" 

Is it allowed to write cos wt+4=2? 
Another example of this kind of problems concerns the basis 

of the subject matter as in Problem IO. Some concepts look 
axiomatic that can be understood only by methods outside the 
proper domain of the subject matter. 

Prohlern I O :  Some Problems Cunnot Be 
Soliwl by Forniul Methods. 

I \  the two-port presented in  Fig. 8 a passive or an active 
two-port ? 

Problem I O  cannot be solved by simply writing the equa- 
tion5 pertaining to the definition of "active," but only by adding 

a load on the right-hand side and considering the energy input 
and the energy output on the left, or vice versa. This cognitive 
strategy is not explained in  greater detail at this moment. It 
is something to "know," and later the student will understand 
the point. At the present moment the student will meet some 
limits to the formal methods presented. 

Reconciling these "errors" in view or interpretation im- 
proves insight. Problems designed along these lines have 
already been used with good results in remedial sessions with 
a small group of students wanting extra help. 

v111. CONCLUSION AND DISCUSSION 
The usual review questions are often considered too easy by 

the students because the answer can be written by inspection. 
Each chapter should preferably be accompanied by appraisal 
questions (cf. Problem 6) that can be answered if the student 
combines several paragraphs or applies the concepts in a new 
situation. Special questions presenting contradictions that have 
to be reconciled and lead to discussion are advised in order 
to improve understanding. Prior knowledge questions should 
reactivate old skills which the students need constantly. After 
these questions students can exercise new skills they have to 
develop, like solving differential equations, calculating transfer 
functions, and working out convolution integrals. 

Only after the students have had some experience in these 
calculations, strategical insight problems or overview problems 
can be given. Here lies a big difficulty in  teaching. To read 
information or to see problems being solved is only part 
of learning. Students build knowledge by solving problems 
themselves. It is very difficult to get students to work hard 
before the examination time in order to be able to tackle 
insight problems. Possible strategies are to set strategic insight 
problems as soon as possible in the course in order to confront 
students with the examination requirements. Possibly these 
problems might count for the final grade. 

This would add to the external motivation for the students 
to study more continuously by the partial examination system 
[ I ] .  Internal motivation. based on a gradually increasing notion 
that one learns step-by-step to understand new concepts and to 
use the related skills. can be fostered by a careful sequencing of 
instruction and problems. Internal motivation might be further 
stimulated by discussing real-life problems for which the 
methods of network analysis are developed and the outcome 
of calculations are of help and make sense. 

Often students do not make exercises and other homework 
tasks. Sometimes i t  is thought that students have to be moti- 
vated to make the exercises. However, often the subject matter 
is too abstract and too complex for that. We are of the opinion 
that students are motivated when they find out that they are 
able to make the exercises (cf. 191). Thus, introducing higher 
level problems step-by-step will facilitate problem solving and 
help the students to see possibilities to fulfill the tasks given 
and to pass the examinations. This raises a need for a clear goal 
from the beginning, and a sequence of learning problems and 
instruction that provide students with the cognitive instruments 
necessary to reach that goal. 
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APPENDIX 
INTRODUCTION TO NETWORK ANALYSIS 

Network Analysis is about the properties of electrical input- 
output systems. An electrical network is an idealized electrical 
circuit. Defining an input (variable source) and an output 
(voltage or current) provides us with an input-output system. 
Such an abstract system in an imaginary circuit can be viewed 
in several ways. Here three views are treated: the operator-on- 
signal view, the what-does-not change (eigenfunction) view, 
and the equilibrium approach. 

I .  Impulse Response 

The first view implies that the system is characterized by 
the way it “sounds“ after it is “hit.” This can be compared to 
the way a bell sounds after a stroke or a sound system after 
a tap on the microphone. The ideal tap on the input is called 
an impulse: in one moment a certain amount of energy is 
transferred to the system. Afterwards one looks at the output 
how the output signal develops in time. This is called the 
impulse response. The impulse is (momentarily) infinite, the 
impulse response often remains finite. 

The response to other input signals can be calculated from 
the impulse response by a technique called convolution. The 
convolution integral, containing the impulse response function, 
can be considered as an operator acting on the input signal. 

2. Transfer Function 

The system can be viewed in a different way when input 
signals that appear rather unchanged at the output are sought. 
Some signals come out, e.g., with the same shape but possibly 
a different amplitude. In case of linear, time invariant systems 
these signals turn out to be harmonic functions of time. The 
system can now be characterized by specification of the change 
in amplitude for each of those signals. 

We can compare this with determination of the frequency 
response of an amplifier system. For each frequency the 
amplitude change and the change in phase are measured. These 
changes can be represented by one complex multiplicative 
factor. All these factors together represent the (complex) 
transfer function, a function of frequency. The frequency here 
is the only parameter of the input that is important for the 
transfer. 

Time-invariant systems therefore do not distort harmonic 
input signals, but multiply them in a complex representation 
with the complex value of the transfer function. A harmonic 
input signal is an ideal signal that always repeats itself after 
one period, in the future as well as in the past. The amplitude 
is constant. (Compare this with the impulse above.) Every 

period a constant amount of energy enters the system, and 
every period a constant amount of energy leaves the system. 

3. Differential Equation 

The third view is based on the dynamical equilibrium 
between the energy-changes in the system. The system is no 
longer considered as a system into which something enters and 
something comes out, but as an equilibrium system between 
the input signal and the output signal both at the outside. This 
system is described by a differential equation. The solving of 
the differential equation must be done for each input signal 
anew. Differential operators usually act on both input signal 
and output signal. 
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