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Effective soilmanagement requires knowledge of the spatial patterns of soil variationwithin the landscape to enable
wise land use decisions. This is typically obtained through time-consuming and costly surveys. The aimof this study
was to develop a cost-efficient methodology for digital soil mapping in poorly-accessible areas. The methodology
uses a spatial model calibrated on the basis of limited soil sampling and explanatory covariables related to
soil-forming factors, developed from readily available secondary information from accessible areas. The model is
subsequently applied in the poorly-accessible areas. This can only be done if the environmental conditions in the
poorly-accessible areas are also found in the accessible areas in which themodel is developed. This study illustrates
the methodology in an exercise to predict soil organic carbon (SOC) concentration in the Limpopo National Park,
Mozambique. Readily-available secondary data was used as explanatory variables representing the soil-forming
factors. Conditions in the accessible and poorly-accessible areas corresponded sufficiently to allow the extrapolation
of the spatial model into the latter. The spatial variation of SOC in the accessible area was mostly described by the
sampling cluster (71.5%) and the landscape unit (46.3%). Therefore ordinary (punctual) kriging (OK) and kriging
with external drift (KED) based on the landscape unit were used to predict SOC. A linear regression (LM) model
using only landscape stratification was used as control. All models were independently validated with test sets col-
lected in both accessible and poorly-accessible areas. In the former the root mean squared error of prediction
(RMSEP) was 0.42–0.50% SOC. The ratio between the RMSEP in the poorly-accessible and accessible areas was
0.67–0.72, showing that the methodology can be applied to predict SOC in poorly-accessible areas as successful
as in accessible areas. The methodology is thus recommended for areas with similar access problems, especially
for baseline studies and for sample design in two-stage surveys.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Effective land management depends on knowing the spatial distri-
bution of soil properties. Traditionally this knowledge is represented
as soil maps conforming to the discrete model of spatial variation;
DMSV (Heuvelink and Webster, 2001), showing polygons within
which soils are considered homogeneous and with boundaries
where changes in soil properties are considered to be abrupt. Howev-
er, many soil properties can be better modeled with a continuous
model of spatial variation (CMSV), in which properties vary continu-
ously in space. The recent rapid development of information
technology along with the availability of new types of secondary
data (e.g., digital elevation models and satellite imagery) allow for
more quantitative approach to soil survey producing continuous
surfaces based on soil forming factors. Furthermore, these methods
give spatial estimates of the uncertainty of the predictions. This
“predictive” (Scull et al., 2003) or “digital” soil mapping (McBratney
et al., 2003) uses relationships between soil properties and auxiliary
mbule).
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data at sample points to predict over a study area. in addition, the
high sampling costs can be reduced by applying recent developments
in the field of diffuse reflectance spectroscopy (e.g. near-infrared
spectroscopy), a fast, non-destructive and inexpensive soil analysis
method that can enhance or replace traditional laboratory methods
(Shepherd and Walsh, 2002; Viscarra-Rossel and McBratney, 2008).

Digital soil mapping (DSM) techniques have been successfully ap-
plied in studies at field scale where soil variability is largely due to the
effect of topography on soil genesis (e.g., Florinsky et al., 2002) and
therefore much of the success is attained by integration of terrain attri-
butes as auxiliary data. To capture the spatial structure of soil variation
as well as the soil–environment relations over larger poorly-accessible
areas due to poor road networks (such asmuch of Africa) or difficult ter-
rain (e.g., mountainous regions), a large number of observations follow-
ing a sound sampling design, covering the feature and geographic space
of the predictors (e.g., Minasny and McBratney, 2006) are required,
which is impractical or prohibitively expensive. A DSM approach
which can concentrate sampling in accessible areas, yet deliver results
of sufficient quality, would greatly reduce costs and survey effort.

Our objective was to develop a methodology for DSM for poorly
accessible areas. It consists in developing a quantitative predictive
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model based on limited sampling (mainly in accessible areas) com-
bined with readily-available auxiliary spatial data representing soil
forming factors. We hypothesize that if the auxiliary data in accessible
and inaccessible areas are sufficiently similar, models built in the
former can be applied in the latter, with very few or even no soil
samples. It is thus applicable in mapping projects where legacy
samples from accessible areas are available.

This paper first explains the proposed method, then introduces a
case study where it is tested and discusses the performance of the
method in the test area.
2. Proposed method

The proposed method is based on similarities between accessible
and poorly-accessible areas in terms of the relation between soil-
forming explanatory variables (covariables) and soil properties
(target variables). If the areas are similar, the predictive model based
on soil samples and explanatory variables from accessible areas can be
Fig. 1. Flowchart of the proposed methodology for
applied in inaccessible areas. The predictive model uses the conceptual
model scorpan-SSPFe proposed by McBratney et al. (2003) and
widely-applied as a generic method for DSM. Scorpan represents the
list of soil-forming factors that has been expanded from the original
definition by Jenny (1980) representing the initial soil conditions (s),
climatic conditions (c), organisms (o) including animals, land cover and
human occupation; relief (r), parent material (p), age (a), and the neigh-
borhood (n). The conceptual model uses a soil spatial prediction function
with spatially-autocorrelated errors (SSPFe) that uses (1) a prediction
based on environmental covariables and (2) a prediction based on soil
properties measured at a limited set of observation points.
3. Implementation approach

Themethodology for mapping poorly accessible areas in the LNP is
shown schematically in Fig. 1. We believe the methodology has po-
tential for worldwide application, which we illustrate with the LNP
case. Below is described each step of the methodology.
digital soil mapping in poorly accessible areas.
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3.1. Gathering of secondary data

Secondary data is the raw material to derive insight in the soil
forming factors. The secondary data must cover the area of interest
(i.e., have values at all locations). A good example is a digital elevation
model that covers the area and provides insight in the soil forming
factor “relief” (r).
3.2. Conversion of secondary data into covariables with a direct link to
soil formation

The Scorpan approach aims to elucidate quantitative relationships
between soil properties and the soil-forming factors. The covariables
should provide information on soil formation. If covariables describing
relevant soil formation processes are lacking the predictive power of
the model will be limited. An example is the conversion of a DEM
into terrain derivatives such as a wetness index and potential erosion
rates (Gessler et al., 2000; McKenzie et al., 2000).
3.3. Stratification on the base of accessibility

The study area should be divided into accessible (ACC) and
poorly-accessible (PACC) areas. The latter are those beyond easy
reach by commonmeans due to, for example, poor road infrastructure,
difficult navigation, wildlife hazard, or poor security.
3.4. Evaluation of similarities between ACC and PACC areas in terms
of covariables

ACC and PACC must be compared to evaluate the degree to which
conditions in PACC areas are found in the ACC areas. This determines
the potential applicability of the methodology. Similarities can be
assessed by comparing, e.g., the histograms, ranges, clusters, class
frequencies, or trends of covariables between the two areas, either
qualitatively or with formal similarity measures. A decision is taken
as to whether PACC areas are sufficiently represented by ACC areas;
if not, the method is not applicable and both areas need to be
sampled.
3.5. Sampling in accessible area

A sampling strategy must be designed and implemented to gather
a representative sample of the target soil properties in ACC areas. The
sampling strategy will be based on the available information from the
covariables (Minasny and McBratney, 2006), the expected spatial
structure (Lark, 2002; Webster et al., 2006), or a combination (Brus
and Heuvelink, 2007). If there are legacy samples, and if these can
be harmonized with current methods, they can be used to optimize
the sampling plan, e.g., by simulated annealing (Brus and Heuvelink,
2007).
3.6. Building of a quantitative calibration model for the accessible areas

The correlation between explanatory variables (i.e., the environ-
mental covariables) and the soil properties of interest must be evaluat-
ed, using pedometric modeling approaches (McBratney et al., 2000,
2003) to build a quantitative model for the accessible areas. A separate
model must be built for each property. The model may include local
spatial correlation, e.g., regression kriging (Hengl et al., 2007), but
since the PACC area is by definition not or very sparsely sampled, the
local spatial structure cannot be used to explain much of the variability
in these areas.
3.7. Application of the model in accessible areas

The calibrated model must be applied to the environmental
covariables and measured soil properties to make a prediction map
of the soil properties of interest across ACC areas. This should also
produce an estimate of the prediction variance as an internal measure
of model quality.

3.8. Model validation in ACC areas

An independent field sample must be taken, using the same
strategy as the calibration sample; for practical reasons this could
be during the original sampling campaign, with a proportion taken
out randomly for this validation. The model prediction must then be
compared to the true values with measures of quality such as root
mean square error of prediction (RMSEP), or bias and gain of modeled
vs. actual. If the model quality does not match requirements, one of
the following corrections must be undertaken: (1) try another
model structure or explanatory variables; (2) make more observa-
tions to refine the model; (3) abandon the DSM project if properties
cannot be predicted with this approach.

3.9. Application of the model in PACC areas

The calibrated model must be applied to the environmental
covariables and field-sampled soil properties (from ACC areas) to
make a prediction map of the soil properties of interest across
poorly-accessible areas. If there is any local spatial structure
represented in the model, the prediction quality will naturally be
better nearer to ACC areas.

3.10. Model validation in PACC areas

An independent field sample using the same strategy as the
validation set in ACC must be taken; but this will be by definition
quite limited (this is the motivation of the methodology), given the
difficulty of access. Validation is as in step 8.

3.11. Assessment of the relative performance of the prediction model in
PACC areas

Validation results in the two areas must be compared; the ratio
between the validation RMSE and other validation statistics should
then be used to determine the degree of success of the methodology
for poorly-accessible areas. The performance in accessible areas
should already have been judged adequate (step 8); if the relative
performance in poorly-accessible areas was satisfactory, by deduction
so will be the absolute performance. If relative performance is too
poor, there is no remedy but to conduct a full (expensive) sampling
in the poorly-accessible area, following the same scheme that
produced a satisfactory result in the accessible areas.

4. Test case for Limpopo National Park

4.1. Study area

The proposed method arose from a research objective to assess soil
organic carbon (SOC) stocks in the Limpopo National Park (LNP),
Mozambique, as part of a project to understand how competing claims
on natural resources affects land use and livelihoods (Giller et al.,
2008). This objective is a good test case because (1) LNP is a conserva-
tion area where SOC plays a vital role for natural vegetation growth
which is the source of wildlife nutrition; (2) SOC is considered a key
indicator of soil quality (Cécillon et al., 2009; Yemefack et al., 2006),
playing a vital role in ecosystem function, determining soil fertility,
water holding capacity and susceptibility to land degradation (Milne et



Table 1
Summary statistics of the soil-forming explanatory variables in LNP as a whole.

Variable unit Min Max Range Mean SD

Elevation m 54 531 477 241 99
Flow accumulation no. of pixels 0 50 50 4 8.2
NDVI wet season – −1.0 0.69 1.69 0.35 0.13
NDVI dry season – −0.34 0.56 0.91 0.11 0.08
Annual precipitation mm 362 580 218 461 40
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al., 2007); (3) SOC has been the focus of many studies, especially in the
context of land degradation, climate change and loss of biodiversity
(Gisladottir and Stocking, 2005) but also in digital soil mapping both
in the early development (Bell et al., 2000; Florinsky et al., 2002;
Simbahan et al., 2006) and recently with the emphasis on SOC in public
policy (Li, 2010; Miklos et al., 2010; Phachomphon et al., 2010; Ungar et
al., 2010; Vasques et al., 2010) so that prior knowledge on possible
environmental predictors is available; (4) a single soil property should
be simpler to model for evaluation of methodology's potential than a
set of properties, a land quality, or a soil function.

The 10.400 km2 LNP is located in southwest Mozambique,
between 22″ 25′ and 24″ 10′ S and 31″ 18′ and 32″ 38′ E. It forms
part of the proposed Great Limpopo Transfrontier Park, which also
includes Kruger National Park (KNP, South Africa) to the west and
Gonarezhou National Park (Zimbabwe) to the north. The LNP is
bounded by the Elephant River to the south and the Limpopo River
to the north and east; the Singwedzi River flows through the park
in a NW–SE direction, joining the Elephant River at the southern bor-
der. The area was declared a national park in 2001, after long been
used as a hunting zone. LNP has a warm arid climate with dry winters
and a mean annual temperature exceeding 18 °C. Maximum temper-
atures increase northwards to above 40 °C (between November and
February). Annual rainfall decrease northwards from above 500 mm
around the confluence of Limpopo and Elephant Rivers to about
350 mm at the extreme north (Ministerio do Turismo, 2003; Stalmans
et al., 2004). Dominant geological features include (1) the extensive
sandy (aeolian sands) cover along the NNW–SSE spine of the park
lying to a greater extent between the Limpopo and Singwedzi Rivers,
(2) sedimentary rocks (limestones, sandstone) where the sand mantle
has been exposed closer to the drainage lines, (3) rhyolite rocks along
the western border with KNP, and (4) alluvial deposits along the main
drainage lines (Manninen et al., 2008; Rutten et al., 2008). Soils derived
from aeolian sands range from shallow to deep, those derived from rhy-
olite are shallow and clayey, those derived from sedimentary rocks are
deep, structured and clayey and those derived from alluvium materials
are clayey (Stalmans et al., 2004). LNP is dominated by plant communi-
ties with Colophospermum mopane classified in as the mopane vegeta-
tion of the Sudano–Zambezian region. The mopane vegetation can be
found throughout the park except for the aeolian sands and in water-
logged landscapes along the major drainage lines. The LNP was classi-
fied into ten landscape units by Stalmans et al. (2004). These
landscape units were delineated on the basis of plant communities
and environmental characteristics. LNP is covered by (1) (semi-)
deciduous open forest composed of broadleaved deciduous and semi-
deciduous woodlands, (2) (semi-) evergreen open forest made up of
broadleaved evergreen and semi-evergreen woodland, (3) (semi-)
deciduous forest which includes the broadleaved deciduous and semi-
deciduous trees, (4) (semi-) evergreen forest made up of broadleaved
evergreen and semi-evergreen trees, (5) thickets referred to closed
shrubland, (6) Open shrublands, and (7) grasslands made up of herba-
ceous closed to open vegetation (the national land cover and land use
map; Cenacarta, 1997).
4.2. Operationalizing the methodology: results and discussion

This section explains how the proposed methodology was carried
out for the specific objectives and context of the test case, with the
steps in parallel with Section 2. To avoid duplication, the results and
discussion are included as well. It illustrates the decisions that must
bemade, and how they can be justified. All statistical analyseswere car-
ried out in the R environment for statistical computing (R Development
Fig. 2. Digital elevation model (SRTM), spatial distribution of annual precipitation (Hijmans et al
geology and dry and wet season NDVI derived from Landsat TM in the study area.
Core Team, 2011) version 2.12 including geostatistical analyseswith the
gstat R package (Pebesma, 2004) version 1.0.

4.2.1. Gathering of secondary data
Selected secondary data for SOC prediction in LNP included (1)

mean annual precipitation at a 30 arc-sec resolution grid from the
WorldClim database (Hijmans et al., 2011), multispectral Landsat TM
satellite imagery at a 30 m resolution for a wet and dry season from
the US Geological Survey (www.usgs.gov, row/path: 168/076 from
August 2009, preprocessing: L1T level), a digital elevation model at a
3 arc-sec (approximately 90 m) resolution from the shuttle radar topo-
graphic mission from the Jet Propulsion Laboratory (www.jpl.nasa.gov,
tile: 43_17, preprocessing: research grade), a 1:250,000 lithology map
developed by the Geological Survey of Finland (Manninen et al., 2008;
Rutten et al., 2008), and a 1:1,000,000 scale landscape map of
Stalmans et al. (2004). These latter two are equivalent to, at best,
125 m and 500 m resolution, respectively (Hengl, 2006, Section 2.1),
the latter somewhat smaller than the largest cluster dimension,
720 m. However, considering the size of the study area, we decided
on a 1 km resolution (thus, about 10,000 pixels) for the final maps.

4.2.2. Development of explanatory variables
At this stage coverages were produced from the available second-

ary maps with potential covariables. The scorpan-SSPfe modeling
framework was used to organize the coverages by soil-forming factor.
Spatial resolution at this stage is kept the same as of the original cov-
erages as it is meant for similarity analysis. We have assumed the
time factor as a constant for the present study and therefore no anal-
ysis were performed. The summary statistics are presented in Table 1.

Climate (c) influences rates of vegetative growth and turnover of
soil organic matter through differences in precipitation, temperature
and evaporation (McBratney et al., 2003). The WorldClim database
shows a clear rainfall increase to the south with an annual precipita-
tion difference of approximately 220 mm (Fig. 2). The higher grounds
in the SW and NW also show precipitation above 500 mm as it is with
the SE corner of the study area. Summary statistics (Table 1) show a
mean bellow 500 mm, which indicate a rather drier climate. Temper-
ature and evaporation do not vary substantially across the area and
therefore were left out.

The most influential organisms (o) for SOC are vegetation and
humans (McBratney et al., 2003). The LNP was long used as a hunting
zone in colonial times. Later it was declared a conservation area with
minimal human influence is minimal, with confined to scattered subsis-
tence farming near the Singuezi River.Wildlife density is low, and there-
fore vegetation is the principal organism related to SOC. Normalized
vegetation index (NDVI) is a surrogate of vegetation biomass (whose
decay contributes to SOC) and is calculated as (NIR−G)/(NIR+G)
where NIR and G are the reflectances in the near-infrared and green
electromagnetic spectrum, respectively. Green NDVI is sensitive to chlo-
rophyll concentrations, adequately measuring the rate of photosynthe-
sis (Gitelson and Merzlyak, 1998; Yoder and Waring, 1994), and can
., 2011), the landscapes (Stalmans et al., 2004, modified with permission from Koedoe), the
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Fig. 3. Accessible and poorly accessible strata and the location of sampling clusters for
calibration and validation of spatial prediction models.
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therefore be used as an indicator of vegetation cover. Focal statistics at
3×3 pixels were applied to the NDVI grid in order to match the spatial
resolution of NDVI with the support of the sample sites. Dry-season
NDVI is an indicator of water availability and hence biological activity
in that season. Wet-season NDVI is an indicator of maximum vegetative
growth. NDVI for the wet (February) and dry (June) seasons were se-
lected to represent the soil forming factor organism in agreement with
the study of Mora-Vallejo et al. (2008) in Kenya. Wet and dry season
NDVI (Fig. 2) are derived from Landsat TM scenes that cover most of
park. In general higher NDVI values are found along the main drainage
lines and at higher grounds of the northern section along the NNW–

SSE spine of the park. At this location large patches of distinctive dense
5–10 m high and evergreen Androstachys johnsonii forests are located
(Stalmans et al., 2004). Summary statistics (Table 1) show the wider
range in dry season NDVI. Lower values are found in the southern sec-
tion with aeolian sands due to the dry conditions and higher values
along the drainage lines. Wet season NDVI shows a much wider spatial
distribution of higher values, spanning beyond the main drainage
lines. This is a result of the vegetation growth during rainy season.

Relief (r) influences water movement and accumulation across the
landscape. As a result, relief has indirect consequences on SOC con-
tents through biomass production, erosion, sedimentation and redox
conditions. Altitude and flow accumulation (an indirect way of mea-
suring drainage area)were selected as appropriate covariables. Higher
elevations are located at the extreme north of the NNW–SSE spine of
the park and along the western border with KNP. Lower elevations
are found along the major drainage lines. Overall elevation ranges ap-
proximately 250 m with a standard deviation is about 20% (Table 1).
Flow accumulationwas derived from the DEM using ArcGIS 10. Values
above 50 pixels are excluded as they correspond to drainage lines. The
50th percentile of flow accumulation was zero (0) indicating that
most of the study area has no flow accumulation as a result of the al-
most flat topography. The summary statistics in Table 1 show a stan-
dard deviation twice as higher than the mean, which may indicate
the influence of the extreme higher values on the mean and therefore
an evidence of the almost flat topography.

Parent material (p) was represented by the lithologymap. Six major
geological units cover the study area (Fig. 2), three of which are bedrock
(sandstone, limestone, and rhyolite) and three surficial sediments
(Aeolian sands, fluvial terrace gravel and sand, and alluvium-gravel-
and-silt). Small units weremergedwith neighboring larger ones of sim-
ilar lithology to avoid a large number of different units.

The spatial factor (n) accounts for spatial trends not revealed by
other factors (McBratney et al., 2003). Although in principle any
trend should be reflected by the soil forming factors, the selected
covariables may not capture all the regional variation. Hence the spa-
tial position was represented by the coordinates.

The soil factor (s) represents soil attributes measured at sampling
locations. We have used the SOC concentrations derived from a par-
tial least square regression (PLSR) calibration model relating the
near-infrared spectral signature of a soil sample to its SOC concentra-
tion (%) determined by Walkley–Black method. Field sampling and
laboratory analysis details are described below.

Finally, we took advantage of the landscape study of Stalmans et
al. (2004) to consider the landscape units as an integrated soil-
forming factor, combining elements of lithology, general relief,
climate, and soil type into a local eco-region. Stalmans et al. (2004)
classified LNP into ten major landscape units (1) Combretum spp./
C. mopane Rugged Veld (CMR), characterized by shallow soils on the
hills but deeper in the footslopes and low-lying areas, (2) Limpopo
Levubu Floodplains (LLF), subjected to flooding and characterized by
sandy alluvial soils, (3) Limpopo north (LN), stoney with loamy to clay-
ey shallow soils derived from rhyolite but also basalts, (4) Mixed
Combretum spp./C. mopane woodland (MCM), made up mainly by
rhyolite rock-outcrops, (5) Mopane Shrubveld on Calcrete (MSC),
with shallow and calcareous soils derived from sandstones and
limestones, (6) Nwambia Sandveld (NS), sandy soils of varying
depth derived from the aeolian sands, (7) Pumbe Sandveld (PS),
similar to NS but receives more rain and has red sandy soils,
(8) Salvadora angustifolia Floodplains (SAF), subjected to flooding
with black alluvium soils, (9) Andasonia digitata/C. mopane Rugged
Veld (ADR), shallow and calcareous soils with moderate clay con-
centration, and (10) C. mopane Shrubveld on Basalt (CMB), dark
soils derived from basalt showing vertic properties. Given the
rocky nature of the LN and MCM units, we assumed their SOC con-
tents to be zero. The remaining eight landscape units were reduced
to six (Fig. 2) by merging the very small units (b0.1% of total area)
ADR into NS and CMB into MCM.

4.2.3. Stratification of the study area based on accessibility
The main road network is comprised of two dirt roads following

the N-NW direction, one along the right margin of the Limpopo
River, while the other is located about the center of the park, along
Singwedzi River (parallel to the Limpopo River). A few other roads
connect these main roads. We mapped the road network using a
handheld GPS while traversing the entire network in an all-terrain
vehicle. Areas within 2.5 km of a road were considered accessible
areas. This threshold was considered a practical limit of easy access
for field sampling (including carrying tools, water, samples, and a
firearm for protection against wildlife) after parking a vehicle along
the road. The ACC areas covered 27% of LNP (Fig. 3).

4.2.4. Evaluation of similarity between accessible and
poorly-accessible areas

The proposed methodology relies on an adequate similarity be-
tween the ACC and the PACC areas. Only if the ecological conditions of
the PACC areas are also found in the PACC areas can the prediction
model developed for the ACC areas can be applied in the PACC. To eval-
uate the similarity between the two areas we compared the mean and

image of Fig.�3


Table 3
Proportion of each geological unit (%) in accessible and poorly accessible areas.

Geology unit Code ACC PACC

Sandstone TeZ 39.1 29.8
Limestone TeAul 9.5 6.8
Fluvial terrace, gravel and sand Qt 1.5 0.3
Fluvial floodplain, clayey sand Qps 0.4 0.8
Aeolian sand Qe 34.7 51.7
Alluvium sand, silt, gravel Qa 8.3 2.4
Dacite and trachydacite JrUt 0.1 0.1
Rhyolite JrUr 5.6 7.0
Basalt JrSba 0.9 1.0
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the inter quartile range (IQR) for the quantitative covariables and the
proportion in which each mapping unit occur in ACC and PACC areas
for the categorical covariables. It would have been instructive to do
this comparison per-stratum; however, this requires an adequate num-
ber of grid cells in each stratum for both ACC and PACC areas. In the
present study this was not possible because of the small area of some
combinations, e.g., there were only 34 grid cells in the ACC area of the
CMR stratum.

Quantitative explanatory variables showed differences in mean
between ACC and PACC areas below 10% with exception of elevation
(20%). The difference in IQR was less than 6%, with exception of dry
season NDVI and precipitation (about 20%) (Table 2). All mapping
units of geology (Table 3) and landscape (Table 4) occur in both
ACC and PACC areas, however in different proportions. Overall, ACC
areas present ecological conditions that do occur in PACC areas.
Therefore, we consider the similarity of the ACC and PACC areas to
be adequate.

4.2.5. Primary data collection and laboratory analysis
The only legacy soil observations in the LNP are from a 1969 irri-

gation suitability survey of the extreme SE of the park, with poor
georeference and no analytical data. Therefore the sampling design
did not take these into account, and started from the “no previous
data” situation.

Accessibility and wildlife hazard were major constraints to a ran-
dom or regular sampling design. Therefore a stratified, clustered ran-
dom sampling design was applied, which provides a statistical valid
sample with high operational efficiency (De Gruijter et al., 2006).
The LNP was stratified by landscape units (Stalmans et al., 2004),
this being an integrative factor of soil genesis, and so is expected to
capture a large part of the SOC variation. The number of clusters per
stratum, i.e., landscape unit, was proportional to the stratum size.
Sixty clusters were planned, 46 for model calibration in accessible
areas and 14 for validation across LNP. Both sets were collected in
the same field campaign. Cluster centers were positioned randomly
within each stratum. Each cluster was composed out of two orthogo-
nal transects of 720 and 360 m length crossing at their midpoints
with a total of 7 sampling points units 180 m apart (Fig. 4). In order
to capture the maximum variation the longer transect was oriented
along the aspect as determined at the midpoint. At each sample
point, five sub-samples from the four corners of a 90×90 m support
area plus the center were mixed thoroughly into a composite sample.
Sub-samples were from a field-identified A-horizon. The thicknesses
of the A-horizons were recorded during the campaign.

In order to minimize the costs of laboratory analysis, all samples
were analyzed using NIR spectrometry. A third (104) of the calibra-
tion and a quarter (25) of the validation samples were also analyzed
using wet-chemical analysis. A PLSR model was developed to relate
sample NIR spectra to SOC concentration (Brown et al., 2006;
Shepherd and Walsh, 2002). All samples were analyzed in the soil
laboratory of the Eduardo Mondlane University, Maputo, following a
Table 2
Summary statistics of the explanatory variables in accessible and poorly accessible
area.

Variable Unit area 1st Qu. Mean 3rd Qu. IQR

Elevation m ACC 135 205 272 137
PACC 188 254 317 129

Flow accumulation no. of pixels ACC 0 4 3 3
PACC 0 4 3 3

NDVI wet season
(1% trimmed)

– ACC 0.28 0.34 0.40 0.12
PACC 0.31 0.37 0.44 0.13

NDVI dry season,
(1% trimmed)

– ACC 0.07 0.12 0.16 0.09
PACC 0.06 0.11 0.17 0.11

Annual precipitation mm ACC 431 459 494 63
PACC 438 463 488 50
standard Walkley–Black method for SOC as described by van
Reeuwijk (2002). Laboratory quality was assessed by submitting 20%
of the samples in duple. All sampleswere scanned in aNIR spectrometer
(Bruker FR-NIR Multi Purpose Analyzer, from Bruker optic GmbH,
Ettlingen, Germany).

A PLSR calibration model relating SOC to NIR spectra for the 104
calibration laboratory-analyzed samples was built as described in
Cambule et al. (2012). The model was validated by the 25 validation
samples. To have a consistent basis for modeling, predicted PLSR
SOC was used for further analysis even for those observations with
laboratory data. The PLSR predicted SOC was then used as explanato-
ry variable for the “soil” (s) factor. Following the sampling plan, a
total of 410 samples from 59 clusters were collected of which 45 cal-
ibration and 14 validation (8 in PACC and 6 in ACC).

Laboratory results showed topsoil SOC contents ranging from 0.0%
to 2.7% with a mean of 0.9%. The RMSE of the duplicate samples was
0.13% SOC which is in the normal range of variability of the Walkley
and Black methodology (Chatterjee et al., 2009). The PLSR model
explained 83.7% of the variation in SOC, with a RMSE of 0.32% using
cross validation and 0.33% using true validation. The mean of valida-
tion residuals is almost zero, i.e., there is no bias, but extremes values
are about 0.5% and as high as first quartile of PLSR-predicted SOC. The
detailed results are reported separately by Cambule et al. (2012). The
calibrated (and validated) model showed it tends to under-predict
SOC contents above 1.5–1.8%, but the proportion of under-estimated
samples was small and similar in both the wet laboratory sample
sets (7%) used to build the model and for the all predicted samples
(6%) (Table 5, Fig. 5).

4.2.6. Development of the spatial prediction model
The spatial model was developed on the base of explanatory vari-

ables that best explain SOC variation, for which appropriate spatial
models were selected. This was then followed by spatial structure
(within- and between-cluster) analysis. The main steps are described
below:

4.2.6.1. SOC explained variation by explanatory variables. To assess the
proportion of SOC variation explained by the continuous explanatory
variables, pixel values of each explanatory variable layer at sampling
points were extracted and regressed against SOC; the regression
model was evaluated by ANOVA of the model compared to a null
model, and by visual inspection of regression diagnostic plots (Fox,
Table 4
Proportion of each landscape unit (%) in accessible and poorly accessible areas.

Landscape unit Code ACC PACC

Limpopo Levubu Floodplains LLF 7.0 0.9
Combretum/Mopane Rugged Veld CMR 5.8 7.0
Nwambia Sandveld NS 26.6 49.6
Pumbe Sandveld PS 6.1 1.1
Salvadora angustifolia floodplains SAF 16.0 2.5
Mopane Shrubveld on Calcrete MSC 38.5 39.0
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Fig. 4. The cluster (transect) design followed during field sampling, also showing the details of the support area for composite sampling at each sampling sub-station.
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1997). The proportion of SOC variation explained by the categorical
explanatory variables (clusters, geology and landscape) was evaluat-
ed by means of ANOVA of linear models of SOC as a function of each
categorical variable. Regression adjusted goodness-of-fit was used to
select explanatory covariables for model building.

The SOC variation explained by each of the explanatory variables
is shown in Table 6. The soil factor (clusters) explains most SOC var-
iation (71.1%), followed by geology (26.9%). Unfortunately all other
single explanatory variables did not explain substantial amount of
SOC variation. The landscape, here taken as an integrated explanatory
covariable, did explain a substantial amount (39.4%).

Elevation explains little of SOC variation, suggesting height differ-
ences (maximum height differences are about 220 m) are not suffi-
cient enough to result in either pronounced temperature differences
or elevation differences that could be reflected in steep slopes. This
is also corroborated by the consistently low flow accumulation across
the study area, which indicates that contributing area is too small for
water to accumulate.

Similarly, mean annual precipitation did not explain substantial
amount of SOC variation (b1%), perhaps because absolute differences
in the study area are not large enough to affect SOC. This is also corrob-
orated by the weak regional trend as demonstrated by the explained
SOC variation on the coordinates, despite visible variation in green-
ness, also detected by NDVI. Perhaps the greenness may be explained
by below-ground water movement as precipitation easily infiltrates
the extensive sand soils.

Wet season NDVI explains a little more than double the SOC varia-
tion as the dry season NDVI. However the amount explained in both
seasons is low. This may be a result of the combined effects from ele-
vation, flow accumulation and mean annual precipitation as all have
an effect on water availability across the study area.

Lithology explains about 27% of SOC variation, the best single
covariable (Fig. 6). This may be because the soil over most of the
area is residual. Rhyolite and aeolian sand have consistently high
and lowmedian SOC, respectively; however the rhyolite unit includes
only one sampling cluster. Topsoil in this unit was consistently dark
and pebble-rich. Other units do not differ substantially.
Table 5
Summary statistics of the PLSR SOC (%) prediction (all samples) and SOC (%) cluster
averages.

SOC (%) Min 1stQ Med Mean 3rdQ Max

PLSR predicted 0.00 0.61 0. 87 0.92 1.19 2.68
cluster mean 0.21 0.61 0.89 0.93 1.10 1.91
The clusters predicted SOC, the soil factor, explains SOC variation
the most (71.1%). Although about 30% of SOC variation is still within
the clusters, the clusters' size and the sampling strategywere effective
in capturing considerable SOC variation across the LNP.

The landscape explained about 40% of SOC variation (Fig. 6); by
design it captures both lithology and any vegetation effect. Regression
coefficients show CMR landscape unit contributing more to the
model. This may be due to its proximity to the Lebombo mountain
chain, where rainfall is suspected to be a little higher (Stalmans et
al., 2004). This is followed by MSC, SAF and LLF, located along the
Singwedzi and Limpopo Rivers under similar surface water regime.
The sandvelds (PS and NS) have the least SOC %, perhaps due to sand-
ier soil textures and lower water-holding capacities.

4.2.6.2. Selection of prediction model. Thus there were three possibili-
ties for spatial prediction: (1) ordinary kriging (OK), considering
only the known observations (factor s); (2) linear regression models
(LM) from environmental predictors; (3) kriging with external drift
(KED), equivalent to regression kriging (RK) (Hengl et al., 2007), con-
sidering the regression model and the spatial correlation of its resid-
uals. In the case where there is demonstrated spatial structure in
regression model residuals, the LM method can be replaced by a gen-
eralized linear model (GLM). Based on the above, predicted SOC in
the clusters and geology represent the soil and parent material factors
in the scorpan-SSPFe model, while landscape is an integrated factor,
representing all seven scorpan factors. Lithology explains less varia-
tion in SOC than landscape, which apparently incorporates the litho-
logical information, so it was not used. Separate spatial models were
considered, one using the soil factor (OK) and the other using the
landscape integrated factor with residuals (KED), as well as the land-
scape regression model, which has the advantage over kriging
methods when spatial structure is weak or have limited range.

4.2.6.3. Variogram analysis. Residuals from selected models show the
unexplained variation in SOC. These, as well as the original values of
SOC, were examined for local spatial autocorrelation using empirical
variograms (Goovaerts, 1999). If structure was evident, models of
spatial dependence (both original values and model residuals) were
fit to the empirical variogram using weighted least square (WLS) in
gstat (Pebesma, 2004). Anisotropy was evaluated visually with a
variogram map. In order to minimize irregularities (due to small sam-
pling size and to avoid arbitrary decisions on variogram bin width)
and therefore improve the variogram fitting within the range of the
variogram model, a residual maximum likelihood (REML) (Marchant
and Lark, 2007) was applied directly to the variogram cloud from
WLS fit, using gstat. We fitted the ordinary and residual variogram
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Fig. 5. PLSR predicted SOC concentrations for all samples (left) relative to the laboratory samples only (right).
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with spherical models using all calibration samples. The variograms
show autocorrelation to ranges of about 16.0 km for SOC and 4.0 km
for the residuals from the landscape linear model (Table 7 and
Fig. 7). The nugget of REML-fitted variograms is about the same but
the residual variogram sill is much lower, about half. The effect of
landscape is clear in the shorter range and lower partial sill. This is
consistent with the linear regression model with landscape unit as
predictor. Both nuggets are higher than RMSE of laboratory analysis
on duplicates (about 0.13% squared), so that the laboratory uncertain-
ty is included in the nugget. Despite the relatively higher nuggets, the
fitted variograms show the nugget-to-sill ratio of about 22% (ordinar-
y) and 33% (residual), indicating that the short range variability shares
some autocorrelation variance, though not by much (Gringarten and
Deutch, 2001; Mapa and Kumaragamage, 1996).

While the obtained variogram ranges could be used to design a
second-phase sampling, the residual variogram range should enable
SOC predictions from ACC through into PACC using explanatory
covariables of environmental predictors derived from secondary data.
However, in most of the center-southern part of the study area, the
obtained residual variogram range is limited relative to the extent of
PACC areas, which extend up to about 50 Km away from ACC areas.

4.2.6.4. Within-cluster soc spatial autocorrelation. In order to assess
within-cluster spatial autocorrelation, an experimental variogram
spanning the cluster range (720 m)was calculated, plotted and visually
inspected in order to determine the practical support area, within
which SOC variation is controlled by very short-range factors (i.e., with-
in a cluster) and therefore should be ignored when mapping.

The experimental variograms along with a fitted pentaspherical
variogrammodel are shown in Fig. 8. It reveals good spatial structure,
with spatial dependence to about 500 m. The spatial dependence at
short range was strong: nugget variance was fit to zero, but then
raised to the known uncertainty of the laboratory analysis. The
Table 6
Explained SOC (%) variation (adjusted R2) by the explanatory variables.

Variable All points Clusters

Elevation 2.6 1.3
Flow accumulation 1.4 1.3
NDVI wet season 8.0 20.9
NDVI dry season 0.1 1.6
Annual precipitation 0.7 −0.7
Geology 26.9 33.2
Landscape 39.4 46.3
SOC (clusters) 71.1 71.5
Coordinates 7.7 6.7
originally-modeled zero nugget shows the effect of composite sam-
pling on a 90 m support. Thus most differences in SOC concentration
are explained by local factors at scales between cluster range
(720 m) and bulk sample range (90 m). The linear model predicting
SOC by sampling clusters (R2=0.71) has a residual mean square of
0.073%. This is the variance not explained by the clusters and should
correspond to the sill of thewithin-station variograms,whichwere es-
timated at about 0.06 (% SOC)2. This also means that the nugget found
in the long-range variogram represents a support of at least a cluster
and that the clusters can be represented by their ordinary
(unweighted) averages. Therefore spatial models as well as the re-
mainder of the analyseswere based on cluster averages. The averaging
generally increased the proportion of SOC explained by the different
explanatory variables (see Table 6).

4.2.6.5. Variogram analysis (clusters). Experimental variograms based
on calibration cluster averages were difficult to model, due to the
low number of point-pairs in each bin. Starting from the parameters
of the fitted variograms based on all calibration points, spherical
models were fitted (Fig. 9, Table 7), resulting in slightly longer ranges,
much lower structural sills and effectively zero nugget. These are all
consistent with the averaging effect. The REML fit did not improve
the variogram due to the high variance at smaller lag, pulling the
REML variogram fit up and introducing an unrealistic nugget. There-
fore the WLS fit was retained for mapping. The obtained variogram
ranges increased by about 12% (ordinary) and 26% (residual), which
potentially improves the ability for predictions in PACC from the
ACC areas. This is despite the reduction in the partial sill. Cluster aver-
aging will also be economical in future sampling as the within cluster
variation will be ignored.

4.2.7. Application of the model in accessible area
SOC was predicted across ACC areas from the calibration observa-

tions, by applying the selected OK, KED and LM spatial models. Inter-
nal prediction quality was assessed by kriging prediction standard
deviation (Goovaerts, 1999; McBratney et al., 2000). Since the
within-cluster analysis showed that SOC in a cluster could be repre-
sented by the cluster average, prediction was performed by punctual
kriging over 1×1 km grid as a support area, assuming that the aver-
age of a 1×1 km cell would to be similar to that of the 720×720 m
support area for which spatial structure had a little longer than half
the cluster length. The kriging prediction variance is thus realistic:
“punctual” in this case means on a cluster-size support.

The summary statistics of OK prediction (Table 8) shows OK with
narrower range (1.27%) and the KED with the wider range (1.97%)
and LM in between (1.44%). The same is observed for the mean SOC



Fig. 6. Boxplot of SOC as a function of geology (left) and landscape (right) as calculated based on calibration clusters.
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predictions by the three models. The OK prediction map clearly shows
the effect of low sampling density. Areas further away from sampling
locations are predicted as a spatially-weighted average (0.93%) as
there is no information on spatial variation structure. Predictions by
KED much resemble the landscape map (Fig. 10).

Kriging prediction standard deviation (KPSD) is lower (Table 8)
for the LM and higher for OK, with KED (Fig. 10) in between the
two, all with low IQR, suggesting that kriging prediction SD is a
rather precise measure. However, the mean KPSD is about half
(OK), a third (KED) and 5% (LM) the median and as high as the
minimum predicted SOC (OK, KED) but only about 11% (LM). This
suggests prediction quality by internal measure is better for LM
and poor for OK and KED.

4.2.8. Model validation in accessible areas
We used (1) the leave-one-out cross-validation (LOOCV) (Goovaerts,

1999;McBratney et al., 2000) as an internalmeasure ofmodel fitness and
(2) true validation with an independent sample set. Since there is no
cross-validation concept for the linear regression model, it was not
performed for the landscape model. LOOCV RMSE for both OK and KED
are low, about 0.02% and mean prediction residuals are about 0.00%
which indicate the models are unbiased. However largest residuals
(±0.70%, symmetrical) are a little higher than the minimum prediction
by the models. OK IQR of residuals is twice that of KED (0.29%). Indepen-
dent validation results (Table 8) show KED and LM performing similarly
(RMSE about 0.43%) and better than OK. Neither method is satisfactory
given the fact that RMSE is a substantial proportion (about half) of the
median from the model predictions. All methods are also biased
(under-predictions). True validation RMSE is about double LOOCV
RMSE in both cases, which is consistent with expectations. True valida-
tion RMSE and mean kriging SD are almost identical, and therefore
kriging standard SD is a reasonable estimate of the actual error. At this
pointwe had to decide if themodel was sufficiently accurate to proceed
to the next step of the methodology. Given the generally low values of
the target variable in the LNP (maximum 2.68%, median 0.87%, see
Table 5), and the result that the validation RMSE is about half themedi-
an, we are forced to admit that the model is of limited utility. It does
Table 7
REML fitted variogram parameters.

Variogram type Nugget [m2] Partial sill [m2] Range (m)

Ordinary, points 0.065 0.236 15,986
Residual, points 0.057 0.115 3908
Ordinary (within cluster) 0.016 0.069 528
Ordinary, clusters 0.000 0.225 18,126
Residual, clusters 0.008 0.100 5278
show some landscape differences and accounts for spatial structure
near the observation points, but even at a 1×1 km block gives predic-
tions that are only about twice as precise as taking the area-weighted
average or median observed value over the whole area. Nonetheless,
we continue with the method to illustrate the remaining steps.

To put our results in context, we compared them with other stud-
ies reported in the literature. Mueller and Pierce (2003) studied the
effect of sampling scale on accuracy of SOC predictions of top 20 cm
across an area of 12.5 ha in Michigan, USA, and showed that despite
the finer grids followed and a wide SOC range (0.2–0.29%), the best
RMSEP obtained was 0.28–0.30%, about 30% of the SOC observed
mean. Robinson and Metternich (Robinson and Metternicht, 2006)
compared the accuracy of OK, lognormal OK, IDW and splines for in-
terpolation of soil proprieties in 60 ha, south west Australia. The best
OK RMSEP was 1.43% and about 30% of the average observed OM and
35% of the mean predictions. Chai et al. (2008) compared the perfor-
mance of empirical best linear unbiased predictor (E-BLUP) with
REML with that of RK for prediction of SOM in the presence of differ-
ent external drifts across an area of 933 km2 in China. The best RMSEP
obtained was 0.38% (RK), which represented about 29% of mean ob-
served data. Grimm et al. (2008) predicted the spatial distribution
of SOC following the DSM approach in Panamá for different soil
depths in a 1500 ha area. The best RMSEP obtained was 1.72% for
the top 10 cm soil depth, corresponding to about 34% of the observed
SOC data.

The above results show that the proportion of RMSEP to mean
predictions or mean observed SOC in our study is poor relative to
other studies.

Comparative studies closer to the study area or in Africa, in general,
are few but show different results. For example Stoorvogel et al.
(2009) used a classification tree approach combined with existing
knowledge from literature and a small data set to map top soil SOC
content for a data-poor environment in a 1030 km2 of the Senegalese
peanut basin, with a RMSEP of about 0.17%, representing about 40% of
the mean observed SOC.

As another example, Mora-Vallejo et al. (2008) tested whether
DSM is suited for exploratory or reconnaissance soil survey of SOC.
Their results in a 13,500 km2 area in southeast Kenya show SOC
RMSEP of about 0.2%, corresponding to about 25% of both themean pre-
dictions by regression kriging andmeanobserved SOCdata.While these
results are consistent with those from elsewhere, Schloeder et al.
(2001) found rather more accurate results when they compared dif-
ferent interpolation methods (OK, IDW and thin-plate with and
without tensions) for organic matter (OM) prediction across a
70×20 km area in the Omo basin, south-west Ethiopia. The best
MSE was 0.08%, i.e., RMSE=0.28%, for OK, which represented about
20% of the mean observed data. Regardless of the different results, all
are better than the one found in our study.
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Fig. 7. Ordinary and residual (landscape as covariable) variograms, all calibration points.
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4.2.9. Model application in poorly-accessible areas
SOC was predicted here using the same models (OK, KED and

LM) for the same support area, also for the same reasons as in the
ACC area. We also assessed the internal prediction quality by kriging
prediction standard deviation (KPSD) (Goovaerts, 1999; McBratney
et al., 2000). The summary statistics of OK prediction (Table 8)
shows OK with narrower range (1.22% SOC) and the KED with the
wider range (1.77%) and LM in between (1.44%). The same is ob-
served for the mean SOC predictions by the three models. The OK
prediction map (Fig. 10) clearly shows the effect of low sampling
density. Areas further away from sampling locations are predicted
as a spatially-weighted average (0.93%) as there is no information
on the structure of spatial variation. KPSD is lower (Table 8) for
the LM and higher for OK, with KED in between the two, all with
low IQR, suggesting that Kriging prediction SD is a rather precise
measure. However, the mean KPSD is a little less than half (OK and
KED) and 5% (LM) the median and as high as the minimum predict-
ed SOC (OK and KED) but only about 11% (LM). This suggests predic-
tion quality by internal measure is better for LM and poor for OK and
KED.

Examples of the predictions into PACC based on models built from
the ACC area, as proposed here, are not available in the literature.
However, the obtained prediction results are within the range of
those obtained (and discussed) for ACC areas.
Fig. 8. Ordinary kriging experimental variogram of SOC up to a cut-off of cluster length
(720 m), based on all calibration points.
4.2.10. Model validation in poorly-accessible areas
We performed the true validation with an independent sample

set as planned. Validation results (Table 8) show, surprisingly, all
models with RMSEP lower than the one for ACC areas. Further
KED and LM performed similarly (RMSEP about 0.31% SOC) and bet-
ter than OK. However, all models performed poorly, given the fact
that RMSEP are about 4/10 of the SOC prediction median, so effec-
tive mapping is not possible with the present sampling density. All
models were also biased (under-prediction); with LM similar to
KED and both a little better than OK. Mean KPSD was a little higher
that validation RMSE (OK and KED) so KPSD is a reasonable
estimate of actual error.

Similar to predictions, validation results both the RMSEP (true val-
idation) and KPSD (with exception to LM) found in the present study
are about the minimum predictions and as high as double the mean
predictions, which confirms our poor results.

4.2.11. Relative performance of prediction model in PACC areas
When comparing validation RMSE between ACC and PACC, the

three models performed better in PACC than in ACC areas by about
28% (OK) and 26% (KED) and 31% (LM). This is likely due to the differ-
ent test set sizes (larger for the PACC). Thus the extrapolation into
non-sampled PACC areas seems justified for KED, although predic-
tions are largely determined by landscape away from sampling points
in accessible area. LM performed relatively best and does not suffer
from the requirement of spatial autocorrelation for interpolation
into PACC areas.

Despite poor predictions by both models, the methodology is
promising because predictions into PACC areas are close to predic-
tions made in ACC areas. The poor model predictions result from cu-
mulative error effects brought about along the different steps,
namely laboratory analysis, PLSR calibration, model building, and spa-
tial predictions. The weak SOC variation explained by most of the ex-
planatory variable here selected may also have contributed to the
poor model predictions, although many authors have demonstrated
the role of secondary data to improve prediction of SOC (Mueller
and Pierce, 2003; Simbahan et al., 2006). Nevertheless, one of the
strong points of our results lies on the spatial models' range, which al-
lows interpolation into PACC (about 5 km KED and 18 km for OK).
Despite a longer range for OK, the low sampling density is a limiting
factor as information on spatial structure is absent in the PACC. By
contrast, KED allows mapping based on the covariable but the range
of spatial structure is rather limited. LM can take over beyond the
OK and KED range, into the PACC areas.

The spatial models building was in this case made possible based
on the integrated soil-forming factor (landscape) and the clusters,
which explained most SOC variation. The OK results could be used
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Fig. 9. WLS and REML fitted ordinary (left) and REML fitted residual (right) variograms drawn based on calibration clusters (accessible areas).

Table 8
Summary statistics of SOC (%) spatial prediction, Kriging prediction standard deviation
(PSD) and model independent validation.

Model Prediction KPSD Independent validation

Min Median Mean Max Mean IQR Mean RMSE Bias

OK_ACC 0.42 0.90 0.91 1.69 0.40 0.08 −0.03 0.50 −0.02
OK_PACC 0.46 0.90 0.89 1.68 0.44 0.04 0.09 0.36 0.09
KED_ACC 0.35 1.01 1.22 2.32 0.37 0.03 −0.01 0.42 −0.01
KED_PACC 0.40 0.97 1.06 2.17 0.37 0.03 0.06 0.31 0.06
LM_ACC 0.46 0.93 0.87 1.90 0.05 0.02 −0.03 0.45 −0.03
LM_PACC 0.46 0.92 0.84 1.90 0.05 0.01 0.07 0.31 0.07
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to aid future sampling to improve prediction since the within cluster
spatial structure is rather weak and could be bulked. Therefore future
sampling could be based on the obtained structural range.

5. Conclusions

The chosen test case turned out to be a difficult one. The range of
SOC concentrations was narrow, weakly-dependent on covariables,
and exhibited most of its spatial structure within the support of a clus-
ter.We conclude that SOC concentration in the study area variesmostly
by local factors, probably current and past vegetation and animal activ-
ity (including termites), not captured by any covariable. The proposed
method did work as planned in the sense that the models did as well
in poorly-accessible as in accessible areas. The use of a previous
Fig. 10. SOC (%) prediction maps by KED using landscape as a covari
integrative survey (Stalmans et al., 2004) was quite helpful in this
case and was able to substitute for a large number of coverages.
Such a survey substitutes for multiple factors in the scorpan-SPPfe
framework.

Despite the somewhat disappointing performance in this test case,
we feel that the proposed methodology as such was appropriate,
certainly as the first stage in a survey in areas with difficult access.
At this point we know the spatial structure and relation of target var-
iable with covariables, and we have evidence that the model structure
in poorly-accessible areas is likely to be similar to that in accessible
areas. Thus if we are not satisfied with the predictions mostly as land-
scape spatial averages, we can plan a sampling campaign by optimiz-
ing the KED variance to a realistic target (set here by the PLSR
precision) as proposed by Brus and Heuvelink (2007). We also
know, in this case, to sample on a 1 km support and not try to map
variation in smaller areas. All this prepares us for the most efficient
approach possible in the difficult circumstances of a survey in
poorly-accessible areas.
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