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Abstract This research considers the smoothness prior and
four discontinuity adaptive Markov Random Field (DA-
MRF) models to deal with discontinuity adaptation for the
contextual fuzzy c-means (FCM) classifier. They were applied
to classify AWiFS and LISS-III images from the Resourcesat-
1 and Resourcesat-2 satellites. A fraction image from the high
resolution LISS-IV image has been used as reference data.
Quality of the classified AWiFS and LISS-III images was
assessed by means of an image to image fuzzy error matrix
(FERM). The classification accuracy increased by 1.5 to 6 %
as compared to the conventional FCM. Classification accura-
cy increased with 0.5 to 8 % when comparing Resourcesat-2
with Resourcesat-1 data. The study showed that DA3-MRF
model with FCM performed better than other MRF models,
showing an improved overall classification accuracy as well
as preserving the edges at boundaries.
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Introduction

Pixels of satellite images represent reflection values of land
cover classes. The pixels can either be pure, representing a
single land cover class, or mixed, representing a combination
of land cover classes. The majority of the pixels are of a mixed
type, due to gradual changes of real world phenomena,

boundaries between classes that do not match with pixel
geometry and the restricted spatial resolution that is unable
to capture such variation. In standard classification tech-
niques, however, it is assumed that pixels are pure. For this
reason Zhang and Foody (2001) proposed to adapt fuzziness
in the classification procedures so that individual pixels may
level with multiple and partial class memberships. Fuzzy c-
means clustering (FCM) is widely used for this purpose
(Bezdek et al. 1984). FCM classifies mixed pixels by
assigning membership grades to individual classes, but in a
default setting it does not consider spatial contextual informa-
tion. The spatial context of a pixel is the presence of similar
class labels at neighboring pixels (Solberg et al. 1996).
Isolated pixels, i.e. pixels with values that are entirely different
from values at the neighboring positions rarely exist. Context
may be useful in classification procedures as it may help to
properly deal with the combination of isolated pixels and
mixed pixels (Tso and Mather 2009). The aim of contextual
information is to reduce noise present in remote sensing data,
where noise may be due to the sensor or to areas of classes that
are smaller than areas that are to be represented at the desired
land use/land cover map scale.

Various studies have been conducted related to spatial
contextual information with various classification algorithms
to improve image classification and segmentation such as
adaptive Bayesian contextual classification (Jackson and
Landgrebe 2002), multisource classification (Solberg et al.
1996) and multisource classification with a genetic algorithm
(Tso and Mather 1999). Xu and Ohya (2010) found that FCM
can improve the image segmentation accuracy even in the
presence of noise, if it is made context sensitive. Pham penal-
ized the FCM objective function for the behavior of member-
ship functions while incorporating spatial information and
observed improved segmented result in the presence of noise
(Pham 2001). Spatial contextual information in classification
methods can be incorporated in different ways. A relatively
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straight forward method is to use majority voting within a
prescribed windowwhere the central pixel is replaced with the
class that most often occurs (Tso and Olsen 2005). A more
advanced way is to incorporate spatial contextual information
by means of Markov Random Fields (MRF) (Geman and
Geman 1984; Solberg et al. 1996; Amador 2005; Li 2009;
Moser and Serpico 2010). A common assumption in MRF
modeling is that of uniform smoothness, which implies the
same degree of smoothness over a full image. Leaving dis-
continuities out of consideration, however, leads to over
smoothed, less accurate and hence undesirable results (Li
2009 and 1995). Discontinuity adaptive (DA) MRF (Li
1995) models or adaptive neighborhood (Debayle and Pinoli
2006) can be used to overcome such problems of discontinu-
ity. So far, contextual based information of an image has not
been combined with fuzzy based spectral classifiers.

The aim of this study was to combine discontinuity adap-
tive (DA) MRF models with spatial contextual information
within a FCM classifier. DA-MRF models focused both on
smoothing the classified output and on edge preservation of
class boundaries. The accuracy of the classified output has
been assessed using the fuzzy error matrix (FERM) (Binaghi
et al. 1999) and the uncertainty was evaluated using the
entropy method (Dehghan and Ghassemian 2006).

Classification and Accuracy Approaches

Fuzzy c-Means Approach (FCM)

Fuzzy c-means (FCM) classification, introduced by Bezdek
et al. (1984), calculates the membership values of the each
pixel to different classes. It is based on finding the member-
ship values μij of the ith pixel for class jth that minimize the
objective function as mentioned in Eq. (1);
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Here, N is the total number of the pixels, c is the number of
classes, μij is the membership value of the ith pixel for class j,
m is a weighing exponent and dij is the (Euclidean) distance
between unknown feature vector Xi and the mean feature
vector Vj of class j. Optimization is done by means of an
iterative procedure between Eqs. (2) and (3) on the member-
ship values and the cluster centers (Dulyakarn and
Rangsanseri 2001):
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After an initial choice for class means, e.g. on the
basis of a hard classification, class means are estimated,
that result into new membership values, which in turn
can lead to new class means. This procedure is repeated
until convergence occurs.

Integrating the FCM with MRF

The objective function of FCM with MRF incorporates
spatial contextual information using smoothness prior
and DA-MRF models (Li 2009). The objective function
of FCM with MRF is similar to the objective function
of FCM to which neighbourhood information is includ-
ed. Objective function (4) has been formulated using
smoothness prior and from now onwards it will be
referred to as FCM-S.
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where U( μij|d ) is the Global Posterior energy of mem-
bership value μij for given image data, λ with 0 <λ<1
is the smoothness strength, i.e. the weight between
spectral and contextual information, β> 0 is the weight
for neighbors and Ni is the neighborhood window
around pixel i. In Eq. (4) spectral information has been
included by using the objective function of FCM. In
this way, the conditional energy and spatial contextual
information is incorporated by using the smoothness
prior as prior energy has been introduced.

Next, objective functions are formulated using dis-
continuity adaptive (DA) MRF models. Let η be defined
as η = ( μij−μij ) i.e. the difference between the mem-
bership value of the target pixel (pixel i) and the mem-
bership value of a neighboring pixel in neighborhood
Ni. Then U( μij|d ) objective function will be as in
Eqs. (5) to (8);
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where γ, with 0 <γ< 1, controls the interaction between the
two pixels (Li 2009). Equations (5)–(8) will be referred to as
FCM DA1, FCM DA2, FCM DA3 and FCM DA4,
respectively.

Edge Verification

In this research work, attention focuses on classified outputs
of grey level fraction images. For a grey level image an edge
represents the boundaries between the two classes. An edge
can be characterized as a step function or slop between two
regions (Wen and Xia 1999). Let μ1 and μ2 be the mean value
of the grey levels on either side of an edge. Following (Wen
and Xia 1999), there is no significant difference between the
grey levels on the two sides of the edge, if for a well-specified
threshold c, |μ1−μ2|≤c, whereas if |μ1−μ2|>c, a significant
difference occurs. To verify the edges, it have been considered
fraction images that are output images for each class
representing membership values, as degree of belongingness
of each pixel to each class. A homogeneous area was selected
for each class from the classified fraction image with a high
mean membership value and a low variance. Classes in the
study area are Eucalyptus Plantation, Dry agriculture field
without crop and Water. Such selections are relatively homo-
geneous, because of their high membership values and low
variances. Next, two sets of pixels were selected at either side
of the edge. The pixels belonging to the first set have a high
mean value to a particular class, as these pixels all have a high
membership values to this class, where as pixels at the other
side of the edge do not belong to that class and thus this set has

a low mean membership value. Contextual information fur-
ther reduces noise within classes and therefore homogeneity
within class increases and the variance within the class will be
reduced further. The mean difference of these two sets of
pixels hence will be high and the variance low if the edge is
preserved.

Accuracy of Classification

To measure the accuracy of the soft classified output, the
Fuzzy Error Matrix (FERM) (Binaghi et al. 1999) was used.
The FERM derives the accuracy of a fuzzy classification
output from the fraction images. FERM is used the same as
the traditional error matrix, except that elements of a fuzzy
error matrix can be non-negative real numbers as compared to
non-negative integer numbers used in a conventional error
matrix.

Entropy as a measure of absolute uncertainty (Dehghan and
Ghassemian 2006) is an indirect method of accuracy assess-
ment that does not take any reference data to a particular
measure of uncertainty. Entropy can be used as an accuracy
measure in the absence of reference data. The entropy is
expressed as in Eq. (9);

Entropy xð Þ ¼
XC

i¼1
−μij log2μij ð9Þ

Where c denotes total number of classes and μij is the
estimated membership function.

A high uncertainty corresponds with a high entropy value
and vice versa. In this way visualization of entropy can reflect
uncertainty of a classification. In this study the entropy was
used to optimize the parameters involved in FCM-S and FCM
DA-MRF models, by evaluating the uncertainty in the classi-
fied output.

Study Area and Data Used

The study area selected for this research work was the
Sitarganj Tehsil area located near Pant Nagar within
Uttarakhand state, India. The area extends from 28°53′57″N
to 28°56′31″N latitude and from 79°34′22″E to 79°36′35″E
longitude. The study area presents different land cover classes
like Sal forest, Eucalyptus plantation, agricultural land with
sugarcane and paddy as major crops and two water reservoirs
namely, the Baigul reservoir and the Dhora reservoir (Fig. 1).

Remote sensing images used for this study were obtained
by means of the LISS-IV, LISS-III and AWiFS sensors of
ResourseSat-1 and 2 satellites. AWiFS and LISS-III are four
band data and LISS-IV is three band data. One of the reasons
to select this study area was that LISS-IV, LISS-III and AWiFS
images were acquired at the same dates. All the six images
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Fig. 1 Location of study area
from Reseourcesat-2 LISS-III
images

Fig. 2 Adopted methodology

30 J Indian Soc Remote Sens (March 2015) 43(1):27–35



(LISS-IV, LISS-III and AWiFS) were geometrically corrected
and resampled using nearest neighbour resample method to 5,
20 and 60 m spatial resolution respectively. LISS-III and
AWiFS have been used to generate soft classified output from
ResourseSat-1 and ResourseSat-2 satellites respectively,
where as the classified LISS-IV images have been used as
reference data. In doing so, the number of LISS-IV pixels
corresponded with the number of LISS-III and AWiFS pixels
(here, 16 pixels for LISS-III and 144 pixels for AWiFS),
which was convenient for image to image accuracy
assessment.

Implementation

Implementation of the methodology is given in Fig. 2. A
training dataset was collected from the AWiFS, LISS-III and
LISS-IV images on the basis of ground field visit information.
In total, c=6 and c=5 land cover classes were selected for the
images from Resourcesat-1 and Resourcesat-2, respectively.
Considered land cover classes were c1 = agriculture field with
crop, c2 = eucalyptus plantation, c3 = dry agriculture field
without crop, c4 = moist agriculture field without crop, c5 = sal
forest and c6 = water. For Resourcesat-2 images, c4 was not
considered. In total 50 and 60 training pixels were selected for
Resourcesat-1 and Resourcesat-2, respectively, following the
10n rule for sampling (Jensen 1996) to train the classifiers,
where n is number of bands. According to Congalton (1991),
100 pixels were randomly selected within each class from
both the classified and reference images for accuracy
assessment.

After preprocessing and training dataset preparation, the
AWiFS, LISS-III and LISS-IV images were classified sepa-
rately by FCM, FCM-S and FCM DA1—FCM DA4 classi-
fiers. For the FCM-S and FCMDA classifiers, parameters λ, β
and γ were optimized using entropy values while considering
that edges were preserved using mean difference and variance
as explained in Edge Verification. Several experiments were
performed to estimate the parameters λ, β and γ. Entropy
values and edge verification were checked following a range
from 0.1 to 0.9 for λ and from 1 to 9 for β. Similarly λ and γ

were estimated taking the range of γ from 0.1 to 0.9.
Optimized values of these values have been mentioned in
Table 1. After estimating the parameters, the AWiFS and
LISS-III images were classified with the optimized parameter
values and the fuzzy accuracy was measured using FERM.

The optimized output fraction images of AWiFS and LISS-
III were validated while applying developed contextual based
classifier with respect to the soft reference dataset generated
from LISS-IV data. A JAVA based tool developed by Kumar
et al. (2006) has been used for accuracy assessment in this
research work. The performance of contextual based classi-
fiers was tested with respect to untrained classes present in the
study area. The untrained class means, a class is present on the
ground but not considered for classification. That means while
testing classified outputs, classified output were generated
while not considering untrained class but reference data was
generated while considering untrained class also.

Results

The optimized parameter values for all the classifiers have
been presented in Table 1. Values for λ and β for the FCM-S
classifier are in the range of 0.7–0.9 and 2 respectively. The λ
and γ values for FCM DA classifiers are in the range of 0.7–
0.9 and 0.2–0.5 respectively. There was a 5.85 % increase in
the overall classification accuracy of contextual FCM DA3 as
compared to the FCM classifier for AWiFS Resoursesat-1
image, whereas there was a 1.61 % increase in the overall
accuracy of contextual FCM DA3 as compared to the FCM
classifier for LISS-III Resoursesat-1 image, as shown in

Table 1 Optimized parameter values for the five different classifiers
applied to three different sensors of Resourcesat-1 and Resourcesat-2

Classifiers and parameters AWiFS LISS-III LISS-IV

FCM-S (λ/ β) 0.9/2 0.9/2 0.7/ 2

FCM DAI (λ/ γ) 0.7/0.2 0.7/0.2 0.7/0.2

FCM DA2 (λ/ γ) 0.9/0.4 0.9/0.4 0.9/0.3

FCM DA3 (λ/ γ) 0.9/0.2 0.9/0.2 0.6/0.2

FCM DA4 (λ/γ) 0.9/0.5 0.9/0.5 0.8/0.4

Table 2 Overall accuracy obtained by the five different classifiers for
AWiFS image from Resourcesat-1 and Resourcesat-2

Classifiers Recourcesat-1 (%) Resourcesat-2 (%)

FCM-S 76.04 84.75

FCM DA1 79.84 82.37

FCM DA2 76.25 82.87

FCM DA3 81.97 87.02

FCM DA4 81.71 82.94

Table 3 Overall accuracy obtained by different classifiers for the LISS-
III image from the Resourcesat-1 and Resourcesat-2 satellites

Classifiers Recourcesat-1 (%) Resourcesat-2 (%)

FCM-S 85.72 86.22

FCM DA1 84.96 83.86

FCM DA2 83.9 83.76

FCM DA3 87.31 87.85

FCM DA4 85.0 85.29
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Table 2. There was a 5.0 % increase in overall classification
accuracy of contextual FCM DA3 as compared to the FCM
classifier for the AWiFS Resoursesat-2 image, whereas there
was a 3.0 % increase in overall accuracy of the contextual
FCMDA3 as compared to the FCM classifier for the LISS-III
Resoursesat-2 image, as shown in Table 3. In Tables 2 and 3
the overall classification accuracy for the FCM, FCM-S and
FCM DA classifiers have been provided for both the AWiFS
and LISS-III images from the Resourcesat-1 and Resourcesat-
2 satellites. From Tables 2 and 3 it is clear that FCM DA3
classifier performed better than the other classifiers studied in
this research work.

As in Tables 4 and 5 the edge verification was conducted
using mean and variance method for three land cover classes
i.e. Eucalyptus plantation, dry agriculture field without crop
and water. These 3 classes out of the 6 original classes were
considered for edge verification because water is a relatively
homogenous class, where as Eucalyptus plantation and dry
agriculture field without crops show heterogeneous within
class variation. As compared to FCM and FCM-S the FCM
DA3 best preserves the class edges. This has been concluded
based on mean difference is higher and variance was lowest
from Tables 4 and 5.

The performance of the developed contextual classifier was
evaluated as well for untrained classes. To obtain untrained
classes, the mean value for a known class was not provided
during training of the classifier and the classification was
performed with the remaining classes (Foody 2000). The
performance of the FCM-S classifier was tested for untrained
classes when class 2 i.e. agriculture field with crop, selected at

random, was not considered. The fuzzy user’s accuracy has
decreased with 9.17 %, if this untrained class was absent
during the FCM-S classification. This means that the accuracy
for each class on the classified output has decreased as com-
pared to the reference classes. Similarly the performance of
FCM DA has been checked for the untrained classes. For this
purpose the FCM DA3 classifier is taken where class 2 i.e.
agriculture field with crop retained untrained. Similar to the
FCM-S classifier, the fuzzy user’s accuracy decreased with
4.46 % if class 2 had been untrained in FCM DA classifica-
tion. This concludes that the FCMDA3 has been least affected
if an untrained class was absent.

In Fig. 3 the average user’s accuracy has been compared for
different classifiers with and without untrained class. In the
presence of untrained class the user’s accuracy decreased with
10.63, 9.17, and 4.46 % for FCM, FCM-S and FCM DA3,
respectively. Similar results were observed for untrained class
for the Resourcesat-2 AWiFS and the LISS-III images. As
concerns edge preservations it has been observed from Fig. 4
that FCM DA3 preserves the edges present on the input
image, where as edges were not preserved when applying
the FCM-S classifier.

Discussion

This research presents context based image classification that
uses the smoothing MRF model as well as discontinuity
adaptive MRF models. The smoothness parameter (λ ) for
the MRF models changes across the spatial resolution of

Table 4 Verification of edge preservation for the AWiFS and LISS-III images at the Resourcesat-1 satellite

Class AWiFS LISS-III

FCM-S FCM DA3 FCM-S FCM DA3

Difference in
mean

Variance Difference in
mean

Variance Difference in
mean

Variance Difference in
mean

Variance

Eucalyptus Plantation 153.5 1104.5, 2 157 1104.5, 0.5 216.5 4.5, 2 229.5 4.5, 2

Water 240 4.5, 40.5 247 4.5, 18 231.5 8, 4.5 239.5 2, 4.5

Table 5 Verification of edge preservation for the AWiFS and LISS-III images at the Resourcesat-2 satellite

Class AWiFS LISS-III

FCM-S FCM DA3 FCM-S FCM DA3

Difference in
mean

Variance Difference in
mean

Variance Difference in
mean

Variance Difference in
mean

Variance

Dry agriculture field
without crop

243.8 27.5, 2.2 247.2 37.5, 0.2 242 8, 0.5 247.5 8, 0.5

Water 223.5 882, 0.5 244 0.5, 4.5 224.5 264.5, 2 239 0.5, 0.5
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images. For coarser resolution image the value of λ was
higher, because of the low variability in the image, where as
for fine resolution image it was lower. Further, the optimum λ
value for an image remains the same irrespective of the
radiometric accuracy of an image. The radiometric accuracy
improved from 7 bits to 10 bits for LISS-III and LISS-IVand
10 bits to 12 bits for AWiFS in Resourcesat-2 as compared to
Resourcesat-1. For both the Resourcesat-1 and Resourcesat-2
the estimated parameter value of λ and γ were found to have
similar values. The FCM classifier only takes spectral proper-
ties for classification but due to incorporation of spatial con-
textual information it also consider the spatial properties of the
image and it increases the overall classification accuracy.

To combine contextual spatial information with FCM,
smoothness prior and four DA-MRF models have been used.
The increase of the overall accuracy upon using DA-MRF
models as compared to the smoothness prior was due to the
interactions among the pixels. Those were assumed to be
constant in the smoothness prior model, where as its smooth-
ing strength was set proportional to a function of |η | in the
DA-MRF models. The FCM-S classifier, therefore, results in
over-smoothing at the edges where it crosses boundaries. For

that reason, the FCM-S classifier does not increase the classi-
fication accuracy.

The developed classifier was tested both on Resourcesat-1
and Resourcesat-2 images. Apart from the improvement in the
classification accuracy, the radiometric accuracy also affected
the visual appearance of the classified output. For the
Resourcesat-2 image, the land cover classes were more clearly
visible and well separated from other classes as compared to
the Resourcesat-1 image.

To study the preservation of edges for classified output,
mean and variance method has been used, where edges were
checked on a pixel wise basis for the classified AWiFS and
LISS-III images. As confirmed in (Li 2009) the DA-MRF
models preserve the edges whereas smoothness prior leads
to over smoothing. The results obtained by edge verification
show that the DA-MRF models preserved the edges better
with the high mean difference and low variance than the
smoothness prior. This was due to DA-MRF models in
smoothing strength was set proportional to a function of |η |
in the DA-MRF models.

The preservation of edge has been checked for all the
classifiers using mean and variance method for AWiFS and

Fig. 3 Comparison of average
user’s accuracy of different
classifiers for LISS-III image
from Resourcesat-1. a Input
image b FCM-S c FCM DA-
MRF (H3)

Input image FCM-S FCM DA-MRF (H3)

a b cFig. 4 Effects of contextual
classification on the edges
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LISS-III images. The FCMDA classifiers, preserves the edges
better whereas FCM-S was unable to preserve the edges. This
was due to interactions among the pixels to be constant in the
smoothness prior model but for the FCM DA classifiers the
smoothing strength was set proportional to a function of |η |.
Preserving the edges, moreover, improved the classification
accuracy with 1.5 to 6 % for FCMDA3 as compared to FCM-
S. It concludes that while using contextual classification it is
important to preserve the edges and hence to avoid
oversmoothing of the classified output. Upon comparing
FCM-S and FCM DA-MRF it was found that FCM DA3
provides the highest classification accuracy for both the
AWiFS and LISS-III images because of the following two
reasons:

& In FCM DA3, η is the difference between target pixel
membership value and its neighboring pixels membership
value in a neighborhood window. This DAmodel allows a
monotonic increase of the smoothing strength as η in-
creases within the neighborhood window. Outside the
window, the smoothing strength decreases as η increases
and becomes zero as η→∞, whereas in FCM-S, it allows
boundless smoothing when η→∞ (Li 2009).

& At homogeneous classes, where η=0, the FCM DA3
applies zero smoothing and it controls the over smoothing

The FCM-DA1, the FCM-DA2 and the FCM-DA3 models
behave in a similar way with respect to the smoothness prior

model when η2

γ ≪1 or η2≪1 as mentioned in Li (1990). A power

series expansion of gγ(η) in Eqs. (5)–(7), confirms that the
DA-MRF models in (5)–(7) behave a similar way as a
smoothness prior model, if the term η2/γ is sufficiently small.
Therefore, the FCM DA4 classifier also provides a classifica-
tion accuracy that is close to that obtained by the FCM DA3
classifier as the adjustment function applied in the first, is
similar to that applied in the latter.

The developed contextual classifier was tested as well for
untrained classes. In their presence the accuracy of classified
output decreased significantly for all the DA-MRF classifiers.
The FCM, FCM-S and the FCM DA3 have been tested and
their results were compared for untrained class. It has been
found that the FCM DA3 was least affected by presence of
untrained classes in comparison to FCM and FCM-S. This
indicates FCM DA3 classifier is least dependent upon other
classes present in the area.

Conclusions

In this research work spatial contextual information has been
added to FCM classification using the smoothnessMRFmod-
el and the discontinuity adaptive MRF models to generate

edge preserved fraction outputs. It can be concluded from
the optimized value of λ for LISS-IV and LISS-III images,
equal to 0.6 and 0.9, respectively, that the contribution of
spatial contextual information was lower for a coarse resolu-
tion image than for a fine resolution image.

Further, from the results of accuracy assessment for AWiFS
and LISS-III images, it can be concluded that the FCM-S and
FCM DA classifiers perform better for the LISS-III image
than the FCM does for the AWiFS image. If the spatial
resolution of the image becomes finer, the effects of the spatial
context increase. Using a DA-MRFmodel resulted in a further
improvement of the accuracy and edge preservation for the
LISS-III image as compared to AWiFS image. Therefore, the
effects of discontinuities increase and edge preservation be-
comemore prominent, if spatial resolution becomes finer. The
FCM DA3 classifier performs best in case of coarse and
moderate resolution images among all other DA-MRF
models. It also preserves the discontinuities for the coarse
and moderate spatial resolution image. Finally, upon compar-
ing Resourcesat-1 with Resourcesat-2, the contextual classifi-
cation accuracy increased by 0.5 to 8 %. From this research
work it can therefore be concluded that the FCM DA classi-
fiers were least affected by the presence of untrained classes as
comparison to FCM-S and FCM.
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