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Forest encroachment (FE) is a problem in Andaman and Nicobar Islands (ANI) in
India for environment and planning. Small gaps created in the forest slowly expand
its periphery disturbing the biodiversity. Therefore, intrusion of poachers, slash and
burn and other factors causing FE must be carefully detected and monitored.
Remote sensing offers a great opportunity to accomplish this task because of its
synoptic view. Conventional classification methods with remotely sensed images are
problematic because of small size of FE and mixed landcover composition. This
study presents an application of super-resolution mapping (SRM) based on Markov
random field for detection of FE using ASTER (15 m) images. The SRM results
were validated using multispectral IRS LISS-IV (5.8 m) image. Non-contiguous FE
patches of various sizes and shapes are characterized using the spatial contextual
information. The novelty of this approach lies in the identification and separability
of small FE pockets which could not be achieved with pixel-based maximum likeli-
hood classifier (MLC). The SRM parameters were optimized and found comparable
to previous studies. Classification accuracy obtained with SRM at scale factor 3 is
κ = 0.62 that is superior to accuracy of MLC (κ = 0.51). SRM is a promising tool
for detection and monitoring of FE at Rutland Island in ANI, India.

Keywords: forest encroachment; super-resolution mapping; maximum likelihood
classifier; Markov random field

1. Introduction

Small encroachments inside a forest land, such as illegal felling of trees, shifting cultiva-
tion, cleared patches in woodlands and their detection on remotely sensed images are
challenged by the resolution of different satellite sensors and limited contrast with the
background or surrounding landcover. Several studies have been conducted to detect
and map such small landscape elements (SLE) using high-resolution data such as aerial
photographs, IKONOS images and coarse resolution images such as SPOT-4 multispec-
tral images (Dijkstra et al. 2003; Groom et al. 2006; Oosterbaan & Pels 2007; Sheeren
et al. 2009; Skaloš & Engstová 2010). However, high-resolution remotely sensed images
have large spectral variations for the same classes and local variation within the
homogeneous fields (Tolpekin & Stein 2009). Also, high-resolution satellite images
have fewer spectral bands than coarse resolution sensors for landcover classifications
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(Vega et al. 2006; Tolpekin & Stein 2009). Several studies have used super-resolution
mapping (SRM) techniques on coarse resolution image to enhance its spatial resolution
and at the same time to benefit from its available higher spectral bands for landcover
classification (Tatem et al. 2001, 2002; Kasetkasem et al. 2005; Boucher & Kyriakidis
2006; Boucher 2009). In our case, ASTER image has 15 m of spatial resolution and we
have performed super-resolution technique based on Markov random field (MRF) with
scale factor of 3.

1.1. Studies on FE

Remotely sensed images taken at different times with different sensors have been used
in identification of forest encroachment (FE) (Sastry et al. 2007; Mehdawi & Bin
Ahmad 2012; Grinand et al. 2013; Kumar et al. 2013; Satish et al. 2014). On-screen
visual image interpretation technique with time series change analysis has been used to
assess forest cover change on a grid of 1 km in Nilgiri Biosphere Reserve, Western
Ghats, India (Satish et al. 2014). On the Eastern part of the United States and in the
central Brazil area, detection of forest cover change from 1960s to 2000s was carried
out on Corona and Landsat images using support vector machine (SVM) and textural
analysis (Song et al. 2014). Textures within window size of 7 × 7 pixels, 9 × 9 pixels
and 11 × 11 pixels provided most informative matrices for forest classification in remo-
tely sensed images of Corona. In a hybrid approach where remote sensing images of
IRS LISS-III sensor and GIS technique was combined with visual interpretation method
to study FE in Belgaum Dist, Karnataka, India, (Kumar et al. 2013) and for the entire
state of Manipur, India (Sastry et al. 2007). Among the often used image enhancement
techniques like Look up table stretch, histogram equalization, histogram match, haze
reduction, Sastry et al. (2007) reported that histogram equalization worked better for
FE mapping. FE study in Mabira forest reserve, Uganda, was carried out by systematic
sampling technique and survey/interview (Baranga 2007). Optical and microwave
image fusion technique followed by sub-pixel and object-oriented classification meth-
ods were used to detect and monitor illegal logging and tropical rain FE in east
Kalimantan, Indonesia (Vega et al. 2006). They also reported that the principal compo-
nent analysis-based fusion technique was best suited to detect shifting cultivation and
sub-pixel classification could detect single tree felling inside the forest land. Stone
et al. (1991) estimated deforestation using supervised, unsupervised classification tech-
niques, visual interpretation and GIS on Landsat and AVHRR satellite data.

In this study, encroached area or FE is considered as the combination of more than
one landcover class including scattered forest/planted trees, agricultural crops, water-
body and a group of huts. Till date, there is no standard or globally accepted definition
of FE or defined by international organization such as Food and Agriculture Organiza-
tion or United Nations Organization. Commission on Agriculture, Government of India
in 1976, had defined FE as an unauthorized of forest produce and diversion of such
forest land to non-forest land use/cover practices including jhumming in which FE is
considered as a part of forest degradation.

1.2. Studies on MRF-based mapping

In an unsupervised change detection technique, Subudhi et al. (2014) used fuzzy Gibbs
Markov random field (GMRF) to get difference image of the multi-temporal and
multispectral remotely sensed data. Ghosh et al. (2013) combined GMRF with Hopfield
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neural network for unsupervised change detection classification of multi-temporal
images. In both the studies of unsupervised change detection, the problem is solved
through the maximum a posteriori (MAP) estimation principle. An algorithm for fusion
of multispectral remotely sensed images, based on MRF wherein they have incorpo-
rated contextual information into fusion model for better interpretation, is provided by
Xu et al. (2011). Bruzzone and Prieto (2000) automated the MRF technique for unsu-
pervised change detection analysis based on image differencing from multi-temporal
remotely sensed satellite data. Ardila et al. (2011) and Tolpekin et al. (2010) performed
SRM based on MRF technique, assessed their potential and validated them using
ground survey, VHSR and digital aerial photographs. They also performed object-
oriented and pixel-based accuracy assessment of their outputs. SRM was conducted on
normally distributed synthetic images in Tolpekin and Stein (2009). Ardila et al. (2011)
used VHSR images for detection of tree crowns in urban areas of the Netherlands using
MRF-based SRM with contextual and probabilistic information. The results from this
classification method outperformed in comparison with the maximum likelihood and
SVM-based results. It is very crucial to determine the goal of SRM in terms of its
dimension (binary or multivariate) and resolution (low or high resolution or somewhere
between the two) (Atkinson 2009). Various algorithms for SRM can essentially be
divided into two categories. One is regression-type or learning algorithms which
include geostatistical model building, linear mixer models and feed-forward back prop-
agation type artificial neural networks (ANN). Spatial optimization algorithms, such as
pixel swapping, simulated annealing and Hopfield neural network fall into the second
category. Tolpekin and Stein (2009) introduced smoothness parameter to control the
balance between probabilistic and contextual information in the posterior energy func-
tion for class separation on SRMs. Optimal smoothness parameter produces more accu-
rate estimates of class area proportion compared to those obtained with linear spectral
unmixing used in sub-pixel/soft classification. Kasetkasem et al. (2005) reported that
MRF-based SRM enhances the landcover classification.

1.3. Motivation for MRF-based SRM

There are several techniques of SRM, such as sub-pixel mapping based on genetic
algorithm (Mertens et al. 2003), pixel swapping technique with mathematical morphol-
ogy (Mertens et al. 2006), Hopfield neural network (Tatem et al. 2001, 2002), MRF
with simulated annealing (Kasetkasem et al. 2005) and others. For soft classification in
SRMs wherein the reliability of class area proportion is limited in the individual pixels
of the remotely sensed coarse resolution images, Tatem et al. (2002) used Hopfield
neural network, while Mertens et al. (2003) used genetic algorithm. However, MRF
integrates spectral with contextual information (Kasetkasem et al. 2005; Tolpekin &
Stein 2009). MRF-based SRM takes into account spatial distribution of class propor-
tions within pixels (Atkinson 1997). According to Li (2009), MRF models accurately
map the spatial dependence between the classes and their proportions within and in the
neighbouring pixels. MRF models have been used to redefine the results from a sub-
pixel classification. An MRF model does not depend upon the availability of an
accurate sub-pixel classification (Tolpekin & Stein 2009). In this study, we have suc-
cessfully implemented MRF-based contextual SRM method as described in Tolpekin
and Stein (2009), on remotely sensed ASTER images in identifying FE. In this
approach, smoothness parameter is estimated beforehand based on local energy balance
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analysis on training sets. Four classes have been generated and they are as follows:
encroached area, waterbody, forest and degraded forest/land.

2. Study area

Our study area is located in the north-western part of the Rutland Island, Andaman and
Nicobar Islands (ANI), India, (Figure 1) between latitude 11°28′00″N to 11°20′00″N
and longitude 92°35′00″E to 92°45′00″E. The area lies in the South Andaman district
of the Union Territory of ANI. Rutland Island (approx. 14,028 ha in area) bears a
unique stunted formation of southern hilltop forest dominated by Dipterocarpuscstatus
(with an average height below 10 m). Highest peak in Rutland is Mount Ford – 435 m
above mean sea level. FE will be studied in this Study area.

3. Method

The method used for FE identification is essentially an SRM technique based on MRF
method. We have used ASTER image as a test bed and LISS-IV image for validation
purpose. An SRM technique, often used in landcover classification, produces a thematic
map with finer spatial resolution than that of the given multispectral remotely sensed
image. Here qualitative and quantitative accuracy assessment of SRM is compared with
the output of maximum likelihood classification (MLC).

Figure 1. The shaded area in the circle shows study area in the north-western part of Rutland
Island, which is a part of archipelago in Indian Ocean, Andaman and Nicobar Islands.
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3.1. Proposed scheme of the study

In this study, Level 1b ASTER image is to be processed for SRM with MRF method
to map FEs. Scale factor of 3 was decided for the desired resolution of 5 m from the
ASTER image of 15 m resolution. Proposed scheme of the study is shown in Figure 2.
Other available data from Google Earth and LISS-IV is reprojected in the UTM projec-
tion system similar to ASTER image. To prepare class statistics from ASTER image,
LISS-IV and Google Earth data are used. Reference map is digitized from LISS-IV data
with visual aid from Google data of 60 cm resolution. MLC map is generated with
these class statistics and downscaled MLC map becomes the initial map for SRM
processing. Parameterization of MRF method follows simulated annealing algorithm.
Optimized SRM map as output is then compared with MLC map; statistical accuracy
assessment is performed and verified with the field data.

3.2. Super-resolution mapping

Atkinson (1997) introduced SRM, which is essentially a sub-pixel mapping, to identify
spatial dependence within and between the pixels using three different approaches,
ANN, mixer modelling and fuzzy logic. They obtained the most appropriate result with
neural network. A comprehensive introduction to SRM is given in Atkinson (2004) and
Tatem et al. (2001). Spatial dependence of sub-pixels leads to an increase in resolution
of SRMs (Thornton et al. 2006).

We adopted degradation model (Equation (1)) as described in Tolpekin and Stein
(2009). Let y be a multispectral remote sensing image containing K spectral bands with
spatial resolution R, which is coarse resolution. The pixel locations are denoted as
bi 2 B, where B is the pixel matrix with size M × N. We assume existence of

Figure 2. Flow diagram showing proposed scheme of the study.
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multispectral image (x) defined on a set of pixels A with finer spatial resolution, r,
having K spectral bands. The pixel set A covers the same area on the earth surface as
B. Scale factor S is an additional input parameter in SRM wherein we get landcover
maps of various spatial resolutions for a given input image. The scale factor S ¼ R

r is
assumed to be an integer. Finer resolution pixels ajji, where j ¼ 1; . . .S2 form A of
matrix size SMð Þ � SNð Þ. The super-resolution map is represented by c, which has
finer resolution with the same spectral resolution. Here x is our assumed image and c is
the estimated super-resolution map. Downscaled MLC of multispectral image y is used
as an input to obtain an initial estimate of c. Furthermore, a unique class (α) is assigned
to each pixel in the image x, such that c ajji

� � ¼ a, where a 2 1; 2. . .. . .::Lf g. The
degradation model for the images y and x is established as:

yðbiÞ ¼ 1

S2
Xs2
j¼1

xðajjiÞ (1)

Now, with each pixel (aj|i) located at the centre of a window size W, symmetric neigh-
bourhood NðajjiÞ is introduced on A, which is a set of pixels inside the square window
obtained from image x. Li (2009) describes the neighbouring relationship properties in
detail. First-order and second-order neighbourhood are the most popular ones, which
correspond to four and eight closest pixels, respectively.

3.3. Markov random fields

MRF is a mathematical tool which is used to incorporate prior and likelihood informa-
tion to yield good classification results of the input remotely sensed images. MRF takes
into account priori wherein it considers contextual information between the neighbour-
ing pixels and likelihood information, while doing classification of multispectral remo-
tely sensed images. MRF is used to construct a priori probability function in Bayesian
sense so as to estimate the MAP function during the modelling process. For the SR
map c, we represent the prior probability function as (c), and the conditional probability
function that image y is observed, given the true SR map c as PðyjcÞ. Given the
observed image y, the posterior probability function for SR map c is denoted by PðcjyÞ.
Since, Gibbs Random Field (GRF) provides a global model for an image, using
Hammerley- Clifford theorem (Tso & Mather 2009), the MRF is equivalent to GRF
and the above-mentioned probabilities can be formulated by means of energy functions
(Geman & Geman 1984).

PðcÞ ¼ 1

Zp
expð�UðcÞ=TÞ (2)

PðyjcÞ ¼ 1

Zl
expð�UðyjcÞ=TÞ (3)

PðcjyÞ ¼ 1

Z
expð�UðcjyÞ=TÞ (4)

where Zp, Zl and Z are constants for normalization, T is a constant termed temperature,
UðcÞis a prior energy function, UðyjcÞ is likelihood energy function and UðcjyÞ is
posterior energy function between true SR map c and observed image y.
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Using Bayes’ theorem, the relation between the conditional probabilities can be written
as:

PðcjyÞaPðcÞPðyjcÞ (5)

For energy functions, the above Equation (5) can be described as:

UðcjyÞ ¼ UðcÞ þ UðyjcÞ (6)

3.4. Prior energy

The prior energy function mentioned in Equation (2) can be described as the sum of
pair–site interactions (Li 2009) and formulated as:

UðcÞ ¼
X
i; j

U cðajjiÞ
� � ¼ X

i;j

X
l2N ajjið Þ

wðalÞ � d cðajjiÞ; cðalÞ
� �

(7)

where U cðajjiÞ
� �

is the local contribution to the prior energy from the pixel cðajjiÞ,
wðalÞ represents the weight of the contribution from pixel al 2 NðajjiÞ to the prior
energy, and dðc1; c2Þ equals 0, if c1 and c2 are same and 1 otherwise. The weight
contribution wðalÞ is modelled as:

wðalÞ ¼ q � uðalÞ (8)

where
P

l2NðajjiÞ
uðalÞ ¼ 1 and 0 ≤ q < ∞ controls the overall magnitude of the weights.

It provides control on the prior energy term: higher the values of q, smoother the image
and vice versa.

3.5. Likelihood energy

It is assumed that the landcover classes are normally distributed and are characterized
by mean μα and covariance σα. Furthermore, assuming the pixels bi in the observed
image y bi are normally distributed, one can write the statistical parameters mean μi
and covariance σi of the pixels as:

li ¼
XL
a¼1

haila (9)

ri ¼ 1=S2
XL
a¼1

haila (10)

where θαi represents proportion of the class α in the pixel bi.
The formulation for corresponding likelihood energy can be given as:

UðyjcÞ ¼
X
i; j

U yðbiÞjcðajjiÞ
� � ¼ X

i; j

1

2
yðbiÞ � lið Þ0r�1

i yðbiÞ � l1ð Þ þ 1

2
lnjrij

� �
(11)

where U yðbiÞjcðajjiÞ
� �

is the local contribution to the likelihood energy from the pixel
cðajjiÞ and σ represents covariance.
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3.6. Posterior energy

For the super-resolution map c, the minimum posterior energy is given as:

UðcjyÞ ¼ q �
X
i; j

X
l2NðajjiÞ

uðalÞ � d cðajjiÞ; cðal
� �þ UðyjcÞ (12)

As explained in Tolpekin and Stein (2009), normalization of Equation (12) by a factor
ð1þ qÞ, which is independent of y, results in:

UðcjyÞ / k
X
i; j

X
l2NðajjiÞ

uðalÞ d cðajjiÞ; cðalÞ
� �þ ð1� kÞUðyjcÞ (13)

where k ¼ q
ð1þqÞ ; 0� k\1. The smoothness parameter λ controls the contribution from

the prior and likelihood energy in the posterior energy.
By combining Equations (7), (12) and (13), the global energy can be written as:

Uglobal ¼ kUpriori þ ð1� kÞUlikelihood (14)

The prediction of pixel value in image x is prepared by minimizing the global energy
obtained in Equation (14) and a MAP solution for the SR map c is

v̂ ¼ argmin kUðcÞ þ ð1� kÞUðyjcÞf g (15)

An integrated approach is employed wherein neighbouring pixels has an effect on the
estimation of each pixel (Li 2009). In this study, simulated annealing (discussed in
Section 3.8) is employed to solve Equation (15) within reasonable time frame. The
MRF-based SRM technique, as proposed by Tolpekin and Stein (2009) does not rely
on soft classification. In addition to that, the error in the sub-pixel classification result
could be corrected in SRM itself. Tolpekin and Stein (2009) did not conduct any
experiment to get its result on classification and used equal weights for the likelihood
and prior energy constraints.

3.7. Estimation of the smoothness parameter

In MRF-based SRM technique, the smoothness parameter (λ) plays an important role
and is estimated beforehand. Generally, λ is determined either by trial and error which
can be very time-consuming or using training sites, a computationally expensive proce-
dure. In this research, the internal parameter of MRF-based SRM is firstly estimated by
trial and error method and is compared with the optimal smoothness parameter based
on a local energy balance analysis as developed in Tolpekin and Stein (2009). To save
on processing time for experiments, a subset of ASTER data with a dimension of
12 × 12 pixels was used. Using this subset of the data, an optimal value of λ and its
range were estimated at different scale factors (S = 2, 3, 4, 5, 6 and 10). Table 1 shows
estimated optimal values for λ and its range at each S. Values of λ used in the numeri-
cal experiments are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 and 0.99. As
shown in Figure 3, standard deviation is small for different values of λ; therefore,
identification of optimal values of λ was not easy. Another, statistical parameter κ
proves to be useful. Mean value of κ is plotted against λ as in Figure 3. The optimal k̂
value corresponds to the largest mean κ value (i.e. κmax). In addition to that, we choose
κ ≥ 0.9 κmax as the criterion of closeness to the maximum value to represent the opti-
mal range of λ (Tolpekin & Stein 2009) (Table 1).

Geocarto International 435



3.8. Optimization and estimation of T0 and Tupd

Simulated annealing algorithm based on Metropolis–Hastings sampler is applied for
optimization of the parameters relating to the minimization of global energy (Geman &
Geman 1984). Initial temperature (T0) and the temperature updating schedule (Tupd) are
the two parameters of simulated annealing algorithm associated with the magnitude of
the posterior energy. The values of the simulated annealing parameters vary according
to the scene complexity and are estimated for each image separately. At low tempera-
ture, tight coupling between pixels of the image is observed leading to more regular
appearance of the image, whereas, at high temperature, the coupling between pixels of
image is loosened resulting in noisy image (Geman & Geman 1984). In this research,
fine-tuning of the simulated annealing parameters is evaluated on real data set of
ASTER image.

Table 1. At different scale factor S, optimal values of λ (underlined) and its range and corre-
sponding κmax with standard deviation are given.

S λ κmax

2 0.7–0.9–0.95 0.71 ± 0.02
3 0.7–0.85–0.95 0.70 ± 0.01
4 0.6–0.7–0.99 0.69 ± 0.01
5 0.6–0.8–0.95 0.71 ± 0.02
6 0.5–0.7–0.9 0.69 ± 0.02
10 0.4–0.6–0.8 0.67 ± 0.02

Figure 3. Statistical parameters kappa (κ) and standard deviation are plotted with respect to l
different scale factors (S = 2, 3, 4, 5, 6 and 10).
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Tolpekin and Stein (2009) estimated optimum values of simulated annealing
parameter on simulated data for MRF-based SRM and also suggested that one can
apply the same optimized values of simulated annealing parameters for different λ val-
ues. Geman and Geman (1984), Tolpekin and Stein (2009), and Tso and Mather (2009)
suggested that the T0 values should be set in the range of either 2 or 3. In this research,
numerical experiments are conducted to generate the optimal values of T0 and Tupd for
ASTER Image. The experiment was conducted for T0 = 0, 1, 2, 3, 4 and 5 for λ = 0.5
and S = 3 and plotted in Figure 4. Three T0 values (1, 3 and 5) have low mean energy
and are close to each other. At the same time, two T0 values (3, 4) show low standard
deviation. Hence, we selected T0 = 3 as an optimum initial temperature parameter T0.

Simulated annealing parameter Tupd optimization was done by varying the values
from 0.1 to 0.99 while other parameters (i.e. S and λ) were kept fixed. As shown in
Figure 4, it is obvious that from mean κ value, optimal value of Tupd could be consid-
ered either 0.6 or 0.9. However, considering standard deviation for the two, Tupd has
minimum. A low standard deviation of κ value indicates that the results are representa-
tive for multiple values of parameter value and which is good for reproducibility as
well. Hence, Tupd = 0.9 is considered as optimal temperature updating schedule in this
research work.

3.9. Accuracy assessment

The accuracy assessment is a critical step in any mapping process and thus is an essen-
tial component that allows a degree of confidence to be attached to maps for their
effective use.

3.9.1. Qualitative assessment

Under this assessment, we have adopted visual interpretation technique which is done
manually. Here, interpretation can be done on multiple false colour composites (FCC)
of the same remotely sensed image with the help of photo interpretation key elements

Figure 4. Results from optimization experiments are plotted. Mean energy and standard devia-
tion at varying T0 are plotted in the left plot. Optimal T0 is 3. Mean kappa (κ) and standard
deviation are plotted for varying Tupd in the right plot. Optimal Tupd is 0.9.
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such as shape, size, tone/colour, texture and association. While on one hand, the tech-
nique provides us flexibility of interpretation at desired scale and allows us to apply
various enhancement techniques to collect information from the data; on the other
hand, it is labour-intensive and is also sensitive to subjective factors.

3.9.2. Quantitative assessment

The output classified maps/classes are assessed with the available reference data in
terms of user and producer accuracies, overall accuracy and κ values.

3.9.2.1. User accuracy. It is essentially a measure of error of commission. The total
number of correct pixels in a category is divided by the total number of pixels that
were classified in that category to arrive at user accuracy.

3.9.2.2. Producer accuracy. It refers to the probability that a reference pixel on a map
is that particular class itself, indicating how well the reference pixels for that class have
been classified. It can be considered as a measure of error of omission.

3.9.2.3. Kappa coefficient (κ). The kappa analysis is a discrete multivariate technique
used in accuracy assessment for statistically determining if one error matrix is signifi-
cantly different from the other (Congalton 1991). Kappa coefficient ranges between
0 and 1.

4. Results

The SRM method based on MRF as described in Tolpekin and Stein (2009) was imple-
mented on an ASTER image to deal with a real-world problem to identify FEs. The
study area (Figure 1) is about 5.5 km2 on the north-western side of the Rutland Island,
South Andaman district, ANI, India. The ASTER image of the area has 116 × 334
pixels with 15 m spatial resolution. LISS-IV multispectral remotely sensed data
(Figure 5(c)) with spatial resolution of 5.8 m was used to create reference data. The
result obtained from MRF-based SRM is compared with MLC. Note that the fraction
images were obtained by downscaling of MLC of multispectral image y, which leads to
initial model for SRM. Resultant optimized SR map was obtained thereafter. The output
of SRM was assessed both qualitatively and quantitatively in comparison with MLC.

4.1. FE identification with ASTER data

Four landcover classes were identified and modelled as FE based on visual interpreta-
tion of VNIR bands of ASTER image combined with high-resolution Quickbird data
from Google Earth and the LISS-IV standard FCC. These classes are forest, waterbody,
degraded forest/land and encroached area. Pure and homogeneous pixels were taken for
training sites and the training pixels for these FEs are 344, 2538, 174 and 181, respec-
tively. It was very difficult to find pure pixels for class degraded forest/land and
encroached area and is evident in the number of training pixels for these two FEs. The
class separability between the classes obtained from transformed divergence method is
shown in Table 2.

The reference map was manually digitized from the LISS-IV remotely sensed
image which is overlain on all the illustrations from Figures 5–7. While generating the
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reference map, visual aid is taken into account using Google Earth data/Quickbird ima-
gery (Figure 5(a)) of the study area with spatial resolution of 60 cm that was acquired
on 1 March 2006. The ASTER image (Figure 5(b)), which is used as a test bed, was
acquired on 23 February 2006, whereas LISS-IV image (Figure 5(c)), basis of reference
map, was acquired on 26 March 2007. Since, there is a difference of thirteen months
between reference map data and test bed data, changes in the landcover is expected. In
Figure 6, we compare the FEs detected by the SRM with those picked up MLC
method. Note that no statistical filter has been applied on these two maps. Clearly, the
detected FE pockets are over-smoothed and the result outside of the FE area is noisy.
The reference for FE has very sophisticated shapes, for instance Kichad Nallah (as
depicted in Figure 7(a)), which cannot be perfectly described by smoothness model

Figure 5. (a) Google Earth data with 0.60 m resolution, (b) ASTER image with resolution at
15 m with band combination of 3, 2, 1 and (c) 3 LISS-IV image with resolution at 5.8 m with
band combination of 3, 2, 1.

Table 2. Transformed divergence between the landcover classes at the coarse resolution scale
(from the ASTER image).

Forest Waterbody Degraded forest/land Encroached area

Forest 0 2 2 2
Waterbody 2 0 2 2
Degraded forest/land 2 2 0 1.983
Encroached area 2 2 1.983 0
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Figure 6. (a) Map showing SRM and (b) MLC map before applying post classification statistical
filter.

Figure 7. (a) Map showing SRM and (b) MLC map after applying post classification statistical
filter with names of FE pockets.
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used for SRM. Hence, over-smoothing occurs. In this study, our aim was to detect FE
pockets, and as seen, SRM represents them better than MLC.

We further applied statistical filter/majority vote filter using Erdas, 2014 software
on the classified maps of SRM and MLC and are shown in Figure 7(a) and (b). From
visual interpretation of the two maps with respect to the reference map, clearly, the
SRM result is better than the MLC result. Separability of small FE pockets in SRM is
better than that in MLC. For example, on the western side of FE locations called
Niranjan Balu and Bamboo Nallah. In Table 3, we have compared and listed different
features as seen in Figure 7(a) and (b). SRM is consistently performing better in
different FE pockets.

We further evaluated the classification results quantitatively. As enumerated in
Table 4, MLC method has detected extra area in comparison with SRM method. At
Niranjan Balu and Bamboo Nallah, the SRM has detected more than 95% of the target
(FE), whereas, at Kichad Nallah, detection of FE is about 93%. Furthermore, small FE
pockets at Niranjan Balu have been classified as a big FE pocket in MLC (Figure 7(a)),
whereas, small and big FE pockets are detected separately in SRM at the same location
(Figure 7(b)). The results are corroborated by field observations. On the basis of the
careful qualitative interpretation and quantitative evaluation of the classification results
of Figure 7 and as listed in Tables 3 and 4, we can say that SRM outperformed MLC.

4.2. Accuracy assessment

In the study area, κ value for MLC is estimated as 0.51, and for SRM, it is 0.62. Accu-
racy obtained in this study can be improved by using high spectral resolution remotely
sensed data, same date of reference and test bed data with spatial resolution equal to
output obtained from MRF-based SRM.

According to Tolpekin and Stein (2009), identification of k̂ is not very precise in
the second decimal place, since estimation was done with step size of 0.1. Therefore,
we have further assessed accuracy of the maps with different parameters for λ, T0 and
Tupd. In addition to κ, we have also used ‘producer’s accuracy’ and ‘user’s accuracy’ in
our assessment and are given in Table 5 for different sets of internal method parameter.

Our optimization process yielded k̂, T0 and Tupd as 0.85, 3 and 0.9, respectively.
Tolpekin and Stein (2009) obtained k̂ as 0.9 and temperature parameters were the same.
Statistical measures of accuracy of the maps produced using these two different sets of

Table 3. After running statistical filter, observations inferred from Figure 7(a) and (b).

MLC (see Figure 7(b)) SRM (see Figure 7(a))

On the left hand side between Bamboo Nallah
and Kichadnalla, degraded forest/land is
mapped in the sea

On the left hand side between Bamboo Nallah
and kichadnalla, degraded forest/land is not
present in the sea

On the top right hand side of third FE pocket of
Niranjanbalu, waterbody is not detected

On the top right hand side of third FE pocket
of Niranjanbalu, waterbody is detected

On the easternside on the right hand side of
Bamboo Nallah, more than three small
patches of false FE is seen

On the easternside on the right hand side of
Bamboo Nallah, no FE pocket is visible

In all the detected FE pockets, MLC estimated
more area than official record of FE (Table 4)

In all the detected FE pockets, SRM provides
areal estimates very close to the values as per
official record of FE in the area (Table 4)

Geocarto International 441



parameters are shown in Table 5 (Test #1 and #2). Accuracy measures are in favour of
the optimized parameters obtained by Tolpekin and Stein (2009). Therefore, we would
expect k̂ parameter in the second decimal place to be closer to 0.9 than to 0.85. The
effect of small variation in k̂ has statistical significance due to the presence of variance
of the κ values (Table 1), and it lies in the optimal ranges of λ. According to Geman
and Geman (1984), T0 and Tupd varies from simpler to complex case. Therefore, we
chose training sites to further optimize T0 and Tupd and are 2.8 and 0.89 giving higher
statistical accuracy (Test #3 of Table 5).

5. Discussions

Optimization of simulated annealing parameters is an important step in MRF-based
SRM technique. T0 was fine-tuned by varying its value at a fixed scale factor and λ.
Having obtained T0 = 3 as an optimal value, another set of numerical experiments was
conducted to obtain the optimal value for Tupd. T0 was kept fixed at 3 while tuning Tupd
and its optimal value was estimated to be 0.9 for the ASTER image. These two optimal
values of simulated annealing parameters were used for all the experiments in this
research which in turn provided better results as depicted in Figures 3 and 4. The opti-
mal values of T0 and Tupd were in agreement with the findings of Tolpekin and Stein
(2009).

Trial and error method was adopted to find range and optimal value of internal
method parameter which is given in Table 1. The statistical parameter κ-based accuracy
assessment was used in the decision-making. Optimal range of the internal method
parameter is obtained in terms of classification accuracy from κ statistics. The largest
mean value of κ (κmax) corresponds to the optimal value of the internal method
parameter. Once again, these parameters were in agreement with the findings of
Tolpekin and Stein (2009).

Table 4. Quantitative comparison between MLC and SRM classified maps.

Name of FE pockets Area (Ha)

Area (in Ha) detected by
Difference in area (in %)
detected by

MLC method SRM method MLC method SRM method

Niranjan Balu 14.4 18 14.2 25 (+) 1.4 (−)
Bamboo Nallah 6 8.6 5.7 43 (+) 5 (−)
KitchadNallah 30.6 38 28.5 24 (+) 7.1 (−)

Table 5. Pixel-based classification errors for FE detection using MLC and SRM for varying
optimization parameters.

Tests Maps Kappa
User
(%)

Producer
(%) Remarks

1 MLC 0.51 38 91 Based on optimized parameters of k̂ = 0.85, T0 = 3
and Tupd = 0.9SRM 0.59 48 83

2 MLC 0.51 38 91 As per Tolpekin and Stein (2009) k̂ = 0.9, T0 = 3
and Tupd = 0.9SRM 0.60 49 87

3 MLC 0.51 38 91 Parameters estimated from training sites k̂ = 0.9,
T0 = 2.8 and Tupd = 0.89SRM 0.62 50 87
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For comparison between the object for identification and real ASTER image, scale
factor of 3 was chosen which means that our SRM study belongs to H-resolution case
(Jupp et al. 1988). Tolpekin and Stein (2009) reported high classification on synthetic
images for H-resolution case. Fisher (1997) identified four different types of mixed pix-
els: boundary, intergrade, small sub-pixels and linear sub-pixel. The mixed pixels which
consist of boundaries between two or more mapping units are easier case for SRM. In
this research work, we are dealing with mixed pixels of boundary and linear sub-pixel
type for FE delineation. The encroached area is modelled as mixed landcover class that
contains mainly agricultural land, built-up, grass, bare soil and waterbody. Majority of
the encroached area inside the forest of the Rutland Island is being used for cultivation
by the encroachers, and it is identified by the visual interpretation of Figure 5(a)–(c)
Thus, MRF-based SRM has been effective on real data set dealing with H-resolution.

6. Conclusion

MRF-based SRM method has been effective in detecting FEs. Fine-tuning of simulated
annealing parameters is essential for the method to produce desired results. Smoothness
parameter was estimated using trial and error method, and findings are in agreement
with those reported in Tolpekin and Stein (2009) for normally distributed synthetic
data. Since optimal neighbourhood system size varies from one scale factor to another
and also computational time increases with system size, it is, therefore, important to
prudently choose scale factor and hence window size according the need. The qualities
of the SRM were assessed visually as well as quantitatively. The statistics-based κ used
as a tool for accuracy assessment indicates that SRM is more accurate than MLC in
detecting FE. Different patches of FE are not contiguous; they are spread in various
sizes and shapes and are governed by the contextual information. Identification and
separability of small and big FE pockets achieved by MRF-based SRM is better than
MLC. Although simulated annealing algorithm is computationally expensive for its
cooling schedule, speed and parameter estimation, the method produces better results.
The results were verified by the headquarter camp officer of the Manglutan range South
Andaman forest division, involved in FE identification in the study area.

7. Recommendation and future scope

MRF-based SRM has proved to be an effective tool for detection of FE from ASTER
images in Rutland Island, South Andaman, India. On the same line, effectiveness of
this method can be explored to detect SLE and tree resources outside forests using
other sensors data like LISS-III, LISS-IV and AWiFS. Depending on the availability
resources, such studies can be extended to larger areas. Furthermore, simulated anneal-
ing algorithm used in this research is computationally expensive; therefore, other
optimization methods (e.g. graph cut and belief propagation) can be tested (Tappen &
Freeman 2003; Li 2009).
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