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Information about age of oil palm is important in sustainability assessments, carbon mapping, yield pro-
jections and precision agriculture. The aim of this study was to develop and test an approach to deter-
mine the age of oil palm plantations (years after planting) by combining high resolution multispectral
remote sensing data and regression techniques using a case study of Ejisu-Juaben district of Ghana.
Firstly, we determined the relationship between age and crown projection area of oil palms from sample
fields. Secondly, we did hierarchical classification using object based image analysis techniques on
WorldView-2 multispectral data to determine the crown projection areas of oil palms from remote sens-
ing data. Finally, the crown projection areas obtained from the hierarchical classification were combined
with the field-developed regression model to determine the age of oil palms at field level for a wider area.
Field collected data showed a strong linear relationship between age and crown area of oil palm up to
13 years beyond which no relationship was observed. A user’s accuracy of 80.6% and a producer’s accu-
racy of 68.4% were obtained for the delineation of oil palm crowns while for delineation of non-crown
objects a user’s accuracy of 65.6% and a producer’s accuracy of 78.6% were obtained, with an overall accu-
racy of 72.8% for the OBIA delineation. Automatic crown projection area delineation from remote sensing
data produced crown projection areas which closely matched the field measured crown areas except for
older oil palms (13+ years) where the error was greatest. Combining the remote sensing detected crown
projection area and the regression model accurately estimated oil palm ages for 27.9% of the fields and
had an estimation error of 1 year or less for 74.6% of the fields and an error of a maximum 2 years for
92.4% of the fields. The results showed that 6 and 11 year old oil palm stands were dominating age cat-
egories in the study area. Although the method could be reliably applied for estimating oil palm age at
field level, more attention is required in improving crown area delineation to improve the accuracy of
the approach.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Palm oil is obtained from the African oil palm (Elaeis guineensis
Jacq.); monocotyledonous perennial plants that are indigenous to
West Africa but are now grown in more than 43 tropical countries
mainly between 10�N and 10�S of the equator (Hardter et al.,
1997). Annual global production and use of palm oil is over
thirty-five million metric tons with Malaysia and Indonesia being
leading producers, contributing over 80% of global production
(Fitzherbert et al., 2008; Germer and Sauerborn, 2008). The total
area under commercial oil palm production is over thirteen and a
half million hectares (Butler et al., 2009). Consequently, palm oil
is the second most important source of vegetable oil in the world
after soybean (Tan et al., 2009). Due to increasing demands for
palm oil as a food resource in China, India and South America
and as biofuel in the European Union, global production has been
increasing at a rate of 9% annually in the last three decades (Koh
and Wilcove, 2008; Tan et al., 2009). This is mainly because oil
palms have the highest potential yield per hectare of all sources
of vegetable oil (Corley, 2009). The growth in area under oil palm
has been associated with many and widespread environmental
problems such as deforestation and associated biodiversity loss
in tropical areas (Butler et al., 2009; Carlson et al., 2012;
Fitzherbert et al., 2008; Stone, 2007).
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The ability of remote sensing data to automatically detect and
quantify plant biophysical parameters and biochemical properties
through direct spectral measurements and/or vegetation indices is
very useful in agricultural, forestry, environmental and land gover-
nance applications. Remote sensing can be used for producing a
resource inventory of location of oil palm fields, size of plantations
and age of oil palms. As such, remote sensing techniques have been
developed for various management aspects of oil palm production
such as disease detection (Santoso et al., 2011; Shafri and Anuar,
2008; Shafri et al., 2011a), counting of number of trees (Jusoff,
2009; Shafri et al., 2011b), recognition of oil palm bunch types
(Alfatni et al., 2013), yield estimation (Balasundram et al., 2013),
biomass estimation (Morel et al., 2012; Thenkabail et al., 2004)
and determination of age (Ibrahim et al., 2000; McMorrow, 1995,
2001). Various sensors and sensing platforms such as Landsat TM
satellite imagery (McMorrow, 2001), Quickbird satellite imagery
(Balasundram et al., 2013; Santoso et al., 2011), hyperspectral air-
borne data (Jusoff, 2009; Shafri and Anuar, 2008) and IKONOS
satellite imagery (Thenkabail et al., 2004) have been applied in
these applications.

Information about the ages of oil palm plantations is important
for biomass estimation and carbon stock inventory for oil palm
plantations, an important aspect to biodiversity conservation and
reducing greenhouse gas emissions from palm oil production
(Thenkabail et al., 2004). In addition, some oil palm plantations
are very large (exceeding 1000 ha) and therefore detecting age of
oil palms is important for ensuring optimal resource utilization
and management of farm operations such as fertilization. Efficient
farm management results in higher productivity per unit area,
and this is important in meeting production targets without
expanding area under production. Oil palm age detection is also
useful in yield forecasting, which is useful in pre-harvesting and
post harvesting operation planning and market intelligence neces-
sary for economic planning at local and regional levels
(Balasundram et al., 2013). Furthermore, due to increasing market
demand for sustainably produced palm oil, determining age of oil
palm at field level is important in assessing certification require-
ments such as those for Round Table for Sustainable Palm Oil Pro-
duction (RSPO). Traditional approaches to making these
inventories rely only on ground based survey data to obtain this
information, which alone is expensive, time consuming, arduous
and may not be able to cover large areas. Remote sensing therefore
becomes useful as it can complement ground data by extrapolating
information from field samples to a wider area.

One remote sensing approach to determine the age of oil palm
and other agricultural and forestry plantation trees is determining
the relationship between radiance of individual image bands or
derived vegetation indices to age at stand level (Franklin et al.,
2003; McMorrow, 1995). It was established for oil palm that there
was a negative nonlinear correlation between Landsat TM radiance
and age on all image bands meaning that reflectance diminished
with age of oil palms at stand level (McMorrow, 1995, 2001).
Another approach to determine age is to use supervised or unsu-
pervised image classification algorithms to classify an image into
discrete age categories or age classes (Thenkabail et al., 2004). This
approach is based on the hypothesis that each age or age class has
a significantly different spectral signature that can be used to sep-
arate it from the next. With the advent of high resolution imagery
and advancement of techniques to handle and process such data, it
may be possible to extend the determination of oil palm age to the
extraction of plant biophysical properties such as height and crown
projection area from high spatial and spectral resolution remote
sensing data that are known to be directly related to age.

It has been established in many plantation crops that there is a
significant relationship between age and plant biophysical charac-
teristics such as crown diameter, crown projection area, leaf area
index, height and stem diameter (Kalliovirta and Tokola, 2005;
Peper et al., 2001). The growth characteristics of oil palm can be
divided into three stages; young, mature and old depending on
the relationship between age and leaf area index as established
from field studies (Breure, 1985, 2010; Gerritsma and Soebagyo,
1999). The leaf area index of oil palms has been observed to
increase up to 10–12 years, after which the leaf area will remain
constant or decrease (Breure, 1985; Van Kraalingen et al., 1989).
Given the relationship between age and growth attributes of oil
palm, combining a remote sensing method that can accurately
detect oil palm crown projection area (or related biophysical attri-
butes) with an empirical model that relate crown projection area to
age provides a promising way of determine age of oil palm at field
level from high resolution satellite imagery.

Use of high-resolution imagery such as WorldView-2 imagery
processed through object-based image analysis (OBIA) provide a
promising framework for determining age of oil palm at stand level
through automatically extracting age-related parameters. Develop-
ments in OBIA have produced robust, reliable and automated rou-
tines for implementation of highly advanced algorithms (Blaschke,
2010; Navulur, 2007; Wang et al., 2013). An important aspect of
OBIA is the inclusion of ancillary data such as texture, shape, size
and relationships to image feature identification decisions
(Blaschke, 2010). In feature identification decisions through OBIA,
among the most important decision rules is the concept of scale,
which defines the thresholds at which individual spatial or tempo-
ral features of an image can be treated as functionally homogeneous
or heterogeneous (Addink et al., 2007; Blaschke, 2010; Gamanya
et al., 2007; Wang et al., 2013). As such, the goal of a segmentation
algorithm is to cut-up an image into uneven, non-random units
based on spatial, functional and/or temporal heterogeneity func-
tions and the resultant units are referred to as ‘candidate objects’
and these can be further purified into meaningful object features
(Blaschke, 2010; Gamanya et al., 2007; Lang, 2008; Navulur,
2007). These object features can therefore be used in deriving image
characteristics and meaning from satellite image data for use in
decision making.

There have been significant developments in techniques for indi-
vidual tree crown delineation from aerial imagery, satellite data and
LIDAR data. These include analysis of crown texture in high resolu-
tion imagery to distinguish it from surroundings (Wu et al., 2004)
and use of geostatistical methods that identify the apex of the crown
first and then identify the crown boundary by determining the max-
imum rate of change across potential crowns (Feng et al., 2010;
Pouliot et al., 2002; Song, 2007; Wang, 2010). Region growing tech-
niques that identify and grow the local crown peaks (Brandtberg and
Walter, 1998), detecting the local maxima and minima used for iden-
tifying the centroids and boundaries of the crowns (Culvenor,
2003b) and template matching algorithms (Erikson, 2004; Komura
et al., 2004) have also been used in crown delineation. Other algo-
rithms incorporated use of digital surface models in identification
and delineation of individual tree crowns (Mei and Durrieu, 2004;
Wolf and Heipke, 2007). Segmentation-based approaches that cut
up the image according to spectral heterogeneity or homogeneity
and then apply spectral, geometric, morphological, textural and
other rules to identify tree crowns are increasingly being developed
(Erikson, 2004; Whiteside et al., 2011; Wolf and Heipke, 2007). OBIA
platforms have been able to incorporate many of these algorithms
(spectral analysis, texture, morphology, geometry, colour) and thus
making it possible to either choose one or combinations of tech-
niques for individual tree crown detection. Although work on indi-
vidual tree crown detection have been done for oil palm (Shafri
et al., 2011b), the specific characteristics for mapping oil palm
crowns in OBIA are not yet well established and the nature of oil
palm crown presents further challenges compared to natural forests
and other plantations for which research on crown projection area
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delineation has been done. In addition, much of the work relied on
individual panchromatic or NIR bands for crown detection and no
specific application of the detected crown area has been tested.

The main aim of this study was to develop and test a protocol to
determine the age of oil palm by combining high resolution remote
sensing extracted crown projection area to a field developed
regression model that relate crown projection area to age. The
method is demonstrated using a case study of Ejisu-Juaben district
of Ghana. This was achieved through (1) determining the relation-
ship between crown projection area and oil palm age through field
data, (2) detecting crown projection are from WorldView-2 high
resolution multispectral remote sensing data and (3) combining
the remote sensing extracted crown projection area and the regres-
sion model to determine age of oil palm for a wider area. To test
the potential use of the determined ages, we used oil palm ages
as a proxy for time of land use/cover conversion to oil palm pro-
duction which can be used in sustainability assessments and doc-
umentation of the growth in area under production.

2. Materials and methods

2.1. Study area

The study was carried out in Ejisu-Juaben district in the Ashanti
Region of Ghana (Fig. 1). The district is located within longitude
6.42�N to 6.83�N and latitude 1.25�W to 1. 58�W, covering an area
of about 64,000 ha. The topography is flat to undulating, with alti-
tude ranging between 230 m and 300 m above sea level and has
no major landform features. Dominant soil types are derived from
pre-Cambrian rock formations such as granite, Birrimian, Tarkwaian
and superficial deposits (Anornu et al., 2009). Soil fertility, agricul-
tural productivity and cropping patterns are resultantly influenced
by the distribution of these soil types. The climate characteristics
are equatorial with high mean total annual rainfalls of above
1000 mm and high mean annual temperatures of around 26 �C
(Anornu et al., 2009).

2.2. Multispectral remote sensing data

A WorldView-2 image (Digital Globe�) taken on the 4th of
January 2011 was used in this study (www.digitalglobe.com).
Fig. 1. A map of the location of the study area. Fig. 1a shows the location of Ejisu-Juaben d
by the WorldView-2 satellite image data and Fig. 1c shows a sample of oil palm crowns
WorldView-2 imagery comprises eight spectral bands in the spec-
tral ranges of 400–450 nm (Coastal blue), 450–510 nm (Blue),
510–580 nm (Green), 585–625 nm (Yellow), 630–690 nm (Red),
705–745 nm (Red edge), 770–895 nm (Near infrared 1) and 860–
1040 nm (Near infrared 2) all at 1.84 m resolution and one in the
panchromatic band (450–800 nm) at 0.5 m resolution. The image
is cloud free and covered an area of 5200 ha. Pan sharpening of
the image was done using the hyperspherical colour space resolu-
tion merge described by Padwick et al. (2010) as suitable for
WorldView-2 imagery. The quick atmospheric correction model
(QUAC) in ENVI 4.3 was used to approximate reflectance to top
of the atmosphere reflectance by using the information contained
within the image scene (ENVI, 2008).

Next, six ground control points collected using a GPS (Garmin�

eTrex) at road intersections in the study area were used for geo-
metric correction. A first order polynomial (Affine) transformation
was used for geometric correction of the WorldView-2 imagery
because the study area has a generally flat terrain. The transforma-
tion had a root mean square error of less than a pixel (0.26 m)
which was considered adequate for the purpose of the study. The
study was interested only in oil palm fields and therefore an oil
palm and non-oil palm map was produced by digitising the bound-
aries of oil palm fields around GPS coordinates of oil palm fields
collected during field work and previous oil palm studies in the
area.
2.3. Field data collection

Field data were collected between 12 September and 14 Octo-
ber 2011 in the study area. Crown diameter and age of the oil
palms was measured in 88 sample sites selected using stratified
random sampling in corporate and smallholder plantations. Using
a printed field map and a handheld geographic information system
(HP iPAQ with ArcPad and Bluetooth GPS), the location of the
selected sample sites was determined. On each field where the
age of the oil palm could be established, three adjacent trees were
randomly selected for measuring their crown diameters, and for
that sample, GPS coordinates were taken from the central tree.
Crown diameter was measured by recording the ground distance
between the drip points of the tree in perpendicular
directions for each of the 3 trees using a tape measure. The two
istrict in Ghana and in Ashanti Region. Fig. 1b shows a sample oil palm farm covered
of different ages as shown on the WorldView-2 satellite image.

http://www.digitalglobe.com
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measurements intersected at a right angle. The information on
ages of each oil palm stand was obtained through on-site inter-
views with farmers and extension workers. It was assumed that
field planting of oil palm was done in the main rain season and
therefore no significant in-year differences were expected in the
years. In order to make sure that the 3 field measured trees at each
stand are the ones identified on the image with the delineated
crowns, a 17.5 m buffer was created around the stand centres
and the trees extracted by masking with the buffer. It was deter-
mined that a buffer of 17.5 m was ideal because the plant spacing
was 9 m with measurements taken from 3 trees giving a length of
27 m and therefore a 17.5 m buffer gave a circular stand diameter
of 35 m covering the 3 oil palms measured in the field.
2.4. Generation and application of a regression model

From the field work, 88 plots were sampled, each with three
trees. To convert the crown diameters to crown projection area,
analysis of the relationship between measured diagonals showed
that the crowns were circular and therefore the formulae for a cir-
cle was used for converting the crown diameters to crown projec-
tion area (CPA). The average CPA of the three trees was computed
and used as CPA for that plot. A scatter plot of age and CPA was
produced to find the general relationship between the two param-
eters. After finding the relationship, the best function that
described the relationship was fitted to the data to come up with
a regression model that can predict age from CPA from field data.
The field data was randomly portioned into 60:40 for model build-
ing and validation respectively (Table 1). Residuals of the model
were checked for normality using Lillilifor’s test (Abdi and Molin,
2007). To assess the performance of the regression model, statisti-
cal analysis was done on the validation dataset. The coefficient of
determination (R2), significance of the regression (a = 0.05), root
mean square error, mean relative error and mean absolute error
were used to determine the strength of the model in predicting
age from crown area (Ozdemir, 2008; Suratman et al., 2004).
2.5. Oil palm crown projection area delineation

2.5.1. Image segmentation
Object based segmentation was implemented in eCognition

Developer (Trimble 2011), an object based image analysis system.
To reduce computation overload, only five of the eight WorldView-
2 bands were used (Near infrared -1, Red edge, Red, Green and
Blue). Of the 8 WorldView-2 bands, these were found most rele-
vant for vegetation and background analysis based on the descrip-
tions by Marshall et al. (2011) and Digital Globe (2009) on the
potential uses of the WorldView-2 bands. Multiresolution image
segmentation, a bottom-up region merging image segmentation
method that applies the spatial clustering technique was used
(Addink et al., 2007; Comer and Delp, 1995). In this approach
image objects are created by pair-wise clustering beginning with
single-pixel objects and merging with or separating from sur-
rounding pixels using neighbourhood statistics (local optimiza-
tion). The clustering is started at random seed points aiming at
Table 1
Descriptive statistics of the field data used in developing and testing the regression
model.

Variable Data n Mean Min Max

Age Training 53 9.7 2 21
Validation 35 9.2 3 21

CPA Training 53 58.5 8.2 104.6
Validation 35 57.2 16.4 102.7
maintaining similar object sizes in the image and terminates when
the smallest increase of homogeneity exceeds a user defined
threshold (called scale parameter) (Addink et al., 2007; Benz
et al., 2004; Darwish et al., 2003).

The segmentation process was influenced by the scale
parameter, colour (spectral properties) and shape (smoothness
and compactness). The appropriate scale parameter for use in mul-
tiresolution segmentation was determined through the Estimation
of Scale Parameter (ESP) tool, a method developed by Dragut et al.
(2010). This tool estimates the most appropriate scale parameter
for an image scene by generating sample objects at different scales
and then calculating local variance. The basis of this approach is
that local variance increases with increase in scale parameter and
therefore, the most appropriate scale parameter at which segmen-
tation of the image is best is at the smallest scale parameter with
the highest rate of change in variance (Dragut et al., 2010). The
NIR band was given a weight of 3 while the other bands were given
a weight of 1 [3:1:1:1:1] as done by Shafri et al. (2011b) because
vegetation reflectance is more distinguished in the NIR band than
in the other bands.
2.5.2. Hierarchical rule-based delineation of oil palm crowns
Scene-based semantics and decision rules based on logical con-

ditions and expert knowledge were used to further purify the seg-
mented objects into oil palm crowns. Based on the visual and
statistical properties of the candidate crowns, three categories of
objects were distinguished at each stand. These were the crown
cores (local maxima) where reflectance in the NIR, Red edge, and
Green; and vegetation indices (Simple Index, Normalized Differ-
ence Vegetation Index and Red Edge Normalized Vegetation Index)
were high. The second was the edges of the rachis where leaf den-
sity is lower. Unlike in the crown cores and the rachis edges, some
segments showed none to very low vegetation characteristics and
were therefore considered background features. Based on the prob-
able existence (or non-existence) of weeds/intercrops, the soil
moisture in the background and the thick leathery structure of
the leaves of the oil palms as seen in the false colour composite
(NIR, Red and Blue), the mean NIR value and NDVI of each segment
was used to classify it as potential crown or as background (back-
ground included such features as roads, bare ground, shadows,
weeds, other vegetation, human constructions and water). The
NIR thresholds used for this classification depended on the factors
above. As shown in Fig. 2, the NIR reflectance closely followed the
structure of oil palm crown and the minimum reflectance able to
separate between two potential crowns could be determined from
the NIR profile.

In order to restrict the potential crowns above the minimum
possible crown sizes, a threshold of 40 pixels (based on minimum
crown projection area obtained in field work) was used to combine
potential crown objects into candidate crowns. Only candidate
crowns with an elliptic fit (given the standard spacing and
Fig. 2. Spatial reflectance profile in the NIR and Red bands of oil palm crowns.
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uniformity of plants the crowns were assumed to be elliptic to cir-
cular) above 0.8 were retained. Elliptic fit describes how well the
segmented objects are able to fit into an ellipse of their similar size
and proportions, and an elliptic fit of 0 indicates no fit while 1 indi-
cates a perfect fit. Therefore, setting 0.8 as the elliptic fit would
retain objects that resemble the shape characteristics expected
on oil palm crowns. This was done to remove irregular segments
created within canopies.

We applied the watershed transformation described by
Tarabalka et al. (2010) and Meyer and Beucher (1990) to the seg-
mented objects in order to separate some of the potential oil palm
crowns that were co-joined after the initial segmentation. Since it
is known that the watershed transformation usually results in
over-segmentation (Derivaux et al., 2010; Tarabalka et al., 2010),
we applied a minimum oil palm crown diameter restriction of
5 m (giving 10 pixels) based on field work data to confine the out-
puts to reasonable sizes. After watershed transformation, the
closed-object morphology algorithm was then applied on the
result to create closed circular objects that represent individual
oil palm crowns. The morphology algorithm was important in
adding neighbouring objects to the oil palm crown to correct any
over-segmentation that could have resulted from the watershed
transformation. The resulting objects were cleaned up to remove
non-representative objects (too small to be an oil palm crown)
and exported as vector layer (Fig. 3).
2.5.3. Accuracy assessment
We first evaluated the accuracy in terms of the producer’s accu-

racy (the proportion of the oil palm crown and non-crown area on
reference data that was correctly mapped as oil palm crown and
non-crown respectively), user’s accuracy (the proportion of the
mapped oil palm crown and non-crown area that was oil palm
crown and non-crown area respectively on reference data) and
overall accuracy (the proportion of the oil palm crown and non-
crown area mapped correctly) (Olofsson et al., 2013). An error
matrix was developed by overlaying the mapped oil palm crown
area and non-crown area with reference crown and non-crown
areas to determine the numbers of pixels overlapping (and not
overlapping).
Fig. 3. Flow chart of the delineation of oil palm crowns showing the different steps.
We also compared the spatial and positional matching of the
delineated crowns and reference objects using the D (which mea-
sures goodness of fit between reference crown objects (xi) and
remote sensing delineated crown objects (yj)) as described by
Clinton et al. (2010). To get the D, over-segmentation and under-
segmentation are determined first as metrics defining the overlap
between crown objects and reference crowns. For all objects where
the centroid of xi is in yj, the centroid of yj is in xi, area xi \ yj P 0.5
and area yj \ xi P 0.5, over-segmentation and under-segmentation
are defined after Clinton et al. (2008) as:

Over-segmentationij ¼ 1� areaðxi \ yjÞ=areaðxiÞ ð1Þ
Under-segmentationij ¼ 1� areaðxi \ yjÞ=areaðyjÞ ð2Þ

Since over-segmentation and under-segmentation are proper-
ties of segments, we averaged them according to the number of
objects in each age category and for all x objects interacting with
y objects to obtain their values for each age class and for all of
the test data.

We then combined the measures (over-segmentation and
under-segmentation) into one metric; a root mean square (D) sug-
gested by Levine and Nazif (1982) as in Eq. (3). The D is a scaled
measurement of error [0, 1] and, where D = 0 there is a perfect
match between segmentation objects and reference data (0% error
and 100% accuracy) and where D = 1 shows non-representative-
ness of the segmentation (100% error and 0% accuracy) (Clinton
et al., 2010). This method automatically compares, for all objects
created, the area of overlap between the extracted object and the
reference object, the area of reference object not covered by
extracted object and the area of extracted object not corresponding
to the reference object as a single measure of accuracy.

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oversegmentation2 þ Undersegmentation2

2

s
ð3Þ

We also determined the percentage of delineated oil palm
crowns that were able to achieve 50%, 60%, 70%, 80%, 90% and
99% overlap with the reference objects for each age class by inter-
secting them with the reference objects.

As a further validation, comparison of the remote sensing crown
extraction method and the reference sampled field measurements
was done. The remote sensing extracted crown were compared
with the field measurements at plots with reference data (Wang,
2010). The correlation coefficient (r) and the significance of the
correlation were used as a measure of the strength of the correla-
tion between the delineated and field measured crown area, indi-
cating the quality of the delineation. The size of delineated
crowns was used to determine the age of oil palm at each stand
through application of the field developed regression model.
3. Results

3.1. Oil palm crown area delineation

Comparing the spatial matching of delineated crown pixels
with reference oil palm crown pixels produced a user’s accuracy
of 80.6% and a producer’s accuracy of 68.4% while comparing the
spatial matching of non-crown pixels on delineated crowns against
non-crown pixels on reference objects resulted in a user’s accuracy
of 65.6% and a producer’s accuracy of 78.6%. The overall accuracy of
the delineation was 72.8% (Table 2).

Using the D, an overall delineation accuracy of 0.69 (D = 0.31)
was achieved (Fig. 4) from using OBIA to obtain oil palm crown
area. The highest accuracy of 0.89 and 0.86 were obtained for 6
and 7 year old palm oil stands respectively. The lowest accuracy



Fig. 4. Delineated crowns on a false colour composite (NIR1–Red–Blue) of the
WorldView-2 image.
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of 0.41 (D = 0.59) was obtained for the 13 year old stands mostly
due to over-segmentation (Table 3).

Using the percentage of overlap between the delineated crowns
and reference crowns, the highest percentage of crown objects
achieving at least 50% overlap with reference objects was for 13+
year old oil palms (100%) followed by 6 year old oil palms (96.7%,
Table 3). The least accuracy at the 50% threshold was for 12 year
old oil palms where only 61% of crowns achieved 50% overlap with
reference crowns. The percentage of crowns overlapping with ref-
erence oil palm crowns decreased as the threshold of overlap
increased from 50% to 99% in all age categories with the highest
percentage of crowns achieving at least 99% overlap being 40%
for the 6 year old oil palms crowns. None of the 5 year old palm
crowns achieved a minimum of 99% overlap between the delin-
eated crowns and reference crowns. For all the oil palm stands,
81.3% of delineated crowns achieved at least 50% overlap with ref-
erence crowns and only 23.6% achieved at least 99% overlap with
reference crowns (Table 3).

3.2. Relationship between field measured crown area and age

A positive linear relationship was observed between age and
crown area up to 13 years and no apparent relationship was
observed between age and crown area from 13 years onwards
(Fig. 5). We therefore decided to fit a linear model between age
and crown area up to 13 years. This was because older classes
beyond 13 years could not be reliably segmented A significant rela-
tionship was obtained between age and area (R2 = 0.88, p < 0.001).
Therefore, Eq. (4) was obtained from field-measured crowns as a
function for predicting oil palm age from crown projection area
(Eq. (4));

AgeðyearsÞ ¼ 0:59þ 0:15 � CPAðm2Þ ð4Þ

A RMSE of 1.3 years, MAE of 0.8 years (10 months) and a per-
centage error of 8.2% were obtained when the regression model
was applied on independent data.

3.3. Estimating oil palm age from OBIA delineated crown area

Comparing the delineated and field measured crown areas
showed a strong relationship between field measured crown area
and delineated crown area (R2 = 0.81, r = 0.9, p < 0.0001, Fig. 6a).
However, the results showed that estimating oil palm age from this
approach overestimated the age of younger oil palm (less than
8 years) and underestimated older stands (12+ years, Fig. 6b). For
the 13 year old stands, the spread between the field measured
and delineated crowns was apparent where the field measured
crown area was over 80 m2. As expected, older oil palm stands
did not show any direct relationship between crown area and age.

The estimation showed that 6 and 11 year old oil palm planta-
tions dominate the area under oil palm with 16.7% (116.7 ha) and
14.6% (101.5 ha) respectively (Table 4, Fig. 7). This indicates that
there were more new oil palm plantings in 2000 and in 2005. Com-
paring the actual ages and the estimated oil palm ages showed that
Table 2
Error matrices (in terms of number of pixels) for the crown and non-crown
classification of the WorldView-2 image. The matrix was produced by comparing
the number of pixels in the delineated crowns intersecting with reference crowns and
number of pixels in non-crowns intersecting with non-crown in reference data. In this
matrix, the delineated pixels are rows while the reference pixels are columns.

Crown Non-crown Total User’s Producer’s Overall

Crown 37,316 8968 46,284 80.6 68.4 72.8%
Non-crown 17,256 32,896 50,152 65.6 78.6

Total 54,572 41,864 96,436
the error ranged between an under estimation of 4 years to an over
estimation of 3 years in oil palm age (Fig. 8). The age estimation
was accurate for 27.9% of the stands, within ±1 year accuracy for
74.6% of the stands and within ±2 year accuracy for 92.4% of the
stands. The largest errors of more than 2 years were either for
the youngest (less than 4 years) and oldest (more than 12 years)
oil palm plantations. The approach tended to over-estimate the
age of younger oil palm while underestimating that of older stands.

3.4. Applying the determined age for determining conversion time

The distribution of the oil palm according to the estimated time
planting obtained from remote sensing estimated ages was
obtained for oil palm field in the study area. The area and percent-
age planted in each time period is shown in Table 4. The results
showed that the largest area development in terms of new oil palm
plantings occurred in 2005 with 116.7 ha (16.7% of area under oil
palm in the area) followed by plantings in 2000 with 101.5 ha
(14.6% of area under oil palm in the area). The least in area were
the 2 year old oil palm plantations with only 4.8 ha (0.7% of area
under oil palm in the area).

4. Discussion

4.1. Oil palm crown area delineation

One of the most important basis for many of the individual tree
crown delineation approaches is that the centre of a tree crown is
brighter than the edges or boundary between tree crowns
(Culvenor, 2003a) which was demonstrated by sample spatial pro-
files of oil palm crowns in this study, providing a foundation for
individual oil palm crown delineation. The overall accuracy
(72.8%), the segmentation goodness of fit (0.69) and the correlation
between delineated and field measured crown area (0.9) on a scale
of [0, 1] indicates the successful delineation of individual tree
crowns using an object-based analysis. These results may give an
impression that the performance of the delineation was good,
but as Wolf and Heipke (2007) rightly observed, the results on
individual tree crown delineation are difficult to standardize and
to compare between researchers. This is because of different study
sites with different scene characteristics, different data sets (spatial
and spectral resolutions) and different tree types. Different evalu-
ation criteria have also been used and the D used in this study is



Table 3
Number of stands, number of objects per stand and segmentation goodness of fit (D) for each age class and for all stands. The percentage of oil palm crown objects achieving
minimum overlaps of 50%, 60%, 70%, 80%, 90% and 99% overlap with reference crowns for validation data is also shown.

Age No. of stands No. of objects D Accuracy Percentage delineated crowns overlapping with reference crowns by given percentages

50% 60% 70% 80% 90% 99%

2 2 28 0.25 0.75 75.0 71.4 67.9 57.1 39.3 28.6
3 3 54 0.34 0.66 85.2 72.2 63.0 46.3 31.5 14.8
4 2 31 0.4 0.6 64.5 64.5 58.1 51.6 41.9 12.9
5 2 29 0.38 0.62 62.1 55.2 55.2 51.7 20.7 0.0
6 2 30 0.11 0.89 96.7 93.3 83.3 83.3 73.3 40.0
7 6 110 0.14 0.86 92.7 90.0 85.5 84.5 78.2 27.3
8 4 81 0.25 0.75 85.2 84.0 81.5 76.5 60.5 34.6
12 4 77 0.36 0.64 61.0 54.5 48.1 48.1 45.5 20.8
13 2 31 0.59 0.41 100.0 100.0 93.5 83.9 71.0 16.1
All 27 471 0.31 0.69 81.3 77.1 71.8 66.9 55.4 23.6

Fig. 5. Relationship between field age and CPA obtained from fieldwork showing
that the relationship between age and CPA saturated from 13 years for both
smallholder and corporate farms.
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relatively new to the field, having been developed by Clinton et al.
(2010) and still to be widely applied for comparison.

The results showed no linear relationship between the age of
the oil palm and the accuracy of the delineation. This result was
somewhat unexpected as it was considered that younger oil palm
could be easily delineated as there are no problems of overlapping
branches and shadows cast upon other palms. Shadows may have
made young oil palm crowns seem larger than they actually are
resulting in overestimation in younger oil palm plantations. The
lack of a direct relationship between age and accuracy suggests
that the accuracy of the delineation is more site-characteristic
dependent than age dependent. The site characteristics such as
intercropping and weeds introduce radiometric and geometric
confusion to the segmentation and classification algorithms espe-
cially where vegetation-based bands (NIR, Green and Red) and
Fig. 6. Relationship between field and remote sensed parameters. Fig. 6a shows the rel
relationship between actual oil palm ages and remote sensing estimated CPA.
indices (such as NDVI) are primarily used for delineation (Pouliot
et al., 2002). Other research on determining age of oil palm using
remote sensing approaches reported more accuracy for younger
age classes (Ibrahim et al., 2000; McMorrow, 2001; Thenkabail
et al., 2004). The spectral and spatial characteristics of the oil palm
differ with age but the changes in spectral response with age may
not be enough for discrete age modelling (Thenkabail et al., 2004)
while the changes in spatial characteristics may be significant
enough between years for discrete modelling as was observed in
this study. However, these findings that there is no linear relation-
ship between the age of the oil palm and delineation accuracy are
based on a very small sample and are therefore not conclusive.

The NIR was most consistently able to separate oil palm crowns
from background. Other studies found that the Landsat MIR bands
were the most significant in classification and age class determina-
tion of oil palm (Ibrahim et al., 2000; McMorrow, 1995, 2001). Due
to the fuzziness of leaf density gradient from the crown centre, it is
difficult to figure out exactly where the crown ends. This is made
even more complicated where there is undergrowth. Although
the fuzziness of the edges of tree crowns in terms of reflectance
may be the general spatial reflectance profile for trees
(Hirschmugl et al., 2007; Pouliot et al., 2002; Wolf and Heipke,
2007), it could be more problematic in delineation of oil palm
given their star-shaped form compared to conoid and hemispheri-
cal forms common in other trees. Therefore spectral diversity in
hyperspectral data could provide added abilities for oil palm crown
delineation.

The problems of weeds and intercrops can be linked to the date
of image acquisition as the photosynthesising annual crops and
weeds are more prominent during the cropping season. It is there-
fore recommended to test if accuracy of oil palm crown delineation
is affected by seasonality. The problems of shadows and overlap-
ationship between the field measured CPA and OBIA delineated. Fig. 6b shows the



Table 4
Determined age, year of planting, area of new planting and total area under oil palm.

Age
(years)

Estimated
planting year

Area of new
plantings (ha)

% Of
total

Total area
(ha)

13+ 1998 48.4 6.9 48.4
12 1999 47.6 6.8 96
11 2000 101.5 14.6 197.4
10 2001 35.4 5.1 232.9
9 2002 55.7 8.0 288.6
8 2003 79.6 11.4 368.2
7 2004 82.6 11.9 450.8
6 2005 116.7 16.7 567.5
5 2006 37.9 5.4 605.4
4 2007 62.5 9.0 667.9
3 2008 24.2 3.5 692.0
2 2009 4.8 0.7 696.8 Fig. 8. Application of the remote sensing determined ages showed the distribution

of oil palm ages and area under each age in the study area.
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ping branches may be particular for older age classes (>13 years)
while site characteristics are more important for young age catego-
ries less than 13 years. The shadow effect may probably explain the
delineation error reported for older oil palm. The effect of shadow
has been found to be dependent on the sun azimuth angle in rela-
tion to the satellite position at the time of imaging (Leckie et al.,
2005). When shadow is cast upon vegetation, the reflectance in
the vegetation bands is grossly distorted. Although satellite over-
pass times are programmed to be mainly in the mid-morning
(1047 h for this image) to minimize on shadow effect, the prob-
lems of shadow cannot be fully eliminated in dealing with remote
sensing imagery.

It may be expected that automatic crown delineation would be
feasible given the relative uniform characteristics of oil palm plan-
tations as compared to natural forests for example. However, this
study showed that there are many factors that are different at each
stand such as the presence of weeds or intercropping. Thus a
method for delineation that considers each field’s characteristics
is likely to perform better than a blanket approach. This is, how-
ever, something that is not known in advance and depends on field
observations or local expert knowledge. Then, preliminary stratifi-
cation can be applied before delineation in order to adjust segmen-
tation and delineation parameters such as scale parameter
accordingly. Whiteside et al. (2011) for instance used tree density
Fig. 7. Distribution of estimated ag
to adjust parameters. More rigorous image preparation methods
applied before segmentation such as texture analysis and edge
enhancement may also be useful in improving the performance
of the delineation of individual crowns as done by Shafri (2011b).
4.2. Relationship between CPA and age

A linear relationship between age and oil palm crown area until
13 years and no relationship thereafter concur with the relation-
ship determined by McMorrow (2001) with field measurements
done in Malaysia. Thus, the growth of crown projection area with
age in oil palm may be more dependent on the physiology of the
oil palm than on geographical characteristics. Nonetheless, the
functionality and applicability of the developed model may be
affected by factors such as differences in soil types and fertility,
diseases and pest damage, plant spacing, irrigation, oil palm varie-
ties and other management practices such as pruning especially
when applied over larger areas (Breure, 1985). The error of the
model in predicting oil palm age could therefore be explained by
the variability in these factors at each measured stand.

A second order polynomial that follows the saturation could
have produced a model able to predict oil palm age even a bit
beyond the age of 13 years until the relationship between CPA
and age really saturates. However, this could have produced more
errors in the prediction for the younger ages through error
e of oil palm in the study area.
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propagation and a linear function is more parsimonious. Linear
functions have been widely and reliably used as functions for pre-
dicting other plant parameters from crown area or crown diameter.
Other studies have applied other functional forms such as ‘flexible’
models, second-degree polynomials, power functions and others
(Avsar, 2004; Chase and Henson, 2010; Peper et al., 2001;
Suratman et al., 2004). These functions are reported to have good
modelling performance but are difficult to generalize beyond the
conditions, species and study sites in which they have been devel-
oped. A linear model therefore remains the most applicable model
for relating the oil palm age and crown area.
4.3. Estimation of oil palm age and conversion time

It was shown that it is possible to determine the age of oil palm
from combining remote sensing crown area to statistical models.
The age determined from this stand-based approach can be useful
in understanding the general age categories of oil palm for environ-
mental monitoring, as part of a certification process, as a validation
for the information that managers or farmers provide and for stud-
ies that require insight in oil palm developments over larger areas
such as strategic impact assessments and spatial planning. How-
ever, the approach presented in this paper has its limitations as
errors could stem from both the field model and from the crown
area delineation. Part of the age prediction errors in this study
are from the fact that there was some time difference (7 months)
between field work and the date of the satellite image was taken.

The estimations showed that the dominant age classes in the
study area were 6 and 11 years old (planted in 2005 and 2000).
These findings concur with reports that as a result of the President
Special Initiative (PSI) in Ghana, many new oil palm plantations
were established in the period shortly after 2003 and are thus
dominating the age classes (Duku, 2007). The 11 years old planta-
tions correspond with the World Bank funding of oil palm develop-
ment in Ghana (Carrere, 2010; Gyasi, 2003). These initiatives
brought cheap to free seedlings, heightened extension technical
support and provided policy framework for oil palm expansion
and thus could have contributed to large areas being converted
to oil palm production. This indicates that the conversion and
expansion of oil palm production areas in the study area due to
national or international development programs has been correctly
shown by this approach.

Mapping the age of oil palm showed the spatial and temporal
oil palm developments. The knowledge of how oil palm expanded
over space and time is therefore very useful for analysing the effect
of policies such as the PSI (from 2003) or the multilateral develop-
ment funding by the World Bank (from 1998) on the sector. The
ages determined in this approach could thus be potentially useful
for analysing the impacts of these initiatives on the environment
across space and time. For example, large scale support for
small-holder oil palm farmers may result in a large number of
small oil palm plantings scattered over an area which will have
clearly different effects on e.g. biodiversity compared to the devel-
opment of one large oil palm plantation.
5. Conclusions

The study concluded that there is potential in using object-
based image analysis and an empirical model to determine the
age of oil palm at field scale from high resolution satellite imagery.
Many factors however affect the delineation accuracy and the most
significant are stand characteristics particularly undergrowth
(weeds and intercrops). The density of undergrowth differs in each
field and a stand-level approach was found more suitable. The lin-
ear function relating age to CPA was found useful to predict the age
of oil palm per field with accuracy of ±1 year up to 13 years, which
happened to coincide with the age where delineation accuracy is
also acceptable. However, statistical functions that could extend
the prediction beyond 13 years could improve the useful of the
field model relating age to CPA that will be combined with remote
sensed crown area. The method demonstrated here uses spectral
information to obtain spatial information that can be used for
determining characteristics of target features. This indirect
approach has the possibility of discrete age modelling. However,
it must be noted that errors in the biophysical model can be carried
forth to the remote sensing approach (which has its own errors),
resulting in error propagation. The age map produced from this
approach is useful for a wide range of age-related applications in
the oil palm management.
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