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Hyper-temporal SPOT NDVI images contain useful information about the environment
in which a species occurs, including information such as the beginning, end, peak, and
curvature of photosynthetically active vegetation (PAV) greenness signatures. This raises
the question: can parameterization of hyper-temporal SPOT NDVI images be useful to
predict species distribution? A set of SPOT-NDVI images for the whole of Ethiopia
covering nine years was classified using the unsupervised ISODATA clustering
algorithm to group similar NDVI pixel values. The HANTS (Harmonic ANalysis of
Time Series) algorithm, that fits series of smoothing cosine waves, was then applied to
the time series for each of the NDVI classes to generate seven output Fourier compo-
nents. These components, together with the topographic parameters slope and elevation,
were used as predictors in a species distribution model using MAXENT. Presence-only
data of one test species, Boswellia papyrifera, were modelled. This species is diminish-
ing at an alarming rate and requires conservation. The performance of the model was
evaluated by the area under curve (AUC) of the receiver-operating characteristics value.
The output distribution map was tested for its agreement with the NDVI-clustering
approach and conventional B. papyrifera distribution map using Kappa. The relative
contributions of the first four predictors to the MAXENT in sequence were: 2nd
harmonic phase, elevation, amplitude of the 1st harmonics, and amplitude of the 2nd
harmonics. The average AUC test result for the 100 runs was 0.98 with a standard
deviation of 0.002. The probability distribution map clearly shows high correlation with
the B. papyrifera occurrence data. In addition, the distribution map was found to be in
agreement with the NDVI-clustered and conventional map with improved details.
Classifying hyper-temporal NDVI images and extracting their parameters through the
use of the HANTS algorithm captures the PAV greenness behaviour (parameters) of the
environment of the species studied. These parameters have proved successful in pre-
dicting the distribution of B. papyrifera.

Keywords: Boswellia papyrifera; HANTS; hyper-temporal; MAXENT; SPOT-NDVI

1. Introduction

Selection of appropriate environmental predictors (covariates) increases species distribu-
tion prediction accuracy (Phillips et al. 2006). Hyper-temporal SPOT NDVI images (for
details see http://www.spotimage.com/) contain useful information about vegetation cover
attributes, such as density/biomass (Seaquist et al. 2003), and the start and cessation of
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photosynthetically active vegetation (PAV) greenness in a season (Wang et al. 2005,
Lasaponara 2006). It has been noted that an NDVI pattern is a complex resultant of
plant phenology and a number of climatic determinants (Immerzeel et al. 2005). For
example, seasonal variation in NDVI is mainly reported to be due to change in plant
phenology, while variation in precipitation and temperature is related to time of the year
(Prasad et al. 2005). Classified hyper-temporal NDVI images are reported to be successful
for mapping crop cover areas (Nguyen et al. 2012) using harmonics analysis (Jakubauskas
et al. 2002), for crop identification and yield estimation (Khan et al. 2010), land use
mapping (Khan 2011) using ISODATA clustering algorithms, environmental quality using
image differencing and principal component analysis (PCA) (Fung and Siu 2000), and for
drought assessment using fuzzy sets theory (Rulinda et al. 2010). Thus, extraction of
relevant parameters of photosynthetically active vegetation (PAV) greenness from hyper-
temporal NDVI image signatures could provide useful inputs into species distribution
models (SDMs).

Hyper-temporal NDVI signatures can be parameterized using the HANTS (Harmonic
ANalysis of Time Series) algorithm (Verhoef et al. 2005). This algorithm removes cloud
contamination and interpolates a hyper-temporal NDVI dataset in order to reconstruct
gap-free images. The smooth curve (series of sine/cosine waves, Figure 1) fitted to the
NDVI time-series image is described by harmonic functions, each defined by their
amplitude and phase (Verhoef et al. 2005). Amplitude is equal to half the height of a
wave, while phase angle (or simply phase) defines the offset between the origin and the
peak of a wave over the range 0 to 2π (Jakubauskas et al. 2001). The addition of several
harmonic terms results in different shapes that mimic the shape of the NDVI curve.
Moreover, the HANTS algorithm generates amplitude and phase datasets that can be used
as input into a species distribution model (SDM). The number of frequencies (terms) can
be determined based on knowledge of PAV greenness over space and time. One of the

Figure 1. The different Fourier components useful for adaptation of the shape of the NDVI curve
and for the removal of clouds. The 1st, 2nd, and 3rd terms (Harmonics) correspond to one, two, and
three frequencies, respectively. The zero frequency (straight line) is defined by the mean. The phase
angle defines the offset between the origin and the peak of the wave, as shown for the first term
only.
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disadvantages of this algorithm is that there are no objective rules to determine the
HANTS control parameters (Roerink et al. 2000). It requires experience with the preced-
ing Fast Fourier Transform (FFT) analysis and the evaluation of several combinations of
control parameters.

To conserve an endangered tree species, understanding its current and potential
geographic distribution is of importance. Several studies (Pearce and Boyce 2006,
Marmion et al. 2009, Elith et al. 2011) have shown that the generation of species
distribution maps can be achieved using appropriate SDMs. Predicting species distribution
and abundance with high levels of accuracy is difficult due to the complexity and inherent
variation in species, their response to physical and biological factors at multiple scales,
and the dynamic nature of environments and species range (Botkin 1990, Scott et al.
2002). Many SDM algorithms are available, with the main differences between them
being whether systematic or non-systematic survey data are used (Elith et al. 2011), and in
statistical approach (Guisan and Zimmermann 2000).

Boswellia papyrifera (Del.) Hochst, the species used in this study, is a deciduous
tree species that produces the widely traded aromatic olio-gum resin called frankin-
cense or olibanum (Fichtl and Admasu 1994). The tree and its olibanum have several
medicinal, industrial, household and ecological uses (Adamson 1969,
Gebrehiwot 2003, Atta-ur-Rahman et al. 2005, Tadesse et al. 2007). Boswellia papyr-
ifera abundance and distribution information available in Ethiopia mostly consists of
estimates and/or sketch maps. The species is mainly found in dry-woodland and
wooded-grassland located at low and mid-altitudes between 950 and 1800 m a.s.l.
(Fichtl and Admasu 1994). On a local level, the tree is known to grow well on
shallow, rocky, and steep slopes (Gebrehiwot et al. 2003). The plant has shallow roots,
making it susceptible to wind attack. Hence, rocky areas provide B. papyrifera with
good anchorage for its survival. The species is diminishing at an alarming rate due to
fire, insect attack, and human influence, coupled with poor reproduction rates
(Gebrehiwot 2003, Girma et al. 2013, 2015).

Our approach to modelling the current distribution of B. papyrifera exploits the
temporal dimension of NDVI (species ecology) into SDM through parameterization of
classified hyper-temporal SPOT NDVI datasets. To elaborate, first, the temporal dimen-
sion of the hyper-temporal SPOT NDVI datasets was captured using the ISODATA
clustering algorithm as used by Ali et al. (2013) and de Bie et al. (2012). The output of
this algorithm was a class map with NDVI signatures. Second, the NDVI signatures
were parameterized using the HANTS algorithm to generate NDVI signature peaks
(amplitudes) and angles of the curvature of PAV greenness (phase) based on the number
of PAV greenness periods. These values contained valuable information about land
cover and the environment, and were used as input in MAXENT to model the
distribution of B. papyrifera. This research was conducted in Ethiopia with the objective
of determining B. papyrifera tree distribution through hyper-temporal NDVI datasets
parameterization.

2. Method

2.1. Study area

This research was conducted for the whole of Ethiopia (3° 23ʹ to 14° 51ʹ North and
32° 59ʹ to 47° 58ʹ East), a land area of approximately 1.1 million km2. Ethiopia spans a
wide elevation range (from −130 m in the Afar depression to 4550 m at the peak of Mount
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Ras Dashen CSA 2000), and has a diversity of vegetation types (Edwards et al. 1976,
Azene 2007, Hadgu 2008), agro-ecological zones (Hurni 1998, MoARD 2007), and
geological formations (metamorphic, sedimentary, and igneous rock formations).

The climate of Ethiopia varies both spatially and temporally and it is directly related to
elevation and topography. The total annual rainfall ranges from less than 150 mm per year
in the east of the Afar region to 2200 mm per year around Limu, in the Oromia region.
The lowest mean maximum temperature (10°C) occurs over the north-western and central
highlands, whereas the highest mean maximum temperature (47°C) occurs in the Afar
depression (CSA 2000).

Ethiopia has a very diverse set of ecosystems, ranging from humid forest and
extensive wetlands in the west to the desert of the Afar depression. This diversity is
attributed to the variation in climate, topography, and vegetation. The forest
resources of Ethiopia have significantly and steadily declined in size during the
past half century, covering 3.5% of the country and comprising about 6500–7000
species of higher plants, 12% of which are endemic (WBISP 2004). There are
several natural gum- and resin-producing tree species in the dry lowlands of
Ethiopia, among them are several species of Boswellia, Commiphora, and Acacia.
They contribute to the livelihoods of local communities in terms of food security,
industrial supply, income generation, and foreign exchange earnings
(Gebrehiwot 2003, Lemenih and Teketay 2003, Tadesse et al. 2007).

2.2. Species data

A total of 545 geo-referenced presence-only B. papyrifera observations were used, of
which 343 were collected for this study and 202 were obtained from the Bureau of
Agriculture and Natural Resources (BoANR 2003, 2004) for the Kafta Humera (29),
Tahtay Adiabo (46), Asgede Tseimbla (92), and Tselemti (35) woredas (a woreda is
equivalent to a county administrative unit). These point records were spatially scattered,
covering the major areas of occurrence of B. papyrifera (Figure 2).

2.3. Environmental data

2.3.1. NDVI

De-clouded 10-day maximum (S10 MVC) SPOT-NDVI synthesis images at a 1-km
spatial resolution were obtained from the www.VGT.vito.be website for April 1998–
March 2007 (9 years, 324 images). The data for Vegetations 1 and 2 were obtained
from SPOT-4 (April 1998–April 2002) and SPOT-5 (May 2002–March 2007),
respectively.

2.3.2. Topographic parameters

Elevation and slope variables were derived from the Shuttle Radar Topography Mission
(SRTM, USGS 2004) digital elevation model (DEM) and re-sampled from the original,
finer resolution (90 m pixel size) to a 1 km × 1 km pixel size for the whole of Ethiopia.
Both elevation and slope variables were considered as inputs in the distribution modelling.
Elevation is strongly related to B. papyrifera presence (Figure 3). No B. papyrifera were
recorded below 500 m or above 1800 m.
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2.4. NDVI analysis

Using the ISODATA clustering algorithm in the ERDAS Imagine software, unsupervised
classification runs on SPOT-NDVI hyper-temporal datasets were carried out for sets of
10–200 classes using a step size of one, each with 50 iterations. The signatures were
analysed to obtain minimum and average divergence statistical indicators (de Bie et al.

Figure 3. The distribution of B. papyrifera presence observations relative to elevation.

Figure 2. Ethiopia zone boundary map with the B. papyrifera-presence-only location points.
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2008, 2011, Khan et al. 2010). These values in turn were used to choose the best number
of classes to describe the time-series data. To obtain further insight in possible grouping of
NDVI classes, cluster analysis using complete linkage with Euclidean distance as distance
measure was implemented in STATISTICA (StatSoft, Inc. www.statsoft.com). This kind
of analysis, which classifies hyper-temporal NDVI datasets into similar environmental
units, is referred to below as the ‘NDVI-clustering’ approach. The signature values
extracted for each class (covering nine years) were averaged to form one year of data
for subsequent HANTS analysis.

2.5. HANTS algorithm

The HANTS algorithm decomposes the time signal for each individual pixel or class into
its Fourier components to represent the original NDVI signal. The smooth curve that was
fitted to the classified NDVI signatures was described by means of an average NDVI
value plus a short series of harmonic (cosine) functions, each based on its amplitude and
phase value. The amplitudes and phases computed using this method were more reliable
than those based on a straightforward FFT to correct cloudy observations (Verhoef et al.
1996, 2005). Fourier analysis can be applied on either continuous or discrete (finite length
time period) datasets. FFT, a highly efficient version of Discrete Fourier Transform (DFT),
converts the time space into frequency space (Cooley and Tukey 1965). Fourier transfor-
mation can be used to remove image noise such as striping and cloud by identifying
periodicities.

Curve fitting in the HANTS algorithm is controlled by five parameters. (1) The
analysis was fixed at three vegetation growth cycles (three harmonics) with periods of
12, 6, and 4 months, corresponding to PAV greenness. (2) A low-directional-outliers-value
(DO-value) was selected to remove low NDVI values (outliers) usually representing
cloud. (3) Fit error tolerance (FET) was set to 10. This value determines the absolute
difference in the High–Low (Hi/Lo) direction of the remaining (non-rejected) data points
with respect to the current curve, after each iteration. When the FET is set too low, the fit
will be based on too few data points and becomes unreliable. (4) The degree of over-
determinedness (DOD) value was set to 5. The minimum number of extra data points,
which have to be used in the ultimate fit, is determined by the DOD (more data points
than the necessary minimum). (5) A delta factor (damping factor) of 0.1 was used since
the input data had no gaps; however, this number does control the suppression of high
amplitudes when there is a long data gap during, for example, the winter period.
Accordingly, seven harmonic parameters were computed from the NDVI signature:
mean NDVI, 1st amplitude, 1st phase, 2nd amplitude, 2nd phase, 3rd amplitude, and
3rd phase terms. These terms were later converted into Arc/Info asciigrid format for
analysis using MAXENT SDM.

2.6. Maximum entropy

MAXENT version 3.3.3e (http://www.cs.princeton.edu/~schapire/maxent), a general pur-
pose method that estimates probability of distributions based on the principle of maximum
entropy (Phillips et al. 2006), was used to model the distribution of B. papyrifera.

The input data used for MAXENT included nine predictor variables (elevation, slope,
and the seven harmonic parameters). These were selected from a larger set of variables
including climate (rainfall, evapotranspiration, minimum and maximum temperature),
topography (aspect, slope, elevation), soil (such as type, depth, and texture), and NDVI
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(amplitude and phases). These were checked for multicollinearity using variance inflation
factors (VIFs), from which rainfall was found to be collinear with both NDVI and
elevation, while temperature (minimum and maximum) and evapotranspiration were
found to be collinear with elevation. Thus, rainfall, temperature (minimum, maximum),
and evapotranspiration variables were excluded from the MAXENT analysis. The remain-
der of the variables had VIF values of less than 5 and were used as inputs. Of these, the
three most contributing variables (2nd phase, elevation, and 1st Amplitude) had values of
less than 1.5.

MAXENT has a built-in jackknife that measures the importance of each predictor
by training the solution with each other predictor or variable first omitted, then used in
isolation. In addition, MAXENT provides response curves of all predictors to show
how the prediction depends on a particular variable. Moreover, MAXENT has an
inbuilt method for adjusting regularization (Elith et al. 2011), smoothing the model to
make it more regular. A default value of 1 was used for the regularization parameter.
Twenty-five per cent (119) of the samples were randomly set aside by MAXENT as
test points to model prediction accuracy. A high probability value output from
MAXENT indicates that a grid cell contains B. papyrifera. Duplicate presence records
that fell within a 1 km × 1 km area were discarded, leaving a total of 476 of the 545
observations to be used in MAXENT.

2.7. Accuracy assessment

Application of a model will have little merit if the accuracy of the prediction is not tested
(Pearson 2007). The MAXENT model was tested to check if it was better than random
using (threshold-independent) receiver operating characteristics (ROC) area under curve
(AUC). To improve prediction, the MAXENT analysis was repeated (replicated) 100
times. Among the three replicate run type options (Subsample, Crossvalidate, and
Bootstrap) available in MAXENT, the ‘Subsample’ method was used to sub-sample the
presence data sets to evaluate model performance. A distribution map was generated from
the average of the 100 runs.

In the threshold-independent test, the AUC was calculated for both the training and
the test datasets. AUC provides a single measure of model performance, independent of
any particular choice of threshold. The ROC curve (sensitivity versus 1-specificity) was
plotted for all possible thresholds. Specificity is the proportion of true-positive and false-
positive absences, and sensitivity is the proportion of true-positive and false-positive
presences. Because only presence-only data were available, the ‘fractional predicted
area’ (the fraction of the total study area predicted present) was used instead of the
more standard commission rate (fraction of absences predicted present) (Phillips et al.
2006). In addition, the relationship between the MAXENT output distribution map classes
(categorized into seven) and B. papyrifera presence-only data was studied using box plots.

A conventional statistical accuracy comparison was carried out using overall accuracy
and Kappa statistics (Congalton and Green 2009). The conventional and ‘NDVI-clustered’
maps were compared with the B. papyrifera distribution map (MAXENT output) to
evaluate agreement and to test if the classification was better than random using Kappa
statistic (K̂). The conventional map (Figure 10) is crude. It shows only B. papyrifera and
non-B. papyrifera areas. It does not show land cover or spatial differences. Thus, only the

Kappa statistic (K̂) was used to check the agreement between the maps. Agreement was
interpreted as follows:
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<0 Poor agreement
0.01–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–1.00 Near-perfect agreement

2.8. Uncertainty

As with any model, SDMs are subject to uncertainty. Uncertainty in an output map can
result from the occurrence data, the modelling method used, and the environmental layers
upon which it is based (Fernandez et al. 2009, Wiens et al. 2009, Convertino et al. 2014).
Here, the issue of uncertainty was addressed by analysing the ROC curve, Jackknife, and
the response curves of each input variable. Focus was on the three input variables that
contributed to the highest gain in the model performance, namely the 2nd phase, eleva-
tion, and 1st amplitude.

3. Results

3.1. NDVI classification and signature analysis

The hyper-temporal NDVI datasets covering nine years that were classified using the
ISODATA clustering algorithm produced 140 separable NDVI classes. For reasons
of simplicity, only NDVI classes with B. papyrifera recorded present are displayed
(Figure 4d). The highest number of presence records is contained in NDVI class 123
(Figure 4c). Even though the proportion of sample points among NDVI classes is
biased by sampling, the NDVI classes were regrouped into three using natural breaks
based on the number of presence counts (Figure 4c). All the NDVI classes with B.
papyrifera presence records are found in the north and north-west of Ethiopia with
an east-to-west gradient (Figure 4d). Cluster analysis (tree diagram) of the hyper-
temporal NDVI signatures clearly shows that most of the B. papyrifera observed
GPS locations fall into two main categories (Figure 4a–c). Of the two main cate-
gories, only NDVI class 113 was not sampled due to its small size (25 km2). Though
the presence data is near comprehensive, the quantity of samples among NDVI units
is biased. The map (Figure 4d) thus presents only a first impression of where B.
papyrifera can be found in Ethiopia.

3.2. HANTS analysis

The HANTS algorithm successfully produced a cloud-free NDVI dataset and hyper-
temporal NDVI data reduction into seven harmonic components (parameters), the seven
components being the mean, and the amplitude and phase of the 1st, 2nd, and 3rd
harmonic (Figure 5), respectively. The amplitude of a zero frequency equals the mean
value. The environment where B. papyrifera was recorded present has a single PAV
greenness season (high amplitude), with peak NDVI occurring during August/September.

The phase angle represents approximately the time of the year with highest amplitude
(PAV greenness value). For example, most of the B. papyrifera areas have a first phase
angle of 160°. This means the NDVI peak is approximately 160 days after 1 April, which
will be end of August to beginning of September (Figures 5 and 9).
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3.3. Boswellia papyrifera distribution in Ethiopia

The MAXENT model generated a distribution map of B. papyrifera for the whole of
Ethiopia at a 1-km spatial resolution. The testing and training omission and predicted area

Figure 4. NDVI class signatures (covering nine years) clustering based on Euclidean distance (a,
b), which is then regrouped based on the number of presence counts (c) in each NDVI class, to
produce a B. papyrifera distribution map (d) with three groups. NDVI class 113, being very small in
size, was not sampled.
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Figure 5. The seven HANTS parameters estimated from 36 (10 days interval) NDVI data covering
one year. Higher values are displayed in red, lower values in blue, and intermediate values in yellow,
using linear minimum–maximum stretching for amplitudes. The phase angle is represented with
rainbow colour, the beginning and end phase angle being represented by the same blue colour. The
phase values use 1 April as the reference date of the year.
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plot (Figure 6a, average of 100 replicates) with the choice of cumulative threshold shows
that the omission of test samples matches the predicted omission rate for test data drawn
randomly from the MAXENT distribution very well. The average area under the ROC
curve (AUC, Figure 6b) for both training and testing is almost identical. The average test
AUC for the 100 replicate runs is 0.978, and the standard deviation is 0.002.

The average relative contribution of the predictors of B. papyrifera distribution varied
(Table 1). The model indicated that the contribution of the second harmonic phase was
highest (35.8%), followed by elevation (30.8%), and first amplitude (27.4%). The first
harmonic phase had the lowest contribution (0.1%). Using ‘permutation importance’ as
well as ‘Jackknife regularized training gain analysis’ for the MAXENT model, the relative
contribution of the environmental factors was assessed after checking for collinearity. The
environmental variable with highest gain when used in isolation is the 2nd phase, which
therefore appears to have the most useful information by itself. The environmental
variable that most decreases the gain when omitted is elevation, which therefore appears
to have the most information that is not present in the other variables.

The output probability of occurrence values was segmented into seven equal area
categories to represent the ranges of B. papyrifera distribution (Figure 7). The deep
reddish colour represents high probability areas, whereas the light grey colour represents
low, and the light yellow represents intermediate probability of occurrence areas. For

Figure 6. Average omission and predicted area (a), and Sensitivity versus 1-Specificity (b) for B.
papyrifera after 100 runs (replicates). From both plots the omission test samples forms a very good
match with the predicted omission rate. The omission rates for test data were drawn from within the
MAXENT distribution. Stddev stands for standard deviation.

Table 1. The relative contribution of factors to B. papyrifera
tree distribution in Ethiopia.

Predictor variable % contribution

2nd phase 35.8
Elevation (DEM) 30.8
1st amplitude 27.4
2nd amplitude 2.8
Slope 1.8
Mean NDVI 0.9
3rd amplitude 0.4
3rd phase 0.3
1st phase 0.1
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better visualization, the distribution map is overlaid on hillshade derived from the SRTM
DEM. The mapped B. papyrifera areas are either situated in deep gorges or represent low
lands of North and North-West Ethiopia. The areal extent of the seven presence prob-
ability classes is provided in Table 2.When plotted against the probability distribution map
classes (Figure 8), the presence-only observation points for B. papyrifera show a positive
correlation between the number of B. papyrifera counts and the MAXENT probability
values (F(6, 545) = 7.65, p < 0.001).

The accuracy comparison of the conventional and NDVI-clustered maps with the
distribution map is shown in Table 3. The overall accuracy of the distribution map

Figure 7. Distribution map of B. papyrifera in Ethiopia overlaid on an SRTM DEM-derived
hillshade map. The species has a high (probability of) occurrence in the north and north-western
part of Ethiopia.

Table 2. The total estimated area occupied by B. papyrifera in Ethiopia.

S. no. Predicted class description Class range Area (km2) Area (%)

1 None <0.03 1,029,920 90.98
2 Very low 0.03–0.13 34,869 3.08
3 Low 0.14–0.23 12,886 1.14
4 Relatively low 0.24–0.33 13,505 1.19
5 Moderate 0.34–0.43 11,048 0.98
6 Relatively high 0.44–0.53 12,407 1.10
7 High 0.54–0.63 9046 0.80
8 Very high >0.63 8398 0.74
Ethiopia total 1,132,079 100.00
B. papyrifera area above 0.5 probability 19,628 1.73
B. papyrifera area between 0.03 and 0.5 probability 82,531 7.29
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(Figure 7) is 90% compared to the conventional map (Figure 10), and 93% compared to
the NDVI-clustered map (Figure 4). The Kappa result of the distribution map shows
moderate agreement (0.54) with the conventional map, and substantial agreement (0.63)
with the NDVI-clustered map.

4. Discussion

Parameterization of classified hyper-temporal SPOT-NDVI datasets based on the HANTS
algorithm is useful for mapping and modelling species distributions.

NDVI images integrate the effects of many environmental variables. Here it is
demonstrated that classifying hyper-temporal NDVI data provides useful information
about the ecology of a species across broader geographic space and can capture the
temporal dimension of hyper-temporal images. Unsupervised classification of these data-
sets using the ISODATA algorithm resulted in 140 NDVI classes. This way, uniform land

Figure 8. Relationship between B. papyrifera probability distribution classes and presence location
counts. The highest probability classes contain high presence counts (F(6, 545) = 7.65, p < 0.001).
The line connects the median points of the classes.

Table 3. Accuracy comparison of the ‘conventional’ andNDVI – clustered
map with the probability distribution map for B. papyrifera in Ethiopia.

B. papyrifera maps

Distribution map

Overall accuracy Kappa

Conventional map 0.90 0.54
NDVI-clustered map 0.93 0.63
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use land cover units were successfully classified (de Bie et al. 2008, 2011, Khan et al.
2010). The main advantage of this classification is that similar NDVI units are grouped
together, resulting in fewer data (data-reduction) and reduced noise. Moreover, it provides
a first indication of where B. papyrifera trees occur. Significant positive relationships were
reported between variation in species composition and NDVI (He et al. 2009).

The HANTS algorithm is successful not only in removing clouds from hyper-temporal
NDVI datasets, but also in extracting NDVI shape parameters that correspond to the
amount of photosynthetically active vegetation (PAV) greenness and the seasons. Ethiopia
has eight generalized agro-climatic (ACZ) regions (Figure 9a) corresponding to crop-
growing seasons, which are extremely variable (Figure 9b) from site to site (Hurni 1998).
The NDVI signature in these areas varied from unimodal to bimodal. The phase angle
indicates a change in the time (start and end) of PAV greenness; change within a single
amplitude (frequency) indicates a change in vegetation condition such as the amount and
duration of PAV greenness; and differences in amplitude (from one to two frequencies)
indicate changes in PAV greenness mode (changes in season). Boswellia papyrifera areas
depicted a single frequency with a slightly variable peak and width in PAV greenness
(Figure 9b). This was in line with reports by Jakubauskas et al. (2002). These B.
papyrifera areas were successfully parameterized into seven Fourier components, which
were used in MAXENT together with elevation and slope for B. papyrifera tree potential
distribution mapping in Ethiopia.

The conventional map of B. papyrifera available in Ethiopia (FWC 1984) is crude and
produced at a small scale (1:9,500,000). The north side (e.g. Axum and Adwa areas) of
the conventional map covers a broad area and extends into the highlands, while the north-
west side (Metema) covers a very narrow area that lacks current presence records. The
presence-only data indicate that the distribution of the species is restricted to between 500
and 1800 m (Figure 3) and predominantly between 700 and 900 m. Boswellia papyrifera
was reported to be found in large amounts in Tigray, Gondar, Wollega and Gojam and
thinly spread in Wollo and Shewa province in Ethiopia (Girma 1998) but not mapped
(Figure 2 shows approximate locations). The new B. papyrifera map produced here
(Figure 7) using MAXENT confirms the report. Tadesse et al. (2007) estimated the total
cover of B. papyrifera in Ethiopia to be 15,000 km2 (again unsupported by map). The
reported area is somewhat similar to our potential distribution map of above the 0.5
probability cut-off (19,628 km2).

Mapping B. papyrifera has never been easy, mainly because it grows amongst other
species in natural environments that are difficult to access. Different environmental
variables derived from satellite sensors including MODIS, QSCAT, SRTM, and TRMM
allow an increased understanding of species distribution, land-cover classification, and
near real-time conservation planning across multiple spatial scales (Gillespie et al. 2008)
using MAXENT (Saatchi et al. 2008). MAXENT improved the conventional map of B.
papyrifera through the use of presence-only wide area data coverage, the main predictors
being the 2nd phase harmonics (35.8%), elevation (30.8%), 1st amplitude (27.4%), and
2nd amplitude (2.8%). MAXENT has built-in routines that provide threshold-dependent
and threshold-independent tests of its performance by examining the omission rate and the
area under the ROC curve (AUC). The ‘Subsample’ and ‘Crossvalidate’ options in
MAXENT produced similar high AUC results. AUC values tend to be higher for species
with narrow ranges, relative to the study area described by environmental data (Phillips
et al. 2004). Results indicated that meaningful model prediction is obtained concerning B.
papyrifera distribution. In addition, the comparison between the presence-only records
and the computed probability values suggest an increase in the B. papyrifera probability
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of occurrence. Moreover, comparison of the conventional (Figure 10) and the NDVI-
clustered map (Figure 4) with the distribution map (Figure 7) shows moderate and
substantial (Kappa) agreement, respectively. One of the limitations of the conventional

Figure 9. Seasonality map (adapted from Hurni 1998) overlaid on RGB map of the top three
harmonic predictors (red = 2nd harmonic phase, green = amplitude of 1st harmonic, and
blue = amplitude of 2nd harmonic) from the MAXENT model (a). The NDVI signatures extracted
from the exact locations indicated in (a) that correspond to seasonality (b). It is shown that B.
papyrifera predominantly occurs in the unimodal medium/long rainy season units shown in bold
(units I, II, and III).
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and the NDVI-clustered map units is that it assumes the species to occur uniformly in the
map unit. The distribution map, however, does not assume uniformity. Instead, the
probability of B. papyrifera occurrence is computed for each pixel.

Thus, classifying hyper-temporal NDVI images and extracting signature parameters
using HANTS captures the PAV greenness behaviour of a species and its environment,
consequently improving mapping of the species distribution. The overall accuracy of the
species map for B. papyrifera is very high (90%). For the first time an operational
(management) quality map of this remarkable and commercially important species is
available. Such a map allows natural resource managers concerned with the sustainable
utilization and conservation of B. papyrifera to plan for the harvesting and regeneration of
this important species.
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Figure 10. Distribution map of B. papyrifera in Ethiopia (digitized from Forestry and Wildlife
Conservation DAUTH; Forest Inventory Surveying and Management Planning, October 1984, scale
1:9,500,000).
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