
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

Geospatial tools address emerging issues in spatial
ecology: a review and commentary on the Special
Issue

Andrew K. Skidmore , Janet Franklin , Terry P. Dawson & Petter Pilesjö

To cite this article: Andrew K. Skidmore , Janet Franklin , Terry P. Dawson & Petter Pilesjö (2011)
Geospatial tools address emerging issues in spatial ecology: a review and commentary on the
Special Issue, International Journal of Geographical Information Science, 25:3, 337-365, DOI:
10.1080/13658816.2011.554296

To link to this article:  https://doi.org/10.1080/13658816.2011.554296

Published online: 23 May 2011.

Submit your article to this journal 

Article views: 2055

View related articles 

Citing articles: 11 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2011.554296
https://doi.org/10.1080/13658816.2011.554296
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2011.554296
https://www.tandfonline.com/doi/mlt/10.1080/13658816.2011.554296
https://www.tandfonline.com/doi/citedby/10.1080/13658816.2011.554296#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/13658816.2011.554296#tabModule


International Journal of Geographical Information Science
Vol. 25, No. 3, March 2011, 337–365

Geospatial tools address emerging issues in spatial ecology: a review
and commentary on the Special Issue

Andrew K. Skidmorea*, Janet Franklinb, Terry P. Dawsonc and Petter Pilesjöd

aDepartment of Natural Resources, Faculty of Geoinformation Science and Earth Observation
(ITC), University of Twente, Enschede, The Netherlands; bSchool of Geographical Sciences and

Urban Planning, Arizona State University, Tempe, AZ, USA; cSchool of Geography, University of
Southampton, Southampton, UK; dDepartment of Earth and Ecosystem Sciences, Lund University,

Lund, Sweden

Spatial ecology focuses on the role of space and time in ecological processes and
events from a local to a global scale and is particularly relevant in developing envi-
ronmental policy and (mandated) monitoring goals. In other words, spatial ecology is
where geography and ecology intersect, and high-quality geospatial data and analysis
tools are required to address emerging issues in spatial ecology. In this commentary
and review for the International Journal of GIS Special Issue on Spatial Ecology, we
highlight selected current research priorities in spatial ecology and describe geospa-
tial data and methods for addressing these tasks. Geoinformation research themes
are identified in population ecology, community and landscape ecology, and ecosys-
tem ecology, and these themes are further linked to the assessment of ecosystem
services. Methods in spatial ecology benefit from explicit consideration of spatial
autocorrelation, and applications discussed in this review include species distribution
modeling, remote sensing of community and ecosystem properties, and models of cli-
mate change. The linkages of the Special Issue papers to these emerging issues are
described.

Keywords: Spatial ecology; GIS; remote sensing; environmental change; temporal
processes; species distribution models; biodiversity

1. Introduction

Spatial ecology focuses on the role of space and time in ecological processes and events and
is applied to natural resource sciences including, for example, biology, forestry, conserva-
tion, agriculture, and environment. In other words, spatial ecology is where geography and
ecology intersect. A principle underlying the field of spatial ecology is that the presence
and abundance of organisms, their interactions with the environment, and other ecological
processes form spatial patterns over geographical space and time. These patterns are the
result of climate, environmental gradients and disjunctions, biotic interactions, and anthro-
pogenic influences, creating variation in species, communities, and ecological processes
and events at multiple scales in space and time (Dungan et al. 2002). For example, the
availability of light, moisture, nutrients, and heat is spatially and temporally heterogeneous.
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Patterns of disturbance (fire, wind, ocean temperature anomalies, and anthropogenic frag-
mentation of landscapes) are also heterogeneous as well as being spatially structured.
Ecological processes not only occur on a template of a spatially heterogeneous envi-
ronment, but many are also spatially explicit and generate spatial patterns – including
dispersal and movement of organisms, interactions between species, and fluxes of matter
and energy. Identifying, describing, and monitoring patterns over time are prerequisites to
understanding ecological processes (Legendre et al. 2002, Liebhold and Gurevitch 2002).
Furthermore, ecological models that account for spatial processes are more realistic and
powerful than those that do not.

Spatial ecology examines the role of space and time in ecological processes and events
at local to global scales and in this article, spatial ecology is not tied to a particular
scale. Studies that label themselves as spatial ecology frequently address the population
and community levels of ecological organization (Tilman and Kareiva 1997, Holyoak et
al. 2005). Landscape ecology (Naveh and Lieberman 1994) considers processes and pat-
terns at broader spatial scales encompassing landscapes or seascapes, on the order of 10s
to 10,000s of km2 (watersheds, ecoregions). Biogeography or ‘macro-ecology’ (Brown
1995) classically addresses patterns at even broader scales, encompassing entire species’
ranges, continents, or oceans and implicitly or explicitly considering processes that occur
at geological time scales – adaptation, speciation, and species range changes in response
to climate change.

Geospatial data and analysis tools are requisite to tackle emerging issues in spatial
ecology from local to global scales. In addition to addressing basic research questions,
geospatial data analysis provides background information as well as scenario testing
of environmental policies and monitoring goals set by nation states as well as inter-
national conventions and agreements. For example, the importance of biodiversity was
highlighted in the Millennium Development Goals (MDGs) coordinated by the United
Nations Development Program (Sachs and MacArthur 2005). The MDGs are eight goals
to be achieved by 2015 that respond to the world’s main development challenges, drawn
from the actions and targets contained in the Millennium Declaration that was adopted
by 189 nations in 2000 (www.un.org/millenniumgoals, accessed 30 January 2011). Of
particular relevance for this article is MDG 7, which aims to ‘ensure environmental sus-
tainability’. Targets 7a and 7b address quantitative environmental indicators to reduce
biodiversity loss, such as protection of terrestrial and marine areas, reducing the number
of species facing extinction, maintaining global forest cover, and reducing CO2 emissions.
International conventions, which bind signatory nations to specific environmental actions
and outcomes, require information generated from spatial ecological data for monitor-
ing and enforcement. Such conventions are diverse, ranging from maritime applications
(such as the Convention on the Prevention of Marine Pollution by Dumping of Wastes and
Other Matter (London Convention), 1972, and the International Convention for the Control
and Management of Ships’ Ballast Water and Sediments, 2004) to conventions focus-
ing on biodiversity (the Convention on Biological Diversity (year of coming into force:
1993), the Convention on Conservation of Migratory Species (also known as the Bonn
Convention) (1983), the Convention on International Trade in Endangered Species of Wild
Fauna and Flora (1975), the International Treaty on Plant Genetic Resources for Food and
Agriculture (2004), the Ramsar Convention on Wetlands (1971), and the World Heritage
Convention (1972)). Other examples of international conventions relevant to spatial ecol-
ogy are the United Nations Convention to Combat Desertification and the United Nation
Framework Convention on Climate Change. Some conventions can be considered subsets
of the Convention on Biological Diversity, such as the Convention on the Conservation
of European Wildlife and Natural Habitat (Bern Convention), the International Plant

http://www.un.org/millenniumgoals
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Protection Convention; the Convention for the Protection and Development of the Marine
Environment of the Wider Caribbean Region (Cartagena Convention) and its proto-
cols, including the protocol concerning Specially Protected Areas and Wildlife and the
Mediterranean Action Plan (Barcelona Convention).

The Millennium Ecosystem Assessment (MEA) was initiated in 2001 by the United
Nations with the objective of assessing the consequences of ecosystem change for human
well-being and the scientific basis for action needed to enhance the conservation and sus-
tainable use of those systems and their contribution to human well-being (Corvalán 2005).
Similar to the Intergovernmental Panel on Climate Change, the MEA assesses current
knowledge, scientific literature, and data, rather than presenting new research findings. The
main finding of the MEA is that over the past 50 years, humans have changed ecosystems
more rapidly and extensively than in any comparable period of time in human history,
largely to meet rapidly growing demands for food, fresh water, timber, fiber, and fuel
(Carpenter et al. 2009). This has resulted in a substantial and largely irreversible loss in
diversity of life on Earth.

To prepare, monitor, and achieve these assessments and goals, quality data and
information must be registered accurately to both place and date. For example, the
Global Earth Observation System of Systems provides information and decision-support
tools to a wide variety of users through a flexible network of content providers
(http://www.earthobservations.org/). Specifically the program provides funding and an
international network to provide information for and about human-induced disasters,
understand the environmental sources of health hazards, manage energy resources, respond
to climate change and its impacts, safeguard water resources, improve weather forecasts,
manage ecosystems, promote sustainable agriculture, and conserve biodiversity. In other
words, the spatial and temporal data and information required for ecological and environ-
mental analysis and assessment are increasingly embedded in the international community
and its institutions. To satisfy international obligations for environmental reporting and
monitoring, nations are investing heavily in spatial information provision and analysis at
local, provincial, and national levels.

In this article an overview is provided of current themes and research priorities in spa-
tial ecology (Section 2) and examples of geospatial data and methods for addressing these
tasks are discussed (Section 3). This overview serves as a preface to the Special Issue on
Spatial Ecology, and the linkages of the Special Issue papers to these emerging issues are
described (Section 4). The overview is far from a comprehensive review of this burgeoning
field and reflects the interests and biases of the authors, but the collection of papers included
in the Special Issue illustrates the diversity of current research applying geospatial data and
methods to spatial ecology problems.

2. Emerging issues in spatial ecology

Before discussing current research priorities in spatial ecology, the concepts of scale rel-
evant to spatial ecology are reviewed (see Section 2.1). Geospatial data and tools are
being used in innovative ways to address problems in spatial ecology at population,
community/landscape, and ecosystem levels, and each level of ecological organization
is discussed in Sections 2.2–2.4. Very broadly, many applications are aimed at supporting
conservation of biological diversity: biodiversity elements (species, communities) as well
as ecosystem processes (providing goods and services). Furthermore, geospatial analysis
is currently being applied to assess the status of ecosystem services as mandated under a
number of monitoring programs (Section 2.5).

http://www.earthobservations.org
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2.1. Scale and geospatial data for ecology

Spatial scale has two components, grain and extent (Turner et al. 2001). Grain or sam-
ple resolution is the size of a single observation, for example, a 50-m radius bird survey
plot, a 10-km grid cell for which averaged climate variables have been interpolated, or
a 30-m image pixel (ground resolution element). Extent is the size of the study area
domain. As discussed in the Introduction (Section 1), specializations within ecology are
linked to extent, for example, a broader extent relates to biogeography or macro-ecology.
Ecological studies are also characterized by temporal resolution (interval) and extent (time
period, duration), though traditional spatial analyses often assume that time is static, with
a study representing a ‘snapshot’ in time (as compared with the more recent studies cited
in Sections 2.3 and 2.4 that explicitly model time). Finally, when considering how finely
a system can distinguish differences of intensity, the radiometric resolution of imagery or
spatial data becomes critical and is usually expressed as a number of levels or number of
bits, for example, 8 bits or 256 levels is typical for computer image files.

Factors that control the spatial distribution of biotic elements have been described in
a model by Mackey (1993) as the primary environmental regimes of radiation, thermal,
moisture, and nutrients. Climate, topography, and geologic substrate control the distri-
bution of these primary environmental regimes in complex ways, for example, through
evapotranspiration, soil profile development, and the subsurface moisture regime in terres-
trial ecosystems (Swanson et al. 1988, Franklin 1995, Wilby and Schimel 1999, Wilson
and Gallant 2000). Maps describing the primary environmental regimes are often derived
either from point measurements through interpolation (Skidmore 1996b, Varekamp et al.
1996) and physical models (Kumar et al. 1997) or from remote sensing (Clevers et al.
2002).

Drivers controlling these regimes are spatially nested (Franklin 1995). A nested hier-
archy of spatial scales can be defined based on natural breaks in the distribution of the
primary environmental resources (Mackey and Lindenmayer 2001). At a global (biogeog-
raphy or macro-ecology) scale, latitudinal and seasonal patterns of incoming solar radiation
drive regional weather and climate. At the meso-scale (i.e. landscape ecology scale), the
interaction of weather with terrain affects precipitation, temperature, and radiation regimes,
whereas geologic substrate and derived soil properties affect nutrient availability. At the
topo-scale (i.e. population and community ecology scales), local topography controls the
distribution of water and radiation (and therefore soil development and nutrient avail-
ability). Micro-scale is defined as the scale at which patches of vegetation affect the
below-canopy microclimate. This concept of a spatially nested hierarchy has also been
developed in wildlife ecology literature (Johnson 1980), where the four levels of habitat
selection are described as the species’ geographic range, home range, resource patches
within the home range, and the selection of food items within the patches (e.g. Ciarniello
et al. 2007). In this Special Issue, four papers investigate the role of scale in ecology,
focusing on the environmental variables influencing ecological properties and processes,
including species distribution modeling (SDM), biomass as well as ecosystem productiv-
ity (see Section 4 for details; Miller and Hanham (this issue), Leitão et al. (this issue),
Propastin (this issue), and Svoray (this issue)). The interaction of biota with the physi-
cal environment is aided by global positioning system (GPS) and tracking technologies as
outlined below.

2.2. Spatial processes in population ecology

Geospatial technologies have supported studies of populations and species autecol-
ogy through the use of GPS and related technologies such as radio-, GPS-, and
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satellite-telemetry for the precise mapping of individual organisms (Hays et al. 2001,
Ropert-Coudert and Wilson 2005, Beck et al. 2008). GPS is now routinely used to record
locations of ecological survey plots for plants (Stohlgren et al. 1997), animals, and other
organisms, as well as specimen locations for natural history collection records (Graham
et al. 2004). Telemetry is a primary source of data for defining an animal home range, as
well as the area utilized by an individual (e.g. Walter et al. this issue), using spatial anal-
ysis techniques such as kernel density estimation (Seaman and Powell 1996, Berland et
al. 2008). Advanced data and information systems allow telemetry data to be related to
environmental data layers to determine individual patterns of habitat use and understand
wildlife ecology (Coyne and Godley 2005).

Increased habitat fragmentation has important effects on the autecology of a species.
The associated loss of connectivity will distort the meta-population arrangement within
a region, with a likely increase in the number of, and respective isolation of, popula-
tion clusters (Wang et al. 2010). However, because connectivity in most cases takes place
across the whole landscape matrix, the importance of land management becomes crucial
as certain landscape categories (irrespective of whether these are anthropogenic, seminat-
ural, or natural) may become either corridors or barriers in the connection between those
population clusters (see also Section 2.5, Zhang et al. (this issue), and van Langevelde
and Grashof-Bokdam (this issue)). Spatial information about corridors and barriers has
defined ecological networks linking high conservation value areas, such as the ‘ecological
networks’ of northwest Europe (Bruinderink et al. 2003). The response of ecological net-
works to climate change (see Section 2.4) is being actively researched (Lebourgeois et al.
2010).

Meta-population modeling, where subpopulations occupy discrete patches of habitat
but may move between patches, is one spatial modeling framework that is often used in
population viability analysis (PVA) (Akçakaya 2000). PVA is a framework for assessing
threats to species persistence and ranking the effects of potential management actions
(Akçakaya and Burgman 1995, Possingham et al. 2001, Beissinger and McCullough
2002). There are a number of well-established formulations for spatially explicit PVA
(reviewed by Akçakaya and Regan 2002). When using meta-population structures or other
spatial models, such as individual-based models or patch occupancy models, spatially
explicit information about the distribution of habitat quality – the arrangement, size, and
quality of habitat patches – is required (reviewed by Franklin 2010a). Models of land-
scape dynamics, in which landscape initial conditions are characterized using geospatial
data, have been used to generate maps of suitable habitat over time for input to meta-
population models (Akçakaya et al. 2004, 2005) (Figure 1). Patch occupancy models
have been used to examine the effects of habitat fragmentation on species (Wilson et al.
2009), whereas individual-based models have predicted the impact of land use change on
wildlife population trajectories (McRae et al. 2008). The paleoecological records provide
some evidence of long-distance dispersal events, whereby plants have appeared to migrate
significant distances during rapid climate transitions that cannot be explained by conven-
tional seed dispersal mechanisms alone (Kullman 1996) and stochastic dispersal models
based upon cellular automata (Figure 2) have been developed to explore the connectiv-
ity of habitat patches through long-distance dispersal mechanisms (Pearson and Dawson
2005).

2.3. Spatial and temporal processes in community and landscape ecology

At the community level of ecological organization, species that are found together in
an area interact with each other, strongly or weakly, through competition and predation
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Figure 1. A conceptual overview of applications of and linkages between geospatial data (Section
3.3) on land cover, fire disturbance, and human population; model-based projections of future climate
(Section 3.4) and land use; and species distribution models (Section 3.2) interpolated to generate
dynamic habitat suitability for input to population viability models (Section 2.2) to forecast the
impacts of environmental change on biological populations.

Figure 2. Cellular automata model of species dispersal generating two probabilistic species dis-
tributions on theoretical landscapes with varying degrees of fragmentation (Pearson and Dawson
2005). Initial populations are located at the center of each image (black grid). White is unsuitable
habitat. Color scale indicated the probability that a species will reach a cell after a finite number of
interactions.
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as well as various forms of facilitation. These interactions occur at spatial scales deter-
mined in part by the mobility of the organisms. Interactions among plants and other sessile
organisms (e.g., corals) are assumed to occur at local scales or close distances (Harper
1977). Geospatial data, technology, and analysis methods have supported the study of
these community interactions. Point pattern analysis, spatial autocorrelation (SA) mea-
sures, and other spatial statistics have been used to test whether individuals of different
species, age classes, and so on occur together (within specified distances) more (aggre-
gation) or less (repulsion) often than would be expected by chance (reviewed in Franklin
2010b, see also Section 3.1). These patterns would suggest facilitation or competition,
respectively, and multi-scale analysis would identify the scale at which they are operating.
A commonly observed pattern in forest communities, for example, is for younger trees
in a population to have a more clumped pattern and older trees a more uniform pattern
(McDonald et al. 2003), which may be the result of density-dependent mortality caused by
competition (Kenkel 1988), but can also occur if seedlings are more likely to be discov-
ered by ‘predators’ (herbivores, fungal pathogens) when found near adult trees of the same
species (Condit et al. 2000, Harms et al. 2000). Because different processes can yield the
same observed pattern, spatial analysis cannot always conclusively confirm hypothesized
ecological processes when used in isolation. However, advanced methods of spatial anal-
ysis provide powerful tools with which to address large and complex community datasets,
containing errors and a variety of spatial scales (Franklin and Rey 2007, Lewison et al.
2009).

Describing the spatial pattern of ecological communities has long been a basic ele-
ment of land inventory for resource management (in forestry, range management, and
agriculture) and conservation planning (reserve design; see also Zhang et al. (this issue))
supported by remotely sensed and other geospatial data (e.g. Scott et al. 1993, Franklin et
al. 2000). Some form of natural disturbance is typical for most ecosystems, and commu-
nities are also characterized by temporal dynamics (changes in composition and function)
that unfold as a result of those disturbances, the life-history traits of species, and their
interactions. Multi-temporal and hyper-temporal remote sensing and image analysis allow
annual cycles, interannual variability, and state-changing anomalies caused by disturbance
and succession in ecological communities to be tracked through biophysical measures of
productivity, photosynthetic activity, foliar chlorophyll concentration, standing biomass,
leaf area indices, vegetation species types, and so on (Wolter et al. 1995, Dechka et al.
2002, Dennison and Roberts 2003, Schmidt et al. 2004, Cho et al. 2007, Kalacska et al.
2007, Darvishzadeh et al. 2008, Huang and Geiger 2008). Change detection is the tra-
ditional approach used in remote sensing to map changes in land cover that result from
natural or anthropogenic disturbances (Singh 1989, Woodcock et al. 2001, Rogan et al.
2003), but now many land surface attributes are monitored using moderate-resolution
remote sensing (Justice et al. 1998, Justice et al. 2002, Turner et al. 2006), and land
cover and other data products are routinely available (Strahler et al. 1994, Cohen et al.
2006). Such remote sensing and land cover data products are now used to spatially model
ecological processes and events, for example, species invasion.

Exotic or alien species (nonnative to an area) are, by definition, invasive if they impact
on other species, ecological communities, or ecosystem processes. If the invasive species
is a pest or disease organism affecting plants, animals or humans, or its vector or host, then
detecting its distribution serves public health goals and supports epidemiological studies.
Remote sensing and SDM are increasingly being used to map invasive species including
pathogens (Bradley and Mustard 2006, Roura-Pascual et al. 2006, Andrew and Ustin 2008,
Hestir et al. 2008, Huang and Geiger 2008) as well as disease spread by predicting their
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potential distributions (Kelly and Meentemeyer 2002, Underwood et al. 2004, Mohamed
et al. 2006, Raso et al. 2006, Fleming et al. 2007, Meentemeyer et al. 2008). For example,
when the light intensity requirements for an invasive species in Nepal (Chromolaena odor-
ata) to germinate were understood, remote sensing and physical modeling could be used to
predict the spatial distribution of present and future invasions (Joshi et al. 2006). Disease
spread by migratory species (for example avian influenza by birds) or resident populations
(such as Lyme disease by red deer) are topical public health issues, strongly underpinned
by research in spatial ecology (Si et al. 2009, Walter et al. this issue).

Landscape ecology (at meso-scale) explicitly focuses on the impact of spatial patterns
in landscapes on ecological processes, including population, community, and ecosystem
processes. Landscape- (or meso-) scale modeling of plant community dynamics often
requires spatially explicit information about the initial distribution of species or functional
types comprising the community (He and Mladenoff 1999, Mladenoff and Baker 1999),
derived from remote sensing (Wolter et al. 1995), species distribution models (Section
3.3), or forest survey databases (He et al. 1998, Ohmann and Gregory 2002). These mod-
els can simulate the impact of natural and anthropogenic disturbances on the dynamics of
ecological communities and on ecosystem processes (Scheller and Mladenoff 2004) based
on the life-history traits of the species that make up the community (Gustafson et al. 2004,
Franklin et al. 2005, Scheller et al. 2005). For example, fire, logging, and climate change
may have different or combined effects on the distribution of old-growth forests (He et al.
1999, Scheller and Mladenoff 2005, Xu et al. 2007). Spatial patterns of urban growth as
well as a human-caused increase in fire frequency can lead to a decline in key plant func-
tional types in a fire-prone Mediterranean-type ecosystem (Syphard et al. 2006, Syphard
et al. 2007).

2.4. Spatial and temporal processes in ecosystem ecology

Ecosystem ecology addresses the interactions between organisms and the environment with
an emphasis on the exchange and flow of matter and energy between biota, water, soil,
and atmosphere (Chapin et al. 2002), for example, in biogeochemical cycles (Schlesinger
1991). Evaluating ecosystem services in support of sustainable ecosystem management
often requires the use of models. Ecosystem modeling deals with relatively large spatial
units; this makes the scaling of finer resolution data particularly relevant. Detailed, often
point-based, nondistributed models describing a restricted spatial unit in a physically based
manner, with high demands for accurate and extensive data, have to be extended in space
as well as time. Traditionally, multiple point models are executed in a regular grid to cover
larger areas. This approach, sometimes called spatially distributed modeling, has been used
to model evapotranspiration and carbon fluxes (see e.g. Turner et al. 2006, Vazifedoust
et al. 2009, Viviroli et al. 2009, Wang et al. 2009). However, to accommodate lateral
fluxes, the modeling must be spatially explicit. User-friendly and sophisticated software
has been developed to include these lateral fluxes (Tague et al. 2005), facilitating a better
understanding of the processes in time and space (Lett et al. 2008).

Much of the impetus for spatially explicit ecosystem modeling is a response to anthro-
pogenic CO2 emissions and resulting global warming (climate change) on ecosystems, as
well as the feedback from ecosystem fragmentation to climate (see Section 2.2). Here, the
discussion will focus on models of the carbon cycle (see also Propastin (this issue) as well
as Wilson et al. (this issue)) and the water cycle, with linkages to other biogeochemical
cycles (e.g. nitrogen). To quantify the uptake and emission of carbon from different ecosys-
tems, spatial and temporal information about climate, soils, emissions from industry, and
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so on is required. Such datasets are becoming widely available in gridded form, cover-
ing extensive parts of the globe (Hickler et al. 2009). Availability of regional and global
datasets has aided the development of advanced spatial modeling of ecosystems including
available water and vegetation (Smith et al. 2001).

Because a substantial amount of carbon enters the terrestrial ecosystem without inter-
acting with the atmosphere, the lateral modeling of carbon is an emerging issue (Cox et
al. 2000). For example, sequestered carbon can be released into the atmosphere when
ecosystems are disturbed by melting of permafrost, fires, or storms. Dynamic vegetation
models (DVMs; Prentice et al. 2007) simulate monthly or daily dynamics of ecosystem
processes, ‘growing’ vegetation types at a location using a time series of climate data (e.g.
solar radiation, temperature and precipitation), given constraints of latitude, topography,
and soil characteristics. These models can be tailored to individual plant species, includ-
ing food crops such as wheat or maize, as well as tree species, to estimate productivity
and yield and other physical characteristics. Alternatively, DVMs can model a simplified
vegetation classification based upon plant functional types (Hickler et al. 2009), based on
global biomes (Prentice et al. 1992, Haxeltine and Prentice 1996) and the response of the
vegetation to competition as well as physiological responses to climate. For example, a
DVM projected the impact of climate change on vegetation, carbon, and fire distributions
in California (Lenihan et al. 2003), as well as the response of ecosystem structure and
function to climate change (Cramer et al. 2001, Bonan et al. 2003, Sitch et al. 2003).

Nitrogen has been recognized as a limiting factor in carbon sequestration (see e.g.
Hutchings et al. 2007, Thornton et al. 2007, Bonan 2008, Gerber et al. 2010, Zaehle et
al. 2010). However, nitrogen is difficult to model, though recent work indicates that the
concentration of foliar nitrogen, as well as other biochemicals such as polyphenols, can
be simultaneously estimated using hyperspectral remote sensing (Skidmore et al. 2010;
Figure 3). The amount of nitrogen is dependent on temperature and soil and is linked to
lateral hydrological fluxes. Because water movement is closely linked to a large number of
other processes, there has been a steady development in hydrological models (see, Pilesjö
et al. 1998, Pilesjö et al. 2006, Pilesjö 2008).

Key challenges to modeling spatial and temporal processes in ecosystem ecology are
the inclusion of individual species or functional types in ecosystem modeling and models
linked to carbon (De Deyn et al. 2009), for example, how species range might expand or
shift under climate change in large ecosystems such as the Siberian tundra (Delbart and
Picard 2007). The role of nitrogen as a limiting factor in vegetation modeling (Schubert
et al. 2010, Zaehle et al. 2010) and the melting of permafrost affect the carbon emissions
from the arctic and subarctic ecosystems (Christensen et al. 2004, Johansson et al. 2006).
Translation across spatial scales is of specific interest in these studies. When moving from
detailed models on a 1-m scale to global models on a 1-km scale (see also Sections 1
and 2.1), lateral movements have not been stressed (Gedney and Cox 2003, Merot et al.
2003). As the grid cells may be large in relation to fluxes, every cell is often treated as
an isolated system. However, more comprehensive models in combination with increas-
ing data quality and availability have rapidly increased the demand for ‘truly’ distributed
models (Prentice et al. 2007). When modeling ecosystems, the influence of different natu-
ral and anthropogenic disturbances (Pickett et al. 1989) such as agriculture, urbanization,
forest management, fire, and storms on, for example, carbon sequestration is of interest
(Lindroth et al. 2009). Characterizing patterns of disturbance requires geospatial data and
data processing such as Moderate Resolution Imaging Spectroradiometer (MODIS) global
fire mapping and land cover products (Friedl et al. 2002, Cohen et al. 2006, Hawbaker et al.
2008). In many areas fire is the most important type of natural (and/or human) disturbance
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Figure 3. Hyperspectral mapping of savanna forage quality. (a) Foliar nitrogen concentration for
mopane trees and shrubs (percent). The white areas represent the ‘grass’ pixels. (b) Total polyphenol
concentration for mopane trees and shrubs (quebracho polyphenol equivalents in gg−1). The white
areas represent the ‘grass’ pixels. (c) Foliar nitrogen concentration in grass (percent). The white areas
in this map represent the ‘tree’ pixels. (d) Homogeneous areas with respect to parent material and fire
(F, fire; NF, no fire), overlaid on a map of parent material. The lines are geological class boundaries
and are shown in all maps. From Skidmore et al. (2010).
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affecting biogeochemical cycles and we have many examples of researchers incorporat-
ing fire modules in DGVMs (e.g. Thonicke et al. 2001, Venevsky et al. 2002). However,
disturbance processes are often difficult to model. Fire depends not only on commonly
used datasets such as temperature, vegetation, and topography but also on wind and fire
breaks, natural and anthropogenic. Human disturbance, such as logging and other forms
of land use/land cover change, is beginning to be addressed in ecosystem models as well
(Shevliakova et al. 2009). In turn, human disturbance impacts on the quality and provision
of ecosystem goods and services.

2.5. Measures of ecosystem goods and services

Assessing the status of ecosystem goods and services, provided by the regulation, habi-
tat, production, and information functions of ecosystems, is required to support the MEA
(Section 1) and similar mandates. These goods and services include provisioning (food and
fiber, dependent on the productivity of the land, freshwater, and sea), regulating (climate,
water, and air quality), cultural (spiritual, aesthetic, and recreation), and supporting (pri-
mary productivity and soil formation) functions. Assessment is almost always an inherently
spatial exercise and relies on geospatial data and methods. Although definition, valua-
tion, and assessment of these services are challenging (de Groot et al. 2002), there are
large-scale examples of ecological integrity being characterized in support of ecosystem
management and using proxies derived from geospatial data, for example, the extent and
configuration of different land covers (Quigley et al. 2001) as well as operational state of
environment reporting and analysis, such as undertaken on a regular basis by the Australian
government (http://www.environment.gov.au/soe/index.html).

Habitat loss and fragmentation resulting from human land use, and increasingly from
the effects of anthropogenic climate change, are the primary causes of biodiversity loss
(Wilson 1992, Vitousek et al. 1997, Thomas et al. 2004, van Langevelde and Grashof-
Bokdam (this issue)). In turn, climate change poses challenges to the integrity and viability
of existing ecological networks (Lebourgeois et al. 2010). Consequently, predicting the
impact of habitat loss on biodiversity elements and ecosystem processes is an important
scientific contribution to conservation and ecosystem management (Ferrier 2002, Burgman
et al. 2005, Heikkinen et al. 2006, Zhang et al. (this issue)). Landscape ecology has seen
the development of a suite of metrics for describing the spatial arrangement of land-
scape elements to characterize landscape disturbance, habitat fragmentation, and other
patterns and processes (O’Neill et al. 1988, Haines-Young and Chopping 1996, Gustafson
1998, McGarigal 2002). These measures are applied to geospatial data that describe the
Earth’s surface. Typically these include measures describing landscape patch characteris-
tics applied to categorical maps (discrete polygons and classes of land cover) such as class
area, patch size characteristics, patch shape characteristics (relative amount of patch edge
vs. interior), and patch arrangement (measures of connectivity or distribution of distances
among patches). Widely used spatial statistics and geostatistics can also be applied to con-
tinuous measures of landscape properties, such as remotely sensed indices of ecosystem
productivity or plant canopy structure (Jupp et al. 1988, Cohen and Spies 1990, Johansen
and Phinn 2006, Tarnavsky et al. 2008) as well as the community ecology of endangered
species (Wang et al. 2010).

Landscape pattern measures of fragmentation have been designated as indicators of
sustainable ecosystem management (Loyn and McAlpine 2005). It has been shown in
practice that identifying metrics that adequately describe the impacts of fragmentation on
biodiversity to meet regional reporting requirements can be challenging (McAlpine and

http://www.environment.gov.au/soe/index.html
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Eyre 2002, McAlpine et al. 2002). Using advanced metrics such as wavelets to describe
fragmentation, coupled with indicators of biodiversity, demonstrates that when the degree
of fragmentation passes a tipping point, particular ecosystem goods and services disappear
(Murwira and Skidmore 2005).

3. Emerging data and methods for spatial ecology

3.1. Spatial autocorrelation and spatial ecology

Classical statistical models used in ecology assume that observations of the response and
predictor variables are independent. However, it is the ‘first law of geography’ (Tobler
1979) and well-known in ecology (Legendre and Fortin 1989, Fortin and Dale 2005) that
near things are similar because they are likely to either be influenced by the same pattern
generating processes and/or influence each other. SA is defined as the covariation of prop-
erties with distance so that values of a variable are related, either positively or negatively,
as a function of proximity (Cressie 1991, Anselin et al. 2004). The application of spatial
statistics to ecological data has a rich tradition (Pielou 1977, Diggle 1983) and has become
a very active area of research (Legendre 1993, Borcard et al. 2004, Wagner and Fortin
2005, Hoeting et al. 2006, Ives and Zhu 2006).

SA may be considered a nuisance in statistical analyses, but when dealing with spatially
explicit data, especially dense data from remote sensing and other geospatial technologies,
it is fruitful to consider SA as a potential source of information about underlying processes.
For example, measuring SA at different resolutions (spatial lags) using geostatistical or
other approaches can yield insights about the scale at which the property being measured
interacts with, or is affected by, the same processes (Webster and Oliver 1990, Varekamp
et al. 1996).

3.2. Species distribution models

SDM is the development of quantitative rules linking a species occurrence or abundance to
environmental variables, usually based on statistical or machine learning models (Austin
2002). Applying these rules to maps of environmental predictors yields a map of the
potential distribution of a species. Spatial realizations of biotic distributions (species or
functional types) are required for a number of the emerging applications in spatial ecology
already discussed, including modeling meta-population and landscape dynamics (Figure 1)
as well as ecosystem processes. In addition, these predictive maps are used, often in
combination with other models or spatial data, for a growing number of applications in
environmental planning and management including conservation planning and reserve
design, environmental risk assessment, predicting the risk of pathogen and exotic species
invasion, and targeting areas for species reintroduction (Franklin 2009), as described in
Section 2.3.

A number of modeling strategies for predicting the distribution of species have been
developed, often focusing on the identification of a species’ ‘bioclimate envelope’ or ‘niche
space’ (see Pearson and Dawson 2003, Elith and Leathwick 2009, Franklin 2009 for
comprehensive reviews). Computational methods include machine learning approaches
(Fielding 1999, Olden et al. 2008), such as artificial neural networks (Skidmore et al.
1997), genetic algorithms (Genetic Algorithm for Rule-set Production (GARP); Anderson,
et al. 2003), expert systems (Schmidt et al. 2004), nonparametric techniques (Skidmore
et al. 1996a), and maximum entropy (Phillips et al. 2006) as well as statistical inference
and ordination approaches. Random forests (Breiman 2001, Prasad et al. 2006, Cutler et al.
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2007) is a machine learning method, developed from the cartographic and regression tree
approaches (see Skidmore et al. 1996a), that uses model averaging to generate ensemble
predictions.

SDM has generally used either (a) inductive and empirical techniques (based on induc-
tive logic – see Skidmore 2002) that correlate the distribution of a species with climate
and other environmental variables that vary across space and time (Morin and Lechowicz
2008) or (b) physiologically based approaches (based on deductive logic – see Skidmore
2002), including DVMs described in Section 2.4. Correlative models have been criticized
for ignoring biotic interactions and assume that the relationship of a species distribution
to its niche space is in equilibrium (Hampe 2004, Pearson and Dawson 2004), although
species and land use/cover change (LUCC) interactions, together with dispersal and migra-
tion processes, are now being incorporated (Thuiller et al. 2004, Pearson and Dawson 2005,
Lawson et al. 2010, reviewed in Franklin 2010a).

A number of LUCC patterns, and particularly habitat fragmentation, are leading to
species reductions and extinctions (see also Sections 2.4 and 3.6, as well as Zhang et al.
(this issue) and van Langevelde and Grashof-Bokdam (this issue)). In particular, agri-
cultural conversion of natural landscapes to managed crop or pastureland results in wild
species habitat loss and fragmentation, which can lead to reductions in total genetic vari-
ation, barriers to dispersal, and, for plants, the potential loss of key biotic interactions
with pollinators and dispersal agents (Kerr and Currie 1995). Spatial ecology can also be
used to reconstruct and understand historical landscapes in the United States (Yoo and
Trgovnac (this issue)). Another example, from the United Kingdom, demonstrated that the
range distribution of 21 farmland birds has contracted over three decades due to changes
in management practices, including intensification (Chamberlain and Fuller 2000). Loss of
hedgerows and field margins and increased use of insecticides and herbicides all contribute
to biodiversity loss. Although birds and other animals are highly mobile, their specific
foraging, breeding, and nesting requirements can make them highly sensitive to LUCC
and management regimes at a landscape scale (van Langevelde and Grashof-Bokdam (this
issue)).

With regard to the correlative approach based on empirical methods, there are several
classes of models that have now been extensively tested for SDM. Generalized regression
approaches include generalized linear models, generalized additive models, and multi-
variate adaptive regression splines, and are commonly used in SDM because they allow
alternative distributions to be modeled, specifically binomial distributions (logistic regres-
sion) that are appropriate for species presence/absence data (Venables and Ripley 1994,
Hastie et al. 2001, Guisan et al. 2002, Austin et al. 2006). Most statistical and machine
learning methods are discriminative, that is, they require data characterizing both the
presence and the absence of a species. However, they can be applied to environmental
background locations to prepare so-called pseudo-absences, if generated appropriately
(Manly et al. 2002). Other approaches quantify the environmental conditions associated
with species presence and have been called ‘profile methods’ (Pearce and Boyce 2006)
or use the taxonomy of Skidmore (2002) termed inductive/deterministic models. These
include one of the first SDM systems, BIOCLIM/BIOMAP (Nix 1986; Busby 1986, 1991),
which used a simple ‘hyper-box’ classifier of independent climatic variables to define the
potential range of a species.

Maximum entropy (maxent) is a principle from a statistical mechanics and information
theory that states that a probability distribution with maximum entropy (the most spread
out, closest to uniform), subject to known constraints, approximates an unknown distribu-
tion because it agrees with everything we know, but avoids assuming anything we do not
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know. Maximum entropy is a recently developed software application for SDM (Phillips
et al. 2006) that only requires presence data plus environmental background data, as it
generates pseudo-absence data from the background (Phillips and Dudík 2008).

Some heuristics are now emerging from extensive comparisons of these modeling
methods. Machine learning methods, and especially those that incorporate model aver-
aging such as random forests (Breiman 1996, 2001), as well as curve-fitting regression
methods such as generalized additive models, tend to perform with higher accuracy than
simple decision trees or parametric statistical methods such as generalized linear models
(Segurado and Araújo 2004, Lawler et al. 2006, Prasad et al. 2006). However, the dif-
ference in performance may be small, especially for those species to which reasonably
high-performing models can be fitted by most techniques (Leathwick et al. 2006, Elith and
Leathwick 2009, Syphard and Franklin 2010). Less than 20% of SDM studies addressed
SA (Dormann 2007) (see also Section 3.1), and SA has become an active area of research in
SDM (recently reviewed by Dormann et al. 2007, Miller et al. 2007 and is a topic explored
in papers in this Special Issue by Miller and Hanham, Svoray and Lvne, Leitão et al., as
well as Propastin).

SDM methods are most useful, for interpolating biotic patterns in data-poor regions, as
well as for extrapolating habitat suitability to novel places and future environments (Barry
and Elith 2006), when they can cope well with data-poor situations, such as biased, small
samples of presence-only species occurrence data. Model comparisons further suggest that
distance- and envelop-based methods tend to perform poorly in this situation (Segurado and
Araújo 2004, Elith et al. 2006, Hijmans and Graham 2006, Pearson et al. 2006) whereas
maximum entropy has higher accuracies in comparison with other techniques (e.g. Wisz
et al. 2008, Elith and Leathwick 2009). However, further research is required to generate
firm heuristics about the optimal SDM method to use under specific conditions, based
on factors including the species characteristics (generalist or specialist), the independent
variables used in the model, the scale, SA, and multicollinearity.

3.3. Remote sensing of biodiversity hotspots and ecosystem properties

Traditionally, ecologists characterize biodiversity at community level, using metrics such
as species richness (the number of species in an area) and various measures of evenness
(richness scaled by relative abundance) such as the Shannon index (Pielou 1975) (see also
Section 1). There has been a close connection between the development of remote sensing
and biodiversity mapping (Franklin 1995, Leyequien et al. 2007). Digital environmental
data layers (terrain, geology, soils) were incorporated as ‘ancillary’ data into early efforts
to map ecological communities from Landsat imagery (Strahler 1981, Hutchinson 1982).
Remote sensing has since seen the development of data products from a plethora of pas-
sive and active airborne and satellite-borne sensors, in particular hyperspectral (Ustin et al.
2004) and hyper-spatial (Culvenor 2002, Wulder et al. 2004) imaging. These new data have
been used to move far beyond general plant community mapping to quantifying biodiver-
sity at multiple levels of ecological organization – from mapping individual organisms to
modeling species’ distributions, community composition, and species diversity at global to
regional to landscape scales (Stoms and Estes 1993, Nagendra 2001, Turner et al. 2003).
Specifically, numerous studies have used remotely sensed variables to directly estimate
species richness or other diversity measures, thus providing spatially explicit information
about biodiversity. These landscape- to continental-scale studies use data ranging from low
resolution (MODIS, Advanced Very High Resolution Radiometer (AVHRR)) to multispec-
tral, moderate resolution (Landsat) to airborne hyperspectral (Airborne Visible InfraRed
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Figure 4. Altitudinal migration patterns of the giant panda (solid squares) and the golden takin
(open squares) as estimated from the average elevations of radio-tracking data in Foping Nature
Reserve, China. The movement is shown against a background of the vegetation’s relative phenolog-
ical development (RPD) throughout the year, where each interval represents a period of 10 days. The
RPD is estimated using the satellite-based Normalized Difference Vegetation Index and ranges from
0% for minimum greenness to 100% for maximum greenness. Key migration times are tagged with
RPD values for both the giant panda (above the solid squares) and the golden takin (below the open
squares) to show the differences of altitudinal migration in response to vegetation phenology. From
Wang et al. (2010).

Imaging Spectrometer (AVIRIS)), and they have shown that spectral measures of produc-
tivity, water and nutrient status, vegetation structure, phenology, and biochemical diversity
are correlated with biodiversity measures (Oindo et al. 2001, Gillespie 2005, St-Louis et
al. 2006, Waring et al. 2006, Carlson et al. 2007, Goetz et al. 2007, Rocchini et al. 2007,
Saatchi et al. 2008). Reflectance, surface temperature, Normalized Difference Vegetation
Index, and other spectral indices from a variety of sensors and platforms have also been
used to estimate habitat quality (Figure 4) as well as species richness for different tax-
onomic groups, in particular, plants and birds (Hurlbert and Haskell 2003, Oindo et al.
2003, Fairbanks and McGwire 2004, Levin et al. 2007).

The rapid technological development of remote sensors is continuously increasing pos-
sibilities to derive spatial data. Hyperspectral data (Kumar et al. 2001, Wu et al. 2007) and
radar imagery (Paloscia et al. 2010, Tanase et al. 2010) are used for detailed mapping of
environmental factors as diverse as the concentration of foliar biochemicals, temperature,
soil moisture, water content, fire damage, hazards such as landslides and coastal inunda-
tion, as well as water quality and biomass. Topography and terrain, as well as vegetation
density and height, can be detected directly by the use of Lidar data (Guo et al. 2010).

Effective analysis of time-series ecological data remains a challenge, but a number of
novel signal-processing techniques developed from telecommunications engineering are
emerging. Fourier analysis is a signal-processing technique that can be applied to a time
series of satellite images to examine the frequency distribution of the multi-temporal sig-
nal, for example, to evaluate the interannual climate response of vegetation phenology
(Beck et al. 2006) or seasonal patterns of land use (Andresa et al. 1994). The tech-
nique involves the decomposition of time-series data into a sum of sinusoidal components
to illustrate any harmonic regression. Indeed, many ecological systems exhibit periodic
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behavior, in time and space, and has been examined using Fourier analysis (Scharlemann
et al. 2008). Wavelet analysis, involving a transform from a one-dimensional time series
(or frequency spectrum) to a diffuse two-dimensional time–frequency image, is becom-
ing increasingly popular in spatial pattern analysis (Dale and Mah 1998). The advantage
of wavelet analysis over Fourier transform is that the former does not assume stationar-
ity of the underlying data series as the use of a variable-length moving window along the
sequence provides insight into the spatial properties of a two-dimensional image, for exam-
ple, to evaluate deforestation (Galford et al. 2008) or changes in an elephant population in
response to increasing landscape fragmentation (Murwira and Skidmore 2005).

3.4. Environmental change and spatial ecology

As the human global population continues to grow, with predictions that there will be
9 billion people on Earth by 2050 (United Nations Department of Economic and Social
Affairs, Population Division, http://www.un.org/esa/population/unpop.htm, accessed 10
October 2010), scientists have raised concerns that we are entering into a new geolog-
ical epoch named the Anthropocene (Crutzen 2006) in which human impacts on our
biological systems and biogeochemical cycles significantly dominate natural processes.
Human impact upon biodiversity and ecosystems occurs through several mechanisms.
These include extraction from the wild (hunting and fishing), land use/land cover change
(LUCC), pollution, and introduction of alien species. The greatest change and impact of
the anthropogenic modification of landscapes is through the conversion of natural habitats
into agricultural land or through urbanization, which results in habitat loss and fragmen-
tation (van Langevelde and Grashof-Bokdam (this issue) and Zhang et al. (this issue)).
Habitat fragmentation effects were discussed in Sections 2.2 and 2.3, whereas the impact
of climate change on the environment is discussed below.

General circulation (or global climate) models (GCMs) are mathematical models of
the circulation of the Earth’s atmosphere and oceans based upon equations describing the
physics of fluid mechanics and thermodynamics. Because climate is a complex system,
driven by solar energy, it is useful to break it down into five components: the atmosphere,
ocean, biosphere, cryosphere, and lithosphere. A GCM models these components using
a three-dimensional gridded sphere in which the atmosphere and the oceans, for exam-
ple, have several layers representing different heights and depths, respectively. Each grid
cell describes a quantity of mass, energy, and chemical materials transferred from adjacent
cells in a horizontal or a vertical direction through wind or ocean currents. GCMs sim-
ulate the global climate system using temperature, water, and energy fluxes to drive the
‘climate forcing’ effects of atmospheric concentrations of greenhouse gases, such as CO2

and methane, Earth’s surface albedo, and clouds. Feedbacks between climate change and
ecosystems are pertinent to spatial ecology. Linking GCMs to DGVMs (also see Section
2.4), including physical and carbon cycle coupling of the atmosphere and biosphere, has
shown that carbon-cycle feedbacks could significantly accelerate climate change over the
twenty-first century (Cox et al. 2000, Gedney et al. 2000, Prentice et al. 2007).

Regional climate models have become increasingly sophisticated with a focus on land
surface–climate interactions (Gustafsson et al. 2003). Here, again, scale is problematic but
central. We have to ask ourselves what scale is relevant and be sure that ancillary data used
in the modeling, such as topography, spatial distribution of trees within a stand, and temper-
ature, match this scale. Scale and data availability play crucial roles in the development of
spatial ecology applications. Detailed site-specific field measurements, such as the approx-
imately 500 sites included in the FLUXNET global network of CO2 and water measured

http://www.un.org/esa/population/unpop.htm
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from instruments mounted on towers (www.daac.ornl.gov/FLUXNET/fluxnet.html), have
to be integrated with less detailed but globally distributed remotely sensed data relating to
both processes and scale (Olofsson et al. 2007).

3.5. Spatial data infrastructure and databases

The development of spatial data infrastructure has increased during recent decades (De
Man 2006, Mohammadi et al. 2010). As just one example, the Global Biodiversity
Information Facility (http://www.gbif.org/) is working to make the world’s biodiversity
data globally accessible through Internet and data-sharing protocols. This database com-
prises over 216 million records of individual species (accessed 12 October 2010). Many,
but not all of these, are georeferenced; older records that predate GPS technology have only
a general description of location. Most of these records are compiled from natural history
collections, databases, and large-scale species monitoring programs.

Geoscience data may be visualized and analyzed using new systems such as
the Integrated Data Viewer (http://www.unidata.ucar.edu/software/idv/) from Unidata,
which is an open-source JavaTM-based software framework. The Integrated Data Viewer
offers the ability to display and work with satellite imagery, gridded data, surface obser-
vations, balloon soundings, National Oceanic and Atmospheric Administration (NOAA)

Figure 5. This view is a screen shot illustrating the use of the Integrated Data Viewer (IDV;
http://www.unidata.ucar.edu/software/idv/) from Unidata, an open-source JavaTM-based software
framework for analyzing and visualizing geoscience data.

http://www.daac.ornl.gov/FLUXNET/fluxnet.html
http://www.gbif.org
http://www.unidata.ucar.edu/software/idv
http://www.unidata.ucar.edu/software/idv
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National Weather Service (NWS) WSR-88D Level II and Level III radar data, and NOAA
National Profiler Network data, all within a unified interface (Figure 5).

Although there are still examples of researchers, communities, and even nations reluc-
tant to share data and knowledge freely, tremendous resources have been allocated to the
development of spatial data infrastructures and the accessibility of data has increased. One
example is the European INSPIRE initiative (http://www.inspire-geoportal.eu/), where
the 27 member states of the European Union have established and operated a standardized
infrastructure for spatial data and information. However, the data providers in many cases
are not economically compensated for standardizing and delivering the data. For example,
though Sweden provided 2000 different datasets for standardization, the input of data into
the spatial databases is delayed.

Error assessment in spatial ecology is often neglected, for otherwise excellent studies.
Many datasets and databases have limited or no documentation regarding quality, and all
too often it appears that the applied GIS community does not acknowledge the importance
of including metadata about uncertainty. All geospatial modeling results should be pre-
sented with confidence intervals, and standard tools for error propagation should be used.
There are many examples and reviews of accuracy assessment and error propagation with
application to spatial ecology (Heuvelink and Burrough 1993, Franklin 1998, Skidmore
1999, Holmes et al. 2000, Foody 2002, Hijmans et al. 2005, Svoray and Livne (this issue)).

4. Current research in spatial ecology – themes of the Special Issue

As noted in Section 2.2, the analysis and management of the entire landscape matrix is
crucial to biodiversity conservation and management because certain landscape features
can act as either corridors or barriers for the movement of individuals and the connectivity
of populations. The study by van Langevelde and Grashof-Bokdam (this issue), using a
spatially explicit, individual-based model, demonstrated that the intersections of (linear)
habitat features (e.g. hedgerows) have higher biodiversity and act as refuges for local pop-
ulations of organisms (bird species) with limited movement ability in human-dominated
landscapes. These findings can be used as input to conservation strategies about poorly
dispersing species in, for example, agricultural landscapes. The study is also interesting in
that it is ‘deductive’, in other words it draws specific conclusions from a set of ecological
propositions (Skidmore 2002). The other studies comprising this Special Issue on Spatial
Ecology are ‘inductive’ and derive a conclusion from facts and data that serve as evidence
for the conclusion (Skidmore 2002).

Walter et al. (this issue) also addressed wildlife management in human-dominated land-
scapes but did not target species of conservation concern. Rather, their study focused on
the risk of disease transmission (see also Section 2.3) within populations of overabundant
white-tailed deer as a function of their overlapping use of space (likelihood of coming into
contact) in urban landscapes. Using radio-telemetry (Section 2.2) they found that overlap-
ping use of space varied by age, sex, season, and time of day and was greatest for young
males at night and during the nongrowing season. The techniques demonstrated by Walter
et al. (this issue) provide strategies for controlling disease transmission within wildlife
populations, as well as the human population (e.g. Lyme disease).

Spatial conservation prioritization (Moilanen et al. 2009) is an important area of
applied spatial ecology whereby optimal networks of conservation areas are designed
according to principles discussed in this article, for example, increasing the viability of bio-
logical populations by minimizing habitat fragmentation (Section 2.5). Zhang et al. (this
issue) have improved the geographical realism of one of the most widely used software

http://www.inspire-geoportal.eu
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systems for reserve design, Marxan (Ball et al. 2009), by incorporating proximity into the
parcel selection process based on distance-to-edge, not the currently implemented distance-
to-centroid of other parcels. The distance-to-edge method is unaffected by the shape or size
of the existing reserve portfolio. These authors raise the important issue that minimizing
distances between parcels not only increases the connectivity of the reserve, and therefore
is likely to improve the viability of species targeted for conservation, but also has benefits
for management. A more compact reserve system is likely to be cheaper and easier to mon-
itor and manage. In other words, land use planning is improved by using a new distance
cost function, and new nature conservation areas may be added to reserve systems in an
efficient and effective manner.

In ecosystem management on a landscape scale, historical data can be used to describe
baseline reference conditions for ecological communities (Section 2.3). Yoo and Trgovnac
(this issue) used optimal geostatistical techniques (specifically blocked indicator kriging) to
develop maps of historical forest vegetation in Minnesota from a classic land survey dataset
by spatial interpolation. Such studies are critical for predicting the historical condition of
landscapes, as well as the response of landscapes to climate change or other human-induced
modifications such as landscape fragmentation.

As noted by Miller and Hanham (this issue), SDM (Section 3.2) has become a fertile
area for research that is at the confluence of spatial ecology and geographic information sci-
ence. In spatial statistics, a process such as the relationship between X and Y is stationary
if it is invariant (homogeneous and isotropic) over space. Their study used geographically
weighted regression (Fotheringham et al. 2002) to explore how stationarity of species–
habitat relationships varies with scale (Section 2.1). Some of their results were as expected,
for example, climate and elevation have greater influence on species distribution at broader
scales, whereas terrain and topographic variables (e.g. slope, aspect) become influential at
finer scales. However, they found much greater variability in these patterns between species
than was expected.

A well-designed study by Leitão et al. (this issue) also addressed methodological issues
in SDM. Their paper illustrates the importance of using an unbiased sample when devel-
oping a species distribution model, and of carefully interpreting models of species–habitat
relationships, as well as spatial predictions resulting from them, when they are based on
a biased sample. Leitão et al. (this issue) also highlighted that an inappropriate choice
of environmental variables when undertaking SDM significantly reduces the prediction
accuracy of species.

Propastin (this issue), like Miller and Hanham (this issue), explored issues of
scale-dependent spatial stationarity in relationships between biotic and abiotic variables.
Whereas Miller and Hanham investigated the distribution of species, Propastin examined
another ecosystem property (Section 2.4), aboveground biomass, in an Indonesian rainfor-
est. The relationship between biomass and elevation was found to be nonstationary, with
coefficients actually varying from positive to negative values with elevation or topography
(topography being a surrogate that is strongly related to the primary environmental regimes
of light, moisture, heat, and nutrients; see Section 2.1). His analysis allowed strata within
the study region to be defined, within which the relationship was stationary. The scale
(grain) of environmental variables is related to aboveground biomass, and these relation-
ships exhibit significant interaction effects. For example, aboveground biomass increases
with elevation, whereas at lower elevations temperature and solar radiation correlate to
higher biomass.

Svoray and Livne (this issue) used Monte Carlo simulation to quantify uncertainty and
error propagation (Section 3.5) in a model of ecosystem productivity implemented for a
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semiarid landscape in Israel (Section 2.4). Their aim was to partition the effects of topo-
graphic error, classification error, and location error on the ecosystem model, and they
found that topographic error, and not parent material, was the largest contributor to model
uncertainty. Specifically, primary topographic variables (e.g. slope, aspect) contribute more
to the error than secondary topographic variables (e.g. solar radiation). As discussed in
Section 3.5, the works of Svoray and Livne (this issue) and of Propastin (this issue) con-
firm that environmental variables become important at different scales depending on which
particular ecosystem property is being modeled, whether this is the distribution of species,
biomass, or ecosystem productivity.

The use of remotely sensed data to estimate measures of ecosystem productivity
(Section 2.3) has long formed a central link between geospatial information and spatial
ecology (e.g. Tucker 1979). Wilson et al. (this issue) used hierarchical Bayesian model-
ing in an innovative way to explore scale dependence in the well-established relationship
between ecosystem productivity (as measured by Normalized Difference Vegetation Index
(Section 3.3), a remotely sensed index) and biomass. They used this approach to integrate
upwards from the scale of ecological field plots (centimeter to meters) to coarse-grained
satellite imagery.
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