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Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-
view images. However, due to the large computational costs of SfM methods there is a major challenge in
processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper
embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from
a large set of UAV images. First, the flight control data are used within a weighted graph to construct a
topologically connected camera network (TCN) to determine the spatial connections between UAV
images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree
to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved
in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM
method, which allows performing tie-point matching only for the actually connected image pairs. The
proposed method was applied in three experiments with images from two fixed-wing UAVs and an octo-
copter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for
image connectivity determination. The comparison shows a significant reduction in the number of
matched images if our method is used, which leads to less computational costs. At the same time the
achieved scene completeness and geometric accuracy are comparable.
� 2016 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote

Sensing, Inc. (ISPRS).
1. Introduction Kovacs, 2012). In particular, UAV images which are sequentially
3D scene reconstruction plays an important role in heritage
documentation (El-Hakim et al., 2004), urban planning (Verdie
et al., 2015), virtual reality (Feng et al., 2014), and disaster manage-
ment (Bulatov et al., 2014; Ferworn et al., 2011; Gerke and Kerle,
2011). Many studies have investigated the benefits of Structure-
from-Motion (SfM) techniques for 3D scene reconstruction from
multi-view images (Pollefeys et al., 1999; Scaramuzza et al.,
2006; Sturm and Triggs, 1996). Nowadays, many commercial and
open source software packages integrating a SfMmethod are avail-
able (Koutsoudis et al., 2014). Unmanned aerial vehicles (UAV),
showing great advantages in operational cost and flexibility, have
been increasingly used to date to capture multi-view images
(Colomina and Molina, 2014; Lucieer et al., 2014; Zhang and
acquired with high geometrical resolution and large overlap, are
suitable for 3D scene reconstruction. Many studies have investi-
gated the use of UAV images and SfM methods for 3D reconstruc-
tion in landslides (Niethammer et al., 2012), agriculture (Dandois
and Ellis, 2013), topography (Woodget et al., 2015), and disaster
scenarios (Vetrivel et al., 2015).

In the literature, many efforts have been undertaken to reduce
the computational cost associated especially to image matching
and bundle adjustment within SfM. In this work, the attention is
mainly devoted to image matching, one of the most time-
consuming phases. An effective approach for computational sav-
ings is to embed a topologically connected camera network
(TCN) within SfM as a constraint (Rupnik et al., 2013; Xu et al.,
2014a). A TCN is also referred to as image connectivity graph,
which identifies the connections between the images (Snavely
et al., 2010). The TCN-embedded SfM allows only the connected
image pairs to be involved in matching. This method has been suc-
cessfully used for processing UAV images in both nadir and oblique

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2016.08.013&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2016.08.013
mailto:hzxurs@mail.bnu.edu.cn
mailto:awulixin@263.net
mailto:m.gerke@utwente.nl
mailto:wangr0225@163.com
mailto:932400012@qq.com
mailto:932400012@qq.com
http://dx.doi.org/10.1016/j.isprsjprs.2016.08.013
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


114 Z. Xu et al. / ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016) 113–127
views. For instance, Douterloigne et al. (2010) utilized Global Nav-
igation Satellite System (GNSS) data to generate a TCN for match-
ing nadir UAV images. Rupnik et al. (2015) used the on-board
sensors associated with GNSS and an Inertial Measurement Unit
(IMU) to generate a TCN for dealing with oblique images. More-
over, a rough point cloud-derived TCN was employed for matching
unordered UAV images or video frames (Alsadik et al., 2015;
PhotoScan, 2013).

Many methods for generating a TCN are decision-making based,
either on image footprint conjunction (Douterloigne et al., 2010;
Rupnik et al., 2013) or on tie-points distribution (Alsadik et al.,
2015; Castillo et al., 2015; PhotoScan, 2013). The major shortcom-
ing of the mentioned approaches is that they operate on a pure
direct adjacency principle, e.g. a minimum overlap between
images. This, however, does not consider the entire image topology
and may lead to adding matching pairs which are not relevant for
the network, but cause additional matching cost, or it may lead to a
loss of relevant image pairs, respectively.

In the literature, a spanning tree has been commonly used for
optimally removing edges which are considered non-essential
from a weighted graph (Held and Karp, 1970; Helmi and
Rahmani, 2014). In particular, the extraction of the skeletal camera
network (SCN) follows a maximum spanning tree (MST) approach
(Gavril, 1987), which find a subset of edges from a weighted TCN to
achieve a maximal total weight (i.e. overlap) with a minimally
required number of edges. For a wide range of applications, several
variants of MST have been carried out with maximum connectivity
and degree bounded considerations (Gouveia et al., 2014; Helmi
and Rahmani, 2014; Katagiri et al., 2012).

This paper aims to construct a SCN to improve the computa-
tional efficiency of SfM for 3D scene reconstruction from a large
set of highly overlapping UAV images. Specifically, we first con-
struct a weighted TCN to identify the connections between UAV
images, then extract a SCN by deleting the non-essential edges
from the TCN, and finally embed the SCN into a SfM method
(SCN-SfM) in order to restrict pairwise matching to images which
are connected in the SCN. This paper is organized as follows: Sec-
tion 2 starts by describing the framework of the proposed method,
followed by illustrations of each component of the proposed
method and baseline methods used for comparison; Section 3
describes the experimental sites and data used; the experimental
results are present in Section 4, followed by discussion in Section 5
and conclusions of this study in Section 6.

2. Methodology

The framework of the proposed SCN-SfM method for 3D scene
reconstruction from UAV images is sketched in Fig. 1. It contains
three main components, namely (a) TCN construction, (b) SCN
extraction, and (c) SCN embedded SfM. We first construct a TCN
to represent the dataset by a weighted graph, considering the
connections between UAV images, using the flight control data.
Subsequently, we obtain an optimal SCN by iteratively deleting
the non-essential edges in the TCN using a novel spanning tree,
i.e. the hierarchical degree bounded maximum spanning tree
(HDB-MST). Finally, the optimal SCN is embedded into the SfM
method for 3D scene reconstruction, where only the connected
image pairs represented by the SCN are considered for tie-point
matching. The three components of the proposed method are
described in detail in the following sections.

2.1. TCN construction

We use the flight control data to construct a weighted TCN
representing the connections between the images in a given UAV
collection (Rupnik et al., 2013; Xu et al., 2014a). For n images, we
define the corresponding TCN by a weighted directed graph
G ¼ ðV ; EÞ with its node set V ¼ fv1; . . . ;vng and the edge set
E ¼ fei;j : i; j ¼ 1; . . .ng. Each node represents one image, and the
edge represents a connected image pair. We represent the graph
by a triangular adjacency matrix, in which we write ci;j ¼ 1 to
denote ei;j 2 E, and we use the value of ei;j to denote the edge
weight between a pair of nodes ðv i;v jÞ. Here, the edge weight is
characterized by the overlap between an image pair. For the TCN
construction, the footprints of each image are first computed from
flight control data and by projecting the image outline onto an ele-
vation model (Rupnik et al., 2013; Xu et al., 2014a). Next, the con-
nections between the image pairs are identified through an image
topology analysis (Xu et al., 2014a; Xu et al., 2015), followed by the
calculation of overlap between the connected images. Fig. 2 illus-
trates five main categories of an overlapping image pair ðv1; v2Þ.
The overlap of a connected image pair can be estimated by the fol-
lowing procedure: given a connected image pair ðv1;v2Þ, we first
find the convex hull of the overlapping area e1;2 by means of Gra-
ham scan algorithm (Kong et al., 1990), then divide the convex hull
into multiple triangles and finally estimate the overlap by Eqs. (1)
and (2).

e1;2 ¼
Xm�1

i¼2
SDt1titiþ1 ð1Þ

where ti ¼ ðxi; yiÞ is the ith of m nodes of the convex hull,
and SDt1ti tiþ1 is the area of one triangle composed by node set
ft1; ti; tiþ1g.

SDt1ti tiþ1 ¼
1
2
ðxi � x1Þðyiþ1 � y1Þ � ðxiþ1 � x1Þðyi � y1Þ
�� �� ð2Þ

The use of the K-nearest-neighbors algorithm (Cover and Hart,
1967) can help to find corresponding overlapping images since
the number of overlapping candidates is quadratic in the number
of images.

Fig. 3 shows the weighted TCN of an example UAV collection
with 11 images. Note that the information on the diagonal and
the last column are auxiliary information described in the next
subsections.

2.2. SCN extraction

The SCN minimizes the number of edges in TCN. We consider a
representation in a graph G ¼ ðV ; EÞ. The minimization is con-
ducted using the proposed maximum spanning tree, i.e. HDB-
MST. The application of HDB-MST is achieved by using two main
procedures associated with hierarchical TCN representation and
SCN extraction from the hierarchically structured TCN in an iterative
configuration. The execution of the proposed HDB-MST is summa-
rized by the following pseudo-codes:

while do
let G ¼ ðV ; EÞ be a weighted graph that represent TCN
hierarchically restructure TCN and divide G ¼ ðV ; EÞ into a
set of n subgraphs as discussed in Section 2.2.1
extract SCN from the hierarchically structured TCN as
discussed in Section 2.2.2
if SCN equals to TCN then
exit

else
update TCN by SCN

end if
end while
return SCN



Fig. 1. Framework of the proposed SCN-SfM method for 3D scene reconstruction from UAV images.

rlapping image pair (v1;v2).
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The details of the two components involved in the proposed
HDB-MST algorithm are summarized in the following subsections.

Let Adjðv iÞ denote the adjacent set of a node v i 2 V , Adjðv iÞ,
fv j : ci;j ¼ 1 [ cj;i ¼ 1g. Let #ðSÞ denote the number of elements in
the set S. Let dðv iÞ denote the degree of a node v i, characterized
by the number of edges incident with v i as dðv iÞ ¼ #ðAdjðv iÞÞ. Let
oðv iÞ denote the totally accumulative edge weight between a node
v i and its adjacent set as oðv iÞ ¼

Pe
i;j;v j 2 Adjðv iÞ. Let wðv iÞ denote

the importance weight of a node v i as:

wðv iÞ ¼ dðv iÞ � oðv iÞX

v i2V
dðv iÞ � oðv iÞ

ð3Þ

Fig. 2. Categories of ove
Hence, we define a subgraph Gi ¼ ðVi; EiÞ, where the node set Vi con-
sists of a seed vs 2 V and its adjacent set AdjðvsÞ, and the edge set
Ei ¼ fet;r : v t ;v r 2 Vi; ct;r ¼ 1g.
2.2.1. Hierarchical TCN representation
The hierarchical TCN representation assigns the node set

V ¼ ðv1; . . . ; vnÞ of the corresponding graph G ¼ ðV ; EÞ into multi-
ple layers. It divides graph G into n subgraphs and specifies the
order of each subgraph for processing. The achieved subgraph
set is GH and its node set is VH . A temporary node set VT is used
to store the nodes in the layers from top to down; and the node

set belonging to the lth layer is represented as Vl. The implemen-



Fig. 3. The weighted TCN of an example UAV collection containing 11 images. The weighted TCN is represented by a modified n� (n + 1) adjacency matrix (n ¼ 11), where the
data in the last column (in light blue) represents the degree dðv iÞ of node v i 2 V , and the value in the diagonal (in yellow) represents the importance weight wðv iÞ of node v i.
The remaining value (in light brown) represents the edge weight ei;j between a node pair (v i; v j). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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tation of the hierarchical TCN representation is summarized as
follows:

Step 1: (Initialization) set VT  ;, l 1, Vl  ;, GH  ; and
VH  ;

Step 2: select the node vs with maximum importance weight
in G as a seed and construct the first subgraph G1 ¼ ðV1; E1Þ,
where V1 ¼ fvs;AdjðvsÞg; set Vl  fvsg, Vlþ1  fAdjðvsÞg,
VT  fVl;Vlþ1g, GH  fG1g, VH  fV1g and l lþ 1

Step 3: (Seed extension) sort wðVlÞ in decreasing order

for j ¼ 1 : #ðVlÞ do
treat the jth node in the sorted node set Vl as a seed and
construct the corresponding subgraph Gj in a similar

manner; set GH  fGH;Gjg, VH  fVH;Vjg and j jþ 1
end for

Step 4: (Termination test) if #ðGHÞ ¼ n, go to Step 5; else

l lþ 1, Vl  f[VH n VTg, VT  f[VHg and go to Step 3.
Step 5: (Complete subgraph generation) return complete set

of subgraphs GH in well-organized order.
Table 1
Component of the ordered subgraphs after the hierarchical representation of TCN associat

Subgraph Seed Adjacent set Subgraph Seed

G1 7 {5, 1, 6, 10, 9, 8} G5 10
G2 5 {7, 1, 6, 2, 4} G6 9
G3 1 {7, 5, 6, 2} G7 8
G4 6 {7, 5, 1, 8} G8 2
In Step 3, if there is more than one node with the same weight, we
treat the respective nodes to be selected as seeds based on their

orders in the node set V . Table 1 gives the components of the sub-
graphs after the hierarchical representation of TCN associated with
the example weighted graph in Fig. 3.

2.2.2. SCN extraction from the hierarchically structured TCN
We formulate our problem by gradually filtering out the non-

essential edges from each subgraph according to its order in GH .
As aforementioned, Gi 2 GH is a subgraph that contains a seed v s

and its adjacent set Adjðv sÞ, ci;j ¼ 1 represent the edge connection
between two nodes ðv i;v jÞ and ei;j represent the edge weight.
Hence, we extract the potential SCN using the following steps:

Step 1: (Initialization) set i 1
Step 2: while i 6 #ðGHÞ do
Step 3: (Simplification) given Gi 2 GH , set ct;u  1 and ct;r  0,
where v t ;vu; vr 2 Adjðv sÞ, vu ¼ argmaxfet;ug, and v r – vu; set
cn 0
Step 4: (Optimization) given vk 2 Adjðv sÞ, if es;t and et;k satisfy
Eqs. (4)–(6), set cs;t  0, ct;k  1 and cn cnþ 1
ed with the example weighted graph in Fig. 3.

Adjacent set Subgraph Seed Adjacent set

{7, 9, 11} G9 4 {5, 3}
{7, 10, 8, 11} G10 11 {10, 9}
{7, 6, 9} G11 3 {2, 4}
{5, 1, 3}
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Step 5: repeat Step 4, until cn ¼ #ðAdjðv sÞÞ or dðv sÞ ¼ 2; set
i iþ 1
Step 6: end while
Step 7: return one potential SCN

et;k � es;t
et;k

> f ; ðf > 0Þ ð4Þ

0 < es;t < 0:5M ð5Þ

0:5M 6 et;k 6 M ð6Þ
where M ¼maxfei;j : i; j ¼ 1; � � �ng indicates the maximum overlap
between the image pairs in an UAV collection.

Steps (3–5) show the procedure of simplifying a subgraph. The
simplification is performed under the assumption that the image
corresponding to the seed vs 2 Vi has the highest importance in
3D scene reconstruction as compared to its adjacent set
Adjðv sÞ 2 Vi. Hence, we keep the edges between v s and Adjðv sÞ as
default in Step 3, and delete only the edges which are neither inci-
dent to v s nor possess maximum weight of any node in AdjðvsÞ.
This step ensures each node v t 2 Adjðv sÞ is involved in at least a
3-tuple configuration, that is, dðv tÞP 2. It needs to be noted that
although the edge connection between two nodes is deleted in pro-
cessing the subgraph, the edge weight remains stored and is used
for further optimization. In Step 4, the optimization is performed
by testing whether the target factor f has been met based on our
experimental experience. As a result, the previously deleted edges
can be recovered through the optimization in Step 4. For instance,
in case of vr ¼ vk, the deleted edge connection ct;r  0 in Step 3
can be recovered as ct;r  1 after Step 4. In Step 5, one criterion
that will stop the procedure in advance is that node degree
dðv sÞ ¼ 2. This stopping criterion ensures the seed be involved in
a 3-tuple configuration. Fig. 4 shows an illustrative example of
simplifying subgraph G1 with seed node f7g and its adjacent set
f5;1;6;10;9;8g. In particular, the use of Eqs. (4)–(6) during step
4 forces the algorithm to delete the edge connection as c1;7  0
(although it has a higher priority) and recover c1;6  1. Finally,
out of 12 edges from the original subgraph G1, a set of 4 edges
fc1;7; c5;7; c6;8; c7;9g gets deleted.

These procedures are repeated, one subgraph at a time, until no
remaining subgraph with redundant edges is existing, and finally
producing a potential SCN. Fig. 5 shows the schematic representa-
tion of SCN extraction from the weighted TCN in Fig. 3 using the
proposed HDB-MST algorithm. Fig. 5a indicates that the node set
in the TCN is divided into four different layers. Fig. 5b shows the
extracted potential SCN after processing all subgraphs from the
hierarchically structured TCN in Fig. 5a. We call the whole proce-
dure from one weighted TCN to the potential SCN as one
Fig. 4. Illustrations of simplifying subgraph G
HDB-MST round (HMR). Subsequently, we update the weighted
TCN as the potential SCN for processing another HMR. The HMR
is repeated until all the edges in TCN stop changing, which results
in the final SCN (Fig. 5b).
2.3. SCN embedded SfM

The SCN embedded SfM starts with the extraction of distinctive
features from each image, using the Scale Invariant Feature Trans-
form (SIFT) operator (Lowe, 2004) in our case. The SIFT operator,
however, might fail to work on centimeter-resolution and richly
textured UAV images, which have extremely large number of fea-
tures. To improve the feature extraction performance, we adopt a
divide-and-conquer strategy that divide one image into a set of
sub-blocks, independently extract features and merge them into
a complete file (Xu et al., 2014a).

Subsequently, tie-points are matched only in the image pairs
with explicit connections within the SCN. To remove remaining
matching errors, a RANSAC (Fischler and Bolles, 1981) estimation
of the fundamental matrix is performed on each pair of matched
images. We then generate a set of feature tracks, each of which
records the position of a tie-point in different images. For increased
speed and reliability, we delete the tracks which contain tie-points
in less than three images.

Once the features are generated, we recover a set of camera
parameters Ci and a 3D location Xk for each feature track through
a joint minimization of a non-linear objective function yðC;XÞ.
For F feature tracks X ¼ fXkgFk¼1 in m cameras C ¼ fCigmi¼1, the min-
imization is achieved by means of a projection equation P that con-
siders the accumulative projection errors of all the feature tracks
as:

yðC;XÞ ¼
Xm

i¼1

XF

k¼1
wikkqik � PðCi;XkÞk2 ð7Þ

where qik indicates the measured position of the kth feature track in
image i, qik � PðCi;XkÞ indicates the projection error of kth feature
track in image i. The variable wik ¼ 1 if image i observes the kth fea-
ture track, otherwise wik ¼ 0.

We use a sparse bundle adjustment (Lourakis and Argyros,
2004) to solve the minimization problem. Rather than estimating
the parameters for all cameras and feature tracks at once, we add
one camera at a time. We begin the estimation with the image pair
that has the largest number of tie-points. Following that, the cam-
era parameters and the 3D point positions are obtained in an arbi-
trary coordinate system, which is defined by the projection centers
and baseline of the two initial images, if no additional information
(e.g. ground control points) is available.
1 with node set V1 ¼ f7;5;1;6;10;9;8g.



Fig. 5. An example of the schematic representation of SCN extraction from a
weighted TCN using HDB-MST algorithm. (a) hierarchical TCN representation and
(b) the final SCN that equals to the potential SCN after one HMR.

Table 2
Theoretical comparison of image matching complexity in DN-SfM, MCN-SfM, TCN-
SfM and the proposed SCN-SfM methods.

Method DN-SfM MCN-SfM TCN-SfM SCN-SfM

Computation nðn�1Þ
2

sðs�1Þ
2 un� u2þu

2 vn� v2þv
2

Complexity Oðn2Þ Oðs2Þ OðnÞ OðnÞ

n is the number of images, s is the number of images remained in MCN, which is
smaller than n. u and v are two constants, which are much smaller than n, and
indicate the maximum degree of node in TCN and SCN, respectively.

Table 3
Parameters for the three experimental sites.

Parameter Site A Site B Site C

UAV model Fixed-wing Octocopter Fixed-wing
Flying height above

ground (m)
450 100 120

Forward/lateral
overlap (%)

80/60 80/60 80/60

Camera model Canon EOS 5D
mark II

Canon EOS 5D
mark II

Panasonic
DMC-FX75

Focal length (mm) 35 35 24
Number of images 947 45 56
Sensor size

(mm �mm)
36 � 24 36 � 24 6.1 � 4.6

Image size
(pixel � pixel)

5656 � 3744 5656 � 3744 4320 � 3240

GSD (cm) 12 2.6 1

118 Z. Xu et al. / ISPRS Journal of Photogrammetry and Remote Sensing 121 (2016) 113–127
2.4. Method comparison and performance evaluation

We compare the proposed SCN-SfM method with three other
SfM methods. Firstly, we use the traditional method, labelled as
DN-SfM to process the UAV images (Snavely et al., 2006). Then,
we compare our approach to the TCN-SfM method from Rupnik
et al. (2013), which investigates TCN embedment for the SfM-
based 3D scene reconstruction and is largely similar to the initial
TCN computation as described here. Furthermore, we compare
SCN-SfM to the MCN-SfMmethod from Alsadik et al. (2014), which
constructs the matching graph from an initial SfM method based
on resampled images.

We evaluate the performances of the proposed SCN-SfM
method concerning three aspects: image matching, scene com-
pleteness, and geometric accuracy. To evaluate the performance
of image matching, we concentrate on efficiency and feasibility,
respectively. For efficiency assessment, we use the number of
image pairs involved in matching as a proxy for run time, as pro-
posed by Snavely et al. (2008). For feasibility assessment, we ana-
lyze the distribution of tie-points and quantify the number of
correspondences between image pairs (Xu et al., 2014b). To evalu-
ate the scene completeness, we use both qualitative and quantita-
tive measures with regards to geometry coverage and to the
number of retrieved 3D points. To evaluate the geometric accuracy,
the point cloud is transformed from the arbitrary coordinate sys-
tem to the user’s coordinate system. There are two main solutions
for the coordinate transformation. One follows the conventional
photogrammetry principle that add at least three GCPs in the bun-
dle adjustment to define the correct mapping datum (Rupnik et al.,
2015). This solution can be achieved using commercial software
e.g. Pix4Dmapper, PhotoScan, and open source software Micmac
(http://logiciels.ign.fr/?-Micmac,3-). The other is achieved by iden-
tifying some GCPs in a densified point cloud and computing an
appropriate 3D similarity transformation (Fonstad et al., 2013;
Westoby et al., 2012). Residuals at GCPs are then used as a quality
indicator. This solution can be achieved by following a 3D shape
registration method based on the ICP algorithm (Besl and McKay,
1992). We are aware of the fact that the former one would most
probably lead to better results, since block deformation, which is
a result of remaining systematic errors in camera self-calibration,
will be reduced. For practical applications such a method is highly
suggested. In this study, however, we are interested only in com-
paring the methods relative to each other. Since the bundle block
adjustment, including self-calibration method is the same for all
cases to be compared, it seems even better to use the rigid trans-
formation, assuming that effects from different matching graphs
are better visible. Then we compare the transformed coordinates
of GCPs with GPS measurements for a relative ranking of the meth-
ods in the experimental analysis (Westoby et al., 2012).

Table 2 lists the computational complexities of the four meth-
ods in image matching. The complexities of DN-SfM and MCN-
SfM are Oðn2Þ and ðs2Þ ðn > sÞ, respectively. The complexities of
TCN-SfM and SCN-SfM are OðnÞ, since the two methods avoid
traversal matching by taking into account the constraints of topo-
logical connectivity of image pairs. It should be stressed that the
theoretical analysis is just an approximate one, and actual compu-
tation times may differ in practice. Experimental results can be
found in Section 4.3.1.

We use the popular open source SfM system Bundler (Snavely,
2010) to obtain the sparse point clouds for the experiments. Bund-
ler is written in C and C++ that allows us to embed the networks, in
particular TCN and SCN, in the SfM method. The Patch-based
Multi-View Stereo Software (PMVS-Version2) (Furukawa and
Ponce, 2012) is used to densify the sparse point clouds. Notably,
for comparison purposes, all the parameters in Bundler and PMVS2
are assigned the same values for the four methods.
3. Experimental test in three sites

In this study we conducted three experiments in Site A, B, and C
in China to validate the proposed SCN-SfM method. Site A covers
an area of �3 � 7 km2 centered at the campus of the China Univer-
sity of Mining and Technology (CUMT) in Xuzhou, Jiangsu Province
and it includes mainly vegetation, roads, and built-up areas. Site B
covers an area of �200 � 400 m2 at Gutian Village, Fujian Province
and is characterized by dense housing facilities and lush vegetation
(Xu et al., 2014b). Site C is a suburban landscape with an area of
�150 � 500 m2 located at Linyi, Shandong Province. This site is rel-
atively monotonous, with a couple of individual buildings.

Two fixed-wing UAVs were employed to capture images for Site
A and C, while one octocopter UAV was employed to capture
images for Site B. Each flight was automatically controlled by a

http://logiciels.ign.fr/?-Micmac,3-


Fig. 6. Overview of UAV collections. (a–c) footprints of images in Site A, B, and C, respectively. The numbers in (b and c) represent the order of images captured by the flight
control system.
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ground station with a predefined trajectory. The flight control data
of each flight were obtained by a low-cost flight control system.
The geometrical resolution, indicated by ground sampling distance
(GSD) varies from 1 cm to 12 cm. Table 3 lists the details of the
parameters for the three experiments.

In addition, a total of 15 ground control points (GCPs) were
well-distributed in Site B. These GCPs were fixed as cross markers
with the edge length of 20 cm, which can clearly be identified in
the UAV images. A GPS-RTK field survey was conducted before
the flight, resulting in a nominal standard deviation below 2 cm
for each GCP.

Fig. 6 gives an overview of UAV collections. Figs. 6(a–c) present
the footprints of the images in Site A, B, and C, respectively. Figs. 6
(a and b) indicate two well-overlapped flights for Site A and B.
Fig. 6c shows an irregular-overlapped flight, resulting from unfa-
vorable weather conditions.
4. Experimental results and comparison

4.1. TCN construction

Fig. 7 shows the results of TCN construction for Site A, B, and C,
respectively. It needs to be mentioned that from the 947 images on
Site A, only a subset of 126 images (called as Site As) from four reg-
ular flight lines was selected for the following studies. Figs. 7(a–c)
show the flight information and indicate the conjunctions between
flight lines of Site As, B, and C, respectively. In these figures, the
range of images from each flight line is shown in the main diago-
nal. The solid lines off the diagonal indicate the connected image
pairs between different flight lines. The dotted line in Fig. 7a shows
that no connected image pair can be found between two non-
adjacent flight lines, e.g. line 1 and line 4. Figs. 7(d–f) show the
adjacency matrixes of the corresponding TCNs of Site As, B, and
C, respectively. We constructed a n � n grid for each site to visual-
ize the distribution of connected image pairs and mapped their
overlap onto the corresponding grids. For illustrative purpose, we
visualized the overlap between the images of the three sites by
the same range of (0–0.85). Fig. 7d shows that the overlap of one
pair of neighboring images along the heading direction is larger
(0.7–0.85) than that from two adjacent lines (0.3–0.45). This figure
also shows that the image pairs with minimal overlap (e.g. overlap
lower than 0.25) in the TCN account for a large partition of the con-
nected image pairs. In addition, the overlap of an image pair from
two non-adjacent flight lines is rather small, varying from 0.02 to
0.08 (Fig. 7d). The overlap between images in Fig. 7e exhibits a
similar behavior as Fig. 7d but with larger overlapping values.
Nevertheless, the overlap behavior in Site C, where the images
were collected in a more irregular flight (Fig. 7f) is different from
those in Site As and B. Unlike the TCNs of Site As and B, very few
image pairs have overlap larger than 0.7 and the majority have
overlap 0.1–0.5.
4.2. SCN extraction

In Fig. 8 the extracted SCNs of Site As, B, and C from the corre-
sponding TCNs by the proposed spanning tree, e.g. HDB-MST are
shown. Figs. 8(a and b) respectively indicate the SCNs of Site As
and B from two well-distributed flights. The SCNs shown in the
two figures maintained almost all the pairs of neighboring images
along the heading direction, producing the largest overlap. Com-
pared to the corresponding TCNs in Figs. 7(d and e), the SCNs in
Figs. 8(a and b) maintained much fewer connected image pairs
from two adjacent flight lines. Fig. 8c shows the SCN of Site C from
an irregular flight. This figure indicates that the distribution of the
connected image pairs represented by the SCN of Site C is different
from those of Site As and B. Specifically, for Site C many image pairs
from non-adjacent flight lines are represented within the SCN,
while for Site As and B no such image pairs are available. Besides,
from Fig. 8c we can also observe that the connected pairs of neigh-
boring images along the heading direction have smaller overlap
than those from two adjacent or even non-adjacent flight lines rep-
resented by the SCN.

Fig. 9 plots the curves of the intermediate number of edges
remaining in the weighted TCNs as a function of the HDB-MST
rounds performed on Site As, B, and C. This figure indicates that
the number of edges in the TCNs show an exponential decrease
with the rise of HDB-MST rounds during SCN extraction. Moreover,
the convergence rates of the curves for extracting SCNs were inde-
pendent from the number of edges in the initial TCNs. For instance,
the number of HDB-MST rounds for extracting the SCN of Site As is
6, corresponding to 1976 edges in its initial TCN (Fig. 9a); while the
number of HDB-MST rounds is 7 for Site B, corresponding to 672
edges in its initial TCN (Fig. 9b). Notably, the convergence rate in
Fig. 9c is faster than those in Figs. 9(a and b), with only 2 HDB-
MST rounds to extract the SCN with 133 edges from its initial
TCN with 310 edges. The number of edges in the SCN was deter-
mined by two parameters, e.g. the node degree dðv iÞ and the factor
f used for deleting the edges of subgraph Gi in TCN. We set the
parameters, for instance, dðv iÞ ¼ 2 and f ¼ 1 to make sure each
node in the filtered subgraph was involved in at least a 3-tuple
configuration and the subgraph contained the minimally required
edges.



Fig. 7. Results of TCN construction. (a–c) indicate the schematic maps of the flights for Site As, B, and C, respectively. Both Site As and C contain four flight lines, whereas Site B
contains three flight lines. The connected image pairs along the heading direction are displayed in diagonal, while those from two flight lines (Li&Lj) are displayed off the
diagonal. (d–f) show the TCNs of Site As, B, and C, respectively. The color bars in (d–f) indicate the range of overlap (0–0.85) between image pairs.

Fig. 8. Results of SCN extraction. (a–c) indicate the SCNs of Site As, B, and C, respectively. The color bars indicate the range of overlap (0–0.85) between the image pairs in the
three sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.3. Method comparison and performance evaluation

For this section we compared the proposed SCN-SfM method
with the aforementioned three methods DN-SfM, MCN-SfM, and
TCN-SfM. The comparison was focused on three aspects in terms
of image matching efficiency, scene completeness, and geometric
accuracy.

4.3.1. Image matching efficiency
We used the number of edges in the network, corresponding to

the image pairs involved in matching, as a proxy for run time.
Fig. 10 displays the number of edges in the networks of DN,
MCN, TCN and the proposed SCN of Site As, B, and C. This figure
shows that – as expected – the DNs have the largest number of
edges with value 7875, 990, and 1540 for Site As, B, and C, respec-
tively. On the contrary, the SCNs of the corresponding three sites
have the smallest number of edges, with value 234, 93, and 133,
respectively. Furthermore, the number of edges in MCNs is close
to that of TCNs for Site As and B, but is much larger (1081) than
that (310) of TCN on Site C.

Following the numbers shown in Fig. 10, we fitted curves of the
number of edges in DNs, MCNs, TCNs and SCNs of the three sites as
a function of the number of images (Fig. 11). The horizontal axis
shows the number of images of Site B, C, and As in order with
45, 56, and 126, respectively. It indicates that the number of edges
in DNs has a quadratic increase with the number of images, while
the number of edges in MCNs, TCNs and SCNs exhibit a linear
increase, where the increase rate in SCNs is the least. The sub-
curve in Fig. 11 shows the fitted curve by the number of edges in
MCNs of Site B, C, and As with the remained image size 35, 47,
and 68, respectively. A quadratic increase was given in this sub-
curve. This was confirmed in Table 2. In general, the number of



Fig. 9. The number of edges in the intermediate networks of SCN extraction at each iteration for (a) Site As, (b) Site B, and (c) Site C.

Fig. 10. Comparison of the number of edges in the networks of DN, MCN, TCN, and SCN for (a) Site As, (b) Site B, and (c) Site C.

Fig. 11. The number of edges and fitted curves in the networks of DN, MCN, TCN,
and SCN on Site As, B, and C. The sub-curve is fitted by the number of edges in MCN
with the remained images on Site As, B, and C.
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images within MCN-SfM is much smaller because not the connec-
tions between several image pairs get removed, but entire images
are excluded from the block.

Fig. 12 illustrates the image connections of Site As in DN, MCN,
TCN, and SCN in the object space domain. The images acquired in
four parallel flight lines, were projected onto the user’s coordinate
system using the flight control data, and the edges in the networks
represent the connections between the images. It needs to be
noted that all the 126 images of Site As were involved in DN,
TCN, and SCN, while only 68 images were remained in MCN. In
addition, both DN and MCN employed a one-by-one image match-
ing strategy, making the networks much denser (Figs. 12a and b)
than TCN and SCN (Figs. 12c and d) where only the topologically
connected edges were maintained. Hence, the connectivity of
SCN was much sparser than that of TCN.

In Fig. 13 the distribution of tie-points among the image pairs of
Site As, yielded using DN-SfM, MCN-SfM, TCN-SfM, and SCN-SfM
methods is displayed. We constructed a 126 � 126 grid for visual-
izing the distribution of tie-points and mapped the number of tie-
points between an image pair onto the corresponding grid. The
number of tie-points on the grid was proportionally visualized
using a color scheme. Fig. 13a shows the distribution of tie-
points from the DN-SfM method. It indicates some ‘‘noise” by
low color intensity between image pairs without connection. The
‘‘noise” indicates the mismatches, which were caused by the
threshold technique (Lowe, 2004; Snavely et al., 2006). Fig. 13b
shows the distribution of tie-points from the MCN-SfM approach.
Compared to DN-SfM, the MCN-SfM method reduced the number
of images, which would neither be involved in matching nor in
the scene reconstruction. The removal of images from the graph
resulted in the strip-like pattern visible in Fig. 13b. At the same
time the mismatches caused by spatially non-connected image
pairs remained. Moreover, many image pairs that have numerous
tie-points were removed from the MCN, while some image pairs
with small amount of tie-points remained. Although TCN-SfM
reduced the mismatches between images without connection, it
maintained many image pairs having very few tie-points, which
were represented by darker color cells in Fig. 13c. The distribution
of tie-points between images obtained by SCN-SfM is depicted in
Fig. 13d. This figure shows that only a small set of edges corre-
sponding to the image pairs with the largest number of tie-
points were involved in matching. Furthermore, it is obvious that
the distribution of tie-points is consistent with the distribution of
the edges in Fig. 8a.



Fig. 12. Visualization of network (a) DN, (b) MCN, (c) TCN, and (d) SCN from the 126 images of Site As. The positions of UAV images are shown in the user’s coordinate system
after a 2D projection from the flight control data. Each image is represented by a node in the network, where the edge between nodes indicates their connection within the
matching graph.
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4.3.2. Geometric completeness
Fig. 14 shows the 3D scene geometries of Site As with 126

images recovered by DN-SfM, MCN-SfM, TCN-SfM, and SCN-SfM
methods. Note that SCN-SfM ended up with a comparable scene
geometry (Fig. 14d) to those of DN-SfM (Fig. 14a) and TCN-SfM
(Fig. 14c). For MCN-SfM, however, it resulted in a long gap in the
middle of the scene geometry, where several coverage images were
deleted (Fig. 14b). The 3D scene geometry for Site B and C were
obtained in a similar manner, respectively. The results indicated
no significant difference between the completeness of scene geom-
etry resulted from the four methods on either Site B or Site C.

Table 4 indicates the number of retrieved 3D points on Site As,
B, and C using the four methods. The results reveal that SCN-SfM
yields an equivalent number of points as DN-SfM and TCN-SfM.
As compared to MCN-SfM, the proposed SCN-SfM produces nearly
twice the amount of points on Site As. Moreover, the scene geom-
etry resulting from SCN-SfM on Site A with 947 images was
depicted in appendix as Fig. A1. Although only 745 of the 947
images were involved in the final 3D scene reconstruction by using
the SCN-SfM method, the major partition of the scene geometry
had been successfully recovered. The part of scene geometry which
failed to be recovered was entirely covered by vegetation with tex-
tureless features.

4.3.3. Geometric accuracy
Due to the lack of ground control points (GCPs) in Site A and C,

we used only the dataset of Site B to quantify the geometric accu-
racy of the proposed SCN-SfM method. Fig. 15 shows the dense
point cloud of Site B using SCN-SfM followed by the PMVS method.
From a pure visual check the other three dense point clouds of Site
B based on DN-SfM, MCN-SfM, and TCN-SfM methods show no
variation to the SCN-SfM-derived result. The densities of these
point clouds were about 40 points/m2, which allowed us to accu-
rately select the GCPs.

All the 15 GCPs in Site B were accurately selected from the
dense point clouds and used for accuracy assessment. Here, a 7-
parameter based similarity estimation method was used for the
coordinate system transformation, resulting in a set of residuals
associated with x-, y-, z-components for each GCP.

Fig. 16 shows the residual vectors at GCPs resulting from the
four network-based SfM methods. Since a similarity transform
was performed, the shape of model did not get modified. In fact,
only systematic shifts and rotations got averaged at the GCPs. This
means that the residuals somewhat represent remaining tension
and block deformation and we could perform at least some relative
analysis. The results for different methods are shown through
residual diagrams in Fig. 17 as well. The RMSE of all the GCPs at
x-, y-, and z-components are given, respectively. Compared to the
nominal GSD value which is 2.6 cm for this dataset, the RMSE is
quite high – up to 4 times of GSD value for x/y and 13 times of
GSD value for z. We also observe quite large, partly opposite z-
residuals, which indicate some block deformation. In case of
MCN-SfM method it seems to be the largest. Since block deforma-
tion might be a result of insufficient sensor calibration, we can con-



Fig. 13. Tie-points between the image pairs frommethod (a) DN-SfM, (b) MCN-SfM, (c) TCN-SfM, and (d) SCN-SfM. The color bars on the right side indicate the number of tie-
points between the image pairs.

Fig. 14. Reconstructed 3D scene geometry from 126 UAV images on Site As using method (a) DN-SfM, (b) MCN-SfM, (c) TCN-SfM, and (d) SCN-SfM. Besides the point cloud of
the scene, the positions of cameras are also recovered and represented by red or green points above the scene geometry in adjacent flying lines. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Comparison of the number of points reconstructed on Site As, B, and C using the four
methods.

Site Method

DN-SfM MCN-SfM TCN-SfM SCN-SfM

As 104,448 53,698 101,781 101,210
B 30,308 24,808 30,429 30,415
C 26,704 23,470 24,035 23,628
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clude that the network resulting from MCN-SfM method is the
least suitable among our examples.

5. Discussion

This study investigated the embedment of SCN in SfM for effi-
cient 3D scene reconstruction from large quantity of UAV images.
Our results confirm that SCN embedment largely contributes to
computational savings. Many studies on computational savings
of SfM method for 3D scene reconstruction can be found in the lit-
erature (Alsadik et al., 2013; Rupnik et al., 2013; Snavely et al.,
2008), particularly the recent work by Xu et al. (2013), who first
investigated the SCN embedded SfM, where a minimum spanning
tree was used for SCN extraction. Our method differs to the latter
in some respects: First, the proposed method applies a variant of
a maximum spanning tree for SCN extraction by using (a) impor-
tance weight based on both overlap and node degree, (b) hierarchi-
cal filter strategy, (c) degree bounded considerations, and (d)
further optimizations; Second, a thorough experimental evaluation
was provided with the proposed SCN-SfM method.

From the examples in this study it is clear that the number of
edges in SCN, used to quantify the matching efficiency, is much less
than those resulting from the compared networks. In this study,
the SCN extraction relies on the bounded degree of the node
together with the accumulative weight to others. In practice, the
minimum node degree is recommended bounding to 2 to keep
the SCN in at least a 3-tuple configuration with a minimally
required number of edges. In addition, the extraction of SCN is
independent of the SfM pipeline, because only the flight control
Fig. 15. Dense point cloud with RGB color information of Site B reconstruct
data and camera hardware information are used as input. The com-
putation time for SCN extraction is within a minute, even for hun-
dreds of images. Furthermore, the proposed SCN-SfM is
parallelizable with GPU techniques, as introduced by Xu et al.
(2014a), and used in this study.

Our results also confirm that the reduction of the number of
image pairs to be matched based on the SCN involves no loss in
completeness and accuracy of the final scene geometry. Although
the accuracy obtained by the SCN-SfM method was comparable
to the one obtained by three other methods, further improvements
are possible. For instance, the use of GCPs for bundle adjustment is
advised for (Rupnik et al., 2015).

One extension of SCN extraction is to cope with the computa-
tional cost in bundle adjustment, as introduced by Toldo et al.
(2015). This approach partitions a large image set into a couple
of small sets based on the image degree and the image connectivity
with base-line configuration. Our method, however, can be used to
provide a more straightforward strategy to achieve that. Other
alternative methods, for instance, the removal of redundant tie-
points in the bundle adjustment also contribute to the computa-
tional savings (Mayer, 2014; Schaffalitzky and Zisserman, 2002),
which can also be integrated into SCN-SfM method.

The results from Site A showed that textureless areas failed to
be reconstructed (Fig. A1). This is due to an insufficient number
of tie-points among image pairs. Several solutions on the redefini-
tion of rules associated with feature extraction and matching
would be potentially useful to solve this problem (Furukawa
et al., 2004; Kawanishi et al., 2013; Saponaro et al., 2014). In this
study, we used only the flight control data to generate the TCN.
Further research should include the use of a terrain elevation
model to generate a TCN for datasets in mountainous area with
extensive elevation changes. Instead of relying on terrain models
from third parties some approximate height models could be
derived after the first SCN-based optimization, possibly on down-
sampled images: very often the tie-point clouds are good enough
to compute some surface models, which can then be used in a
new SCN initialization with better overlap information. The other
problem mentioned above, regarding poorly textured areas, can
then also be addressed by using tie-point statistics from the initial
ed by the proposed SCN-SfM method (after densification using PMVS).



Fig. 16. Discrepancy vectors at GCPs resulting from method (a) DN-SfM, (b) MCN-SfM, (c) TCN-SfM, and (d) SCN-SfM. The red line is the scale bar that equals to 10 cm. The
purple line represents the residual at z-component, and the blue line represents the residual at xy-component. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 17. Residuals (RMSE) at GCPs in x-, y-, and z-components in the 3D point clouds from method (a) DN-SfM, (b) MCN-SfM, (c) TCN-SfM, and (d) SCN-SfM.

Fig. A1. Reconstructed 3D scene geometry on dataset A with a total of 947 UAV images captured by a fixed-wing UAV, where only 745 images were involved in the final
reconstruction procedure.
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matching step: edge weights might be decreased or increased
according to tie-point matching performance.
6. Conclusions

SfM-based methods have already demonstrated their capabili-
ties for 3D scene reconstruction from overlapping images in many
applications. Nevertheless, it is still needed to overcome the major
limitation in explosive increment of computation for large amount
images. This paper investigated the use of SCN for computational
savings of SfM in an embedded design to process large UAV image
blocks. The attention was mainly devoted to image matching, one
of the most time-consuming phases within SfM methods. Based on
the flight control data, the footprints of a UAV collection can be
effectively obtained for constructing a TCN, which identifies the
connections between images by a weighted graph. We proposed
a variant of the maximum spanning tree approach for extracting
a SCN from the weighted TCN, where the use of hierarchical repre-
sentation and node degree bounded strategies were investigated.
We embedded the SCN into the SfM and proposed a novel SCN-
SfM method. Experimental tests were done in three sites, and the
results showed that the proposed SCN-SfM method outperformed
the three other existing methods. We concluded that the SCN
embedment significantly contributed to computational savings of
image matching in SfM, and preserved the quality of 3D scene
geometry in particular regarding completeness and accuracy.
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