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a b s t r a c t

Fibre reinforced elastomers behave anisotropically as well as viscoelastically. Yang and Sun (1982)
developed an elastic contact model for anisotropic materials which, in the present work, is extended to
account for viscoelastic effects. The developed viscoelastic contact model uses the creep compliance
function of the material in the direction of indentation. The results of the model agree with experimental
results obtained on short fibre reinforced EPDM. Furthermore, a parameter study of the coefficients of
the creep compliance function on the real contact area has been made. The results show that, at short
time scales, the viscoelastic real area of contact can be significantly smaller than when assuming fully
elastic behaviour. At long time scales the results of the viscoelastic contact model equal those of the
elastic model of Yang and Sun.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced elastomers are used in a range of industrial
applications such as tyres, transmission belts and seals. Similar to
fibre reinforced polymers, the addition of fibres to an elastomeric
matrix causes improved mechanical performance, albeit typical
reinforcements for elastomers, especially those with short fibres,
are rather low [1,2]. With the increasing use of short fibre
reinforced elastomers, it has become important to characterize
their contact behaviour as this influences their tribological perfor-
mance. Fibre reinforced elastomers behave viscoelastically due to
the elastomeric matrix and anisotropically as the result of the
preferred orientation of the fibres. To determine the contact
between a rigid spherical indenter and an anisotropic viscoelastic
material we require a contact model that considers both effects.

Models describing the contact behaviour of viscoelastic materi-
als are usually limited to isotropic material behaviour. In the
present study, a viscoelastic anisotropic material with a low degree
of anisotropy is considered. This means that the time dependent
material properties, such as creep compliance in tensile and shear,
have similar, but not necessarily equal values in each principal
direction.

The effect of anisotropy in the elastic contact problem was studied
theoretically by Willis [3], who considered a three dimensional elastic
ll rights reserved.

Rodriguez),
contact of full anisotropic bodies. Swanson [4] used the Willis [3]
approach to calculate the Hertzian contact problem for elastic ortho-
tropic materials. Therefore, if provided with nine different material
properties (such as the elastic moduli, shear moduli and Poisson's
ratios, in three directions) it is possible to calculate the area of contact
for orthotropic materials. However, for fibre reinforced elastomers in
the rubbery state, it is difficult to accurately obtain the material
properties in that many directions and a model that describes the
contact behaviour whilst requiring a smaller number of parameters is
highly desirable.

Yang and Sun [6] and Tan and Sun [7] performed indentation
tests in laminated composites, showing that the loading curve for
these anisotropic materials follows a power law with the same
index as would be expected from the Hertz theory. Consequently,
for an anisotropic elastic material that is indented by a rigid sphere
they proposed to approximate the deformation by using the elastic
modulus of the anisotropic material in the direction of inden-
tation only.

Chen [8] showed that for isotropic and anisotropic materials
under pure normal loading, the normal displacements and the
pressure distributions are identical; only the absolute values of the
pressure may differ. Furthermore, according to Chen [8], the stress
distribution inside an elastically deforming orthotropic body is
symmetrical when one of the principal axes of the orthotropic
material coincides with the direction of indentation.

This means that the approximation of Yang and Sun [6] and Tan
and Sun [7] to model the anisotropic behaviour as a modification
of the isotropic behaviour appears to be valid.
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Nomenclature

a radius of the contact area, for elastic materials [mm]
a(t) radius of the contact area, for viscoelastic materials [mm]
E′ equivalent elastic modulus [MPa]
Ez elastic modulus in the direction of indentation [MPa]
Ex elastic modulus perpendicular to the indentation

direction [MPa]
FN applied normal force [N]
FN(t) time dependent applied normal force [N]
H(t) heaviside function [–]
p(r,t) pressure distribution at a viscoelastic contact [MPa]
r spatial variable in the contact pressure [mm]

R radius of the spherical indenter [mm]
S* time it takes to reach a stable state in viscoelastic

contact [s]
t time, temporal variable in the contact pressure [s]
ψz(t) stress relaxation function, measured in the indenta-

tion direction [MPa−1]
ϕz(t) creep compliance function, measured in the indenta-

tion direction [MPa−1]
ϕ (t) creep compliance function of the material model

[MPa−1]
ϕr relaxed creep compliance [MPa−1]
λi retardation time of the ith component [m s]
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The above is valid for purely elastic materials. Viscoelastic
materials show time dependent behaviour which affects the contact
problem, as the boundary conditions change to become time depen-
dent functions. This type of problem is more complex to solve than a
time independent problem because methods such as the Laplace
transform and the elastic–viscoelastic correspondence principle cannot
be directly applied. A solution to the viscoelastic isotropic contact
problem was found by Lee and Radok [9], who obtained the pressure
distribution over the contact area for a non-decreasing contact area
function. Graham [10] obtained viscoelastic analogues to the Hertz
equations for a contact area function with a single maximum and,
later, for a time dependent contact area with any number of maxima
or minima [11]. Ting [12,13] expressed the viscoelastic solutions in
terms of the solution to the elastic contact problem, thus solving the
contact stresses between a viscoelastic solid and a rigid indenter for a
contact area that follows an arbitrary time function.

The viscoelastic contact models discussed in [9–13] are for
homogeneous and isotropic materials. In the present study, the
method of Yang and Sun [6] and Tan and Sun [7] that approximates
orthotropic behaviour by using the material properties in only one
direction is extended to consider viscoelasticity. This is done by
replacing the isotropic viscoelastic time function by the anisotropic
viscoelastic time function in the direction of indentation.
2. Sun's anisotropic contact model

As discussed before, Yang and Sun [6] and Tan and Sun [7]
proposed an approximation for the deformation of an anisotropic
elastic material that is indented by a rigid sphere. Following this
approximation, the contact area is a circle of radius given by

a¼ 3RFN
4E′z

� �1=3

ð1Þ

where E′z is the reduced elastic modulus in the direction of
indentation, z. A comparison of the contact areas calculated
employing this unidirectional model with Willis's anisotropic con-
tact model [3] has been made by Swanson [4]. He found that the
anisotropic contact model only gives a 4% larger contact area than
the unidirectional model, for a material that is twice as stiff in the
plane of indentation (i.e. perpendicular to the indentation direc-
tion). Therefore the approximation of Yang and Sun [6] and Tan and
Sun [7] can be considered valid for materials with a low degree of
anisotropy. At high degrees of anisotropy, say when the difference
in properties is more than 400%, the approximation proposed by
Yang and Sun [6] and Tan and Sun [7] is not valid [4,5].
3. Extension to viscoelastic contact, based on Sun's model

A common approach in linear viscoelastic theory, see e.g. Lee and
Radok [9] and Ting [12], is to express the viscoelastic solution of the
isotropic contact problem in terms of the elastic solution. Following
this thought, the stress distribution inside an orthotropic viscoelastic
material can be described based on the orthotropic elastic solution.
This means that, for an anisotropic viscoelastic material with a low
ratio of reinforcement (i.e. Ez/Exo2), the time dependent contact
area can be calculated by combining the solution of the viscoelastic
contact problem with the elastic model described in [6,7]. This
means that the contact behaviour of the viscoelastic anisotropic
material is characterised by time dependent material properties
measured in the direction of indentation, such as a stress relaxation
function ψz(t) or a creep compliance function ϕz(t).

For the loading phase of the contact, i.e. for an increasing
contact area, the pressure distribution in the contact area, p(r,t) is
given by

pðr; tÞ ¼ 4
πR

Z t

0
ψ zðt−τÞ

d
dt

a2ðτÞ−r2� �1=2
dτ ð2Þ

where R is the radius of the spherical indenter, a is the radius of
the contact area, r and t are the spatial and temporal variables,
respectively and τ is the dummy variable from the convolution
integral.

The total applied time dependent normal force, FN(t), is
calculated by integrating the pressure distribution over the contact
area. This results in

FNðtÞ ¼
8
3R

Z ∞

0
ψ zðt−τÞ

∂
∂τ

ða3ðτÞÞdτ ð3Þ

The creep compliance ϕz(t) and stress relaxation ψz(t) functions
are related in the Laplace domain according to

ψ zðsÞϕzðsÞ ¼
1
s2

ð4Þ

Assuming that the force is defined by a Heaviside function as
FN (t)¼H(t) � FN, Eq. (3) can be inverted, giving the radius of the
contact area:

a3ðtÞ ¼ 3
8
R⋅FN ⋅

Z t

0
ϕzðt−τÞ

d
dτ

HðτÞdτ ð5Þ

Solving the integral allows to express the radius of the
viscoelastic contact area as

aðtÞ ¼ 3R⋅FN
8

ϕzðtÞ
� �1=3

ð6Þ
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Eq. (6) describes the contact patch between a smooth and rigid
spherical indenter and a deforming viscoelastic anisotropic body
as a circle with time dependent dimensions, characterized by the
viscoelastic properties of the anisotropic material in the indenta-
tion direction only.
Fig. 1. Radius of the contact area, a(t), calculated using the elastic contact model of
Hertz (dashed line) and the viscoelastic contact model (solid line).

Fig. 2. Radius of the contact area from experimental data and calculated with the
contact model.
4. Results and discussion

The developed contact model has been used to calculate the
time dependent contact area for two synthetic EPDM rubbers: an
unreinforced one and a fibre reinforced one. The fibre reinforced
EPDM contained 5 parts per hundred rubber (phr) of unidirection-
ally oriented Twarons aramid fibres, supplied by Teijin Aramid B.V.
The elastic and viscoelastic material properties of these materials
were measured by employing a tensile tester and a Dynamic
Mechanical Analysis (DMA), respectively. The elastic modulus of
the unreinforced material is E¼4.39 MPa and the creep compliance
is expressed as a series of discrete exponential terms [15] given by

ϕðtÞ ¼ ϕr− ∑
3

i ¼ 1
ϕiexp

−t
λi

� �
ð7Þ

in which ϕr represents the creep compliance at the fully relaxed
state and λi the retardation times. For the unreinforced material a
creep compliance in relaxed state of ϕr¼0.35 MPa−1 was measured,
whilst for the reinforced material ϕr¼0.29 MPa−1. The remaining
parameters in Eq. (7) are summarised in Table 1 for both materials.

In the following, first the results obtained using the viscoelastic
contact model are compared with the purely elastic case, employ-
ing isotropic material properties of EPDM. Second, the anisotropic
behaviour of the reinforced EPDM is analysed, while validating the
model with experiments. Third, the influence of the creep com-
pliance function ϕ(t), the relaxed creep compliance ϕr and the
retardation times λi on the contact area is analysed. Due to the
asymptotic behaviour of the quantities in Eq. (7), the modifications
of the retardation times affect neither the final value of the creep
compliance function nor the final size of the contact area. The goal
of this analysis is to evaluate the effect at the small and inter-
mediate time scales.

4.1. Elastic versus viscoelastic contact model

The results from the viscoelastic contact model are compared
to those obtained with the purely elastic case for a contact
composed of a rigid ball with a radius R¼12.5 mm against a
deforming flat surface at a normal load of 2 N. Fig. 1 shows the
calculated contact radius for EPDM, calculated for the purely
elastic case, a, and when taking into account the viscoelastic
behaviour, a(t). The difference between the two models occurs
immediately after loading and decreases with increasing time; in
this case, after 10 ms the difference between the viscoelastic and
elastic contact area is about 17%, which reduces to less than 2% at
1 s. For contacts that occur at short time scales with respect to the
relaxation time of the material, a viscoelastic contact model gives a
Table 1
Compliance coefficients and retardation times for EPDM and reinforced EPDM.

I Unreinforced Reinforced

ϕi [MPa−1] λi [ms] ϕi [MPa−1] λi [ms]

1 4.69E−02 6.4 1.82E−01 7.3
2 4.90E−02 71.3 3.82E−02 6.6
3 8.23E−02 728.4 4.05E−02 71.1
more accurate description of the contact area. For long time scales,
the contact areas calculated using a viscoelastic contact model or
an elastic contact model are similar. Note that, as the EPDM
material is isotropic, these results are equal to those obtained
using isotropic contact models.
4.2. Isotropic versus anisotropic contact

The anisotropic viscoelastic contact model can be validated
using the fibre reinforced EPDM. Indentation tests were performed
on this material employing an indenter with a radius of 1 mm at
an applied load of 10 mN using a holding period of 500 ms. The
contact area was obtained from the resulting load–displacement
curve during this holding period, as described by Tweedie [16].
These experimental results are compared with the contact areas
that are calculated using Eq. (6) and the creep compliance data
from Table 1. The experimental and calculated contact areas are
shown in Fig. 2.

It can be seen that the radius of the contact area obtained
through micro-indentation is similar to the radius of the contact
area calculated using the anisotropic contact model with material
properties for the reinforced EPDM obtained using DMA.
4.3. Effect of different parameters of the creep compliance function

In a parameter study, the different parameters of the creep
compliance function of EPDM have been modified to study their
influence on the final creep compliance and therefore on the
calculated contact behaviour.



Fig. 5. Influence of the relaxed creep compliance ϕr on the radius of the
contact area.

Fig. 6. Creep compliance function at different factors of the retardation times.
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4.3.1. Creep compliance function ϕ(t)
The creep parameters as listed in Table 1 have been multiplied

by factors of 2, 3, 4, 5 and 6, respectively. The resulting calculated
contact radii as function of the time t are shown in Fig. 3. The solid
black line marked ϕ(t) shows the radius of the contact as a
function of time for the actual material whilst the dotted line
represents the purely elastic solution. The various lines marked
2 �ϕ(t)–6 �ϕ(t) show the radius of the contact area calculated at the
various values of the creep compliance. As the creep compliance
increases, the radius of the contact area also increases. This can be
translated into a loss of stiffness of the material and therefore a
higher indentation under the same loading conditions.

4.3.2. Relaxed creep compliance ϕr

The influence of the creep compliance at a fully relaxed state,
ϕr, is analysed by multiplying ϕr with factors 2, 3, 4, 5 and 6. For
relatively long time scales, the values obtained for the contact
radius in each case will be equal to those shown in Fig. 3. At short
time scales the results will differ. Fig. 4 shows the time it takes for
the time dependent contact radius (a(t)) to reach a stable value
(time S*, as defined in Fig. 3). S* represents the time after which
the contact area calculated by the viscoelastic contact model
deviates less than 1% from the contact area calculated as by the
elastic contact model, a(t¼S*)¼0.99 � a(t¼∞).

Fig. 5 shows the relative size of the contact area at different
instants of time (0.1 s, 0.7 s and 1.5 s). The multiplication factor
1 refers to the original creep function, a factor 2 indicates 2 �ϕr,
meaning the relaxed creep compliance equals two times the
original relaxed creep compliance, and so on. These curves show
that an increase of only the relaxed creep compliance, whilst
keeping the other creep parameters constant, does affect the rate
Fig. 3. Influence of the creep compliance function on the calculated radius of the
contact area.

Fig. 4. Influence of the relaxed creep compliance ϕr on the time to reach a stable
contact area.

Fig. 7. Radius of the contact area, at different factors of the retardation times.
of increase of the contact area, but not the final size of the contact
in the relaxed state.
4.3.3. Retardation times, λi
Fig. 6 shows the influence of the retardation times on the creep

compliance function; the retardation times, λi in Table 1, were
multiplied by 10, 100 and 1000. Fig. 7 shows the resulting effects
on the radius of contact. It can be seen that an increase of all the
retardation times produces a decrease of the rate at which the
creep compliance reaches the stable state.

Fig. 7 shows that an increase in the retardation times slows
down the increase of the contact area. Comparing the contact
behaviour of a ‘fast’ viscoelastic material with that of a ‘slow’ one,
i.e. two materials that differ only in the retardation times, will
result in the same contact area at the long time scale, but the
indentation occurs more slowly with higher retardation times.



Fig. 8. Influence of individual retardation times on the creep compliance function.

Fig. 9. Influence of individual retardation times on the radius of the contact area.
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The influence of the separate retardation times λ1, λ2 and λ3 is
studied by independently multiplying each retardation time by a
factor of 10. As the creep compliance coefficients are all of the
same order of magnitude, it is possible to compare the influence of
each retardation time. It should be noted that this is a hypothetical
case, because multiplying λ1 by 10 results in a value that is quite
close to λ2, meaning that in the calculation, the material is actually
characterized by only two time responses. The resulting creep
compliance curves can be seen in Fig. 8, where the dotted line
shows the creep compliance function calculated for the actual
material and the various grey lines show the creep compliance
calculated from the modifications of the retardation times.

The resulting values for the radius of contact are shown in
Fig. 9. The dashed black line represents the contact radius of the
actual material. The various grey solid lines show the radius of the
contact area calculated with the creep compliance resulting from
modifications of the retardation times. At very short time scales
(�10−1 s) the contact area with the modified smallest retardation
time (λ1) approaches the original contact area. At long time scales
(4101 s) a modification of the largest retardation time causes
larger differences because the contact area approaches its stable
value only very slowly.
5. Conclusions

A model that describes the contact behaviour of viscoelastic
weakly anisotropic materials has been developed. The contact
model is based on the fact that, under weak anisotropy, the
contact behaviour can be appropriately described by taking only
the properties of the material in the normal or loading direction.
Similar to common practice in viscoelasticity, the solution in
orthotropic viscoelasticity can be based on the orthotropic elastic
case. A comparison between the contact areas calculated using an
elastic contact model and a viscoelastic contact model shows that
results coincide for long time scales. Experimental data of a short
fibre reinforced EPDM was compared with the contact area
calculated with the anisotropic viscoelastic contact model, show-
ing good agreement. From the parameter study on the creep
behaviour it can be concluded that an increase in the creep
compliance function results in an increase of the size of the
contact area. Furthermore, an increase in the retardation times
inserted in the model results in a slower stabilisation of the size of
the contact area.

The developed model is suitable for describing the contact
behaviour of short-fibre reinforced elastomers. These have a rather
low degree of anisotropy due to the non-perfect alignment of the
short fibres and are often applied in rolling contact configurations,
where the typical contact times in the order of milliseconds.
The results of the model show that at short time scales the real
area of contact as calculated using the viscoelastic material model
can be significantly smaller than when assuming fully elastic
behaviour.
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