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Autonomous navigation of robots in an agricultural environment is a difficult task due to the inherent
uncertainty in the environment. Many existing agricultural robots use computer vision and other sensors
to supplement Global Positioning System (GPS) data when navigating. Vision based methods are sensitive
to ambient lighting conditions. This is a major disadvantage in an outdoor environment. The current
study presents a novel probabilistic sensor model for a 2D range finder (LIDAR) from first principles.
Using this sensor model, a particle filter based navigation algorithm (PF) for autonomous navigation in
a maize field was developed. The algorithm was tested in various field conditions with varying plant
sizes, different row patterns and at several scanning frequencies. Results showed that the Root Mean
Squared Error of the robot heading and lateral deviation were equal to 2.4 degrees and 0.04 m, respec-
tively. It was concluded that the performance of the proposed navigation method is robust in a semi-
structured agricultural environment.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Precision agriculture takes the variation within the field into ac-
count by observing and responding to this variation. It is consid-
ered vital for sustainable farming. Precision agriculture can be
labour-intensive (Edan et al., 2009), therefore, there is great need
for automation of various agricultural tasks like crop scouting,
weed control, harvesting and tilling. In this vein, robotic solutions
have been applied in various agricultural domains.

A basic component of automation in agriculture is autonomous
navigation. Early navigation systems in agricultural domain used a
camera as the sensor and were based on computer vision methods
(Gerrish and Surbrook, 1984; Reid and Searcy, 1987). They were
popular in agricultural robotics due to the availability of low cost
cameras and the plethora of computer vision techniques that could
be readily applied. For example, several methods based on the
Hough transform were developed for row following (Hague and
Tillett, 1996; Marchant and Brivot, 1995). Southall et al. (2002)
developed a method for navigating a cabbage field in which plants
were planted in a grid pattern. They used the knowledge of the
environment to build a grid-based model of the local environment
in the camera view to obtain the guidance information. There are
also stereo based methods which try to extract depth information
for robust navigation (Kise et al., 2005). Recent developments in-
clude the autonomous robots developed by Weiss et al. (2011)
and Bergerman et al. (2012)

Vision based methods are sensitive to light conditions and
atmospheric effects. Due to the large variation in ambient light in
an outdoor environment, such as an agriculture field, most systems
need frequent calibration to the specific operating conditions.
Alternative methods to overcome this problems included those
based on GPS technology (Heidman et al., 2002; Slaughter et al.,
2008; Stoll and Kutzbach, 2001). However GPS technology has sev-
eral critical drawbacks including insufficient accuracy for precision
agriculture, interruptions in the signal and alterations in the envi-
ronment which are not in the map but which need to be taken into
account. This may lead to navigation failure.

Laser range finder(LIDAR) technology does not suffer from the
effects of ambient lighting conditions and thus can be more reli-
able in an agricultural environment. Also the viewing range can
be larger than that of a camera. Despite these advantages there is
not much focus on LIDAR based navigation in agriculture mainly
due to its high costs. Reducing costs in recent years has sparked
renewed interest in this technology. Barawid et al. (2007) devel-
oped a real-time guidance system for navigating an autonomous
vehicle in an orchard based on LIDAR. Hough Transform is used
to extract plant rows for navigating the vehicle. They reported that
the method is restricted to straight line recognition and thus have
difficulty in curved rows. Another disadvantage of the method
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occurs when the Hough transform fails to extract the correct plant
rows causing the vehicle to lose track. LIDAR has also been used for
obstacle detection and avoidance during navigation as in the case
of Subramanian et al. (2006). More recently Weiss and Biber
(2011) have developed a 3D LIDAR based navigation method where
they used a statistical model for detection of the plant rows. The
LIDAR acquires a 3D point cloud which is processed to remove
the points corresponding to the ground. Then a statistical model
identifies clusters of points that represents the plants. Though
the results are promising, the method will not be easily scalable
to other plants as the statistical model is specific to the maize
plants. The statistical model depends on the cluster of 3D points
which in turn depends on the shape and size of the plants. More-
over since the system is specifically designed for plant phenotyp-
ing, it imposes restrictions on the operating conditions like plant
size and speed of the robot.

One of the main shortcomings in the aforementioned methods
is the lack of robustness to uncertainties in the environment. Agri-
cultural environments are dynamic and non-deterministic with
several sources of uncertainty. For instance, there is noise due to
uneven terrain and the varying shapes, sizes and colours of the
plants. A robot operating in such an environment will suffer from
wheel-slippage and sensor noise which is further compounded
by controller and actuator noise. Therefore, designing a navigation
method capable of managing multiple sources of variation is a
challenging task. Probabilistic navigation methods proposed by
Thrun et al. (2005) are most promising. They proposed a 2D LIDAR
model that characterizes different types of noise in the environ-
ment. The sensor model is used within a particle filter for autono-
mous navigation of the robot in an indoor environment or in an
outdoor urban environment.

This study aims to develop an autonomous navigation method
for a robot equipped with a LIDAR for row following in a maize
field. The navigation method is based on a particle filter algorithm
(Thrun et al., 2005) which is used to estimate the robot-environ-
ment state of the system such as robot heading, lateral deviation,
distance between the rows of plants and the end of the rows. These
estimated values are in turn used to steer the robot. An important
aspect of the particle filter is the measurement model. The study
proposes a novel measurement model for the LIDAR where all
the data obtained from the LIDAR is utilized to compute the
likelihood of the particles. It is believed that this is the first
(probabilistic) LIDAR model developed for robot navigation in a
semi-structured environment like a maize field.

The paper is arranged as follows. Section 2 describes materials
and methods along with the details of the LIDAR model. Section 3
reviews the performance and robustness of the new navigation
algorithm. Whilst the limitations and extensions of the method
and the scope for future research are covered in Section 4.
2. Materials and methods

2.1. Maize field

The robot navigates in a field that consists of rows of maize
plants with a well defined headland. The rows may be either
straight or curved. Additionally, there may be gaps within the
rows. In general, the rows are approximately 0.75 m apart from
each other which is the standard row width in commercial maize
cultivation.
2.2. Robot architecture

The prototype robot used in this study consists of a chassis with
three wheels, with overall dimensions 0.8 m � 0.45 m � 0.3 m. It
has two rear wheels that do not pivot and a steering front wheel
whose steering actuator is controlled via CAN-bus. All wheel units
are equipped with incremental encoders to measure the rotational
speed. In addition, the front wheel unit is equipped with an angle
sensor to measure the steering angle. The driving speed of each
wheel depends upon the target speed of the control point, the loca-
tion of the wheel with respect to the control point and the turning
radius. An electronic box between the rear wheels houses a mini-
ITX computer with a 2.4 GHz Intel Core2 Duo processor running
Windows XP operating system. The robot is controlled by a custom
C# software which uses OpenCV library for image processing. En-
ergy to the computer and the wheel units is provided by three
12 V NiMH racing packs: 1 for the front wheel unit, one for both
rear wheel units, and one for the PC (see Fig. 1).

2.3. Laser range finder (LIDAR)

The robot is equipped with a LIDAR (LMS-111, Sick AG, Wald-
kirch, Germany) in the front at a height of 15 cm, through which
it senses the world. The LIDAR operates on time-of-flight (TOF)
principle. It emits pulsed laser beams using a laser diode. If a laser
pulse is incident on an object, it is reflected. The reflection is de-
tected using a photo diode. The distance to the object is calculated
from the propagation time that the light requires from emission to
reception of the reflection at the sensor. The emitted laser beams
are deflected using a mirror at an angular resolution of 0.5 degrees
and scan the surroundings in a circular manner with a maximum
field of view of 270 degrees. The maximum range and scanning fre-
quency of the LIDAR is 20 m and 50 Hz respectively.

Fig. 2(a) shows the top view of the mount. The axis of the LIDAR
is aligned to the longitudinal axis of the robot. By convention, the
starting and end angle of the scan are �135 and 135 degrees
respectively, which are depicted by points A and C respectively
in Fig. 2(a). A scan at any given time t consists of 541 observations
Zt = (z(1), z(2), . . ., z(541)) corresponding to the angles U = (/(1), /(2),
. . ., /(541)) = (�135, �134.5, . . ., 135), where z(j) is the range, that
is, distance of an object (plant leaves or stem) measured by the
beam j. Fig. 2(b) shows an example scan when the robot is between
the rows. The data points (/(j), z(j)) are represented in Cartesian
coordinates for illustrative purpose. The blue circles indicate the
position of the hit objects with respect to the LIDAR represented
by the red circle.

2.4. Local world

A rectangular area around the centre of the robot is defined as
the local world for the robot. If the robot is between the rows,
the local world is approximated by two parallel rows of plants,
one on either side of the robot. The rows have a finite width and
are a finite distance apart. It is assumed that the row ends are usu-
ally not in view as shown in Fig. 3(a). When the robot enters into
the headland, the ends of rows are in the field of view and the
geometry is modelled as in Fig. 3(b). The geometry of the local
world is characterized by four parameters, namely row width
(rw), row distance (rd), end of left row (el) and end of right row
(er). The central line halfway between the rows forms the reference
axis with respect to which the robot position is determined. The
robot is characterized by its main axis between the front wheel
and the point halfway between the rear wheels. This point be-
tween the two rear wheels is the control point. The position of
the robot in the local world is given by robot heading (h) and lat-
eral deviation (l). The robot heading is the angle between the main
axis and the reference axis measured in degrees. Lateral deviation
is the signed distance between the robot’s control point and the
reference axis. Jointly, the parameters represent the robot-field
state vector Xt = (h, l, rw, rd, el, er) that characterizes the system



Fig. 1. (a) The robot in a field; (b) the schematic view of the robot and; (c) perspective view of the robot.

(a)

(b)
Fig. 2. (a) top view of the mounted system along with the angular convention; (b)
an example scan in Cartesian coordinate system.
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at a given time t. Successful navigation of the robot requires accu-
rate estimation of the state vector at each time step.
2.5. Particle filter

The state vector denoted by Xt = (h, l, rw, rd, el, er) characterizes
the state of the robot in the field at any given time. Robot naviga-
tion can be considered as a dynamical system; the state changes at
every time step and its values are uncertain due to different
sources of noise in the environment. To deal with uncertainty the
state of the system at any time is represented as a probability dis-
tribution P(XtjZ1:t, U1:t) where Z1:t is the set of measurements made
by the robot up to time t and U1:t is the set of controls applied to
the robot to affect the state evolution up to time t. This distribution
(also called the posterior distribution) has to be inferred at each
time step. Inference of the posterior distribution is carried out by
means of a particle filter algorithm. The key idea of particle filters
is to represent the posterior distribution by a set of random sam-
ples called particles. These particles are recursively updated as
the new measurement Zt is acquired. The algorithm consists of
two steps: prediction and update. In the prediction step the new
values of the particles are calculated based on the current value
and the motion model of the robot which is discussed in detail in
the next section. In the update step the predicted values are eval-
uated for their consistency with the measurement Zt and impor-
tance weight assigned to them. Subsequently, the particles are
re-sampled according to their (normalized) importance weights
to yield the posterior distribution. Formally, it is expressed as

pðX1:t jZ1:t;U1:tÞ ¼
pðZt jXtÞpðXtjXt�1;UtÞ

pðZt jZ1:t�1Þ
pðX1:t�1jZ1:t�1;U1:t�1Þ ð1Þ

where, p(ZtjXt) represents the update step and is expressed by the
measurement model (also called the likelihood model or LIDAR
model); p(XtjXt�1, Ut) represents the prediction step and is ex-
pressed by the motion model; p(ZtjZ1:t�1) is the normalizing con-
stant; and p(X1:t�1jZ1:t�1, U1:t�1) is the posterior distribution at
previous time step t � 1. Details of the measurement model are dis-
cussed below. The specific form of Eq. (1) is indicative of the recur-
sive nature of the particle filter where the posterior at the previous
time step is updated by multiplying it with the motion model and
the measurement model obtained from the current time step.
2.6. Motion model

The motion model describes the changes in the state vector at
consecutive time steps. When the robot is between the rows, it fol-
lows the path along the centre of the plant rows. It is assumed that
the distribution of the initial state (X0 at t = 0) of the robot is
known, and that the gyroscope and wheel encoders on the robot
provide the control information Ut = (dx, dh) where dx is the



(a) (b)
Fig. 3. The local world of the robot (a) when it is between the rows; (b) when it is within the headland. The circle represents the control point of the robot and the arrow
represents the heading.
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displacement of the robot along its heading and dh is the turning
angle of the robot. Now, the motion model is expressed as

ht ¼ ht�1 þ dhþ eh

lt ¼ lt�1 þ dx sinðht�1 þ dhÞ þ el

rdt ¼ rdt�1 þ erd

elt ¼ elt�1 � dx cosðht�1 þ dhÞ þ eel

ert ¼ ert�1 � dx cosðht�1 þ dhÞ þ eer ð2Þ

where eh, el, erd, eel, eer are independent Gaussian noise applied to
the corresponding state variables. It is worth noting that the width
of plant rows are treated as a constant. This is because the scanner
data does not provide any information about the width of the rows;
it only returns the distance to the first ‘obstacle’ that the laser ray
hits.

Complication arises as the end of the rows is frequently not in
view of the LIDAR. According to the motion model, values of el
and er constantly decrease. When the end of row is not in robot’s
view, the el and er values should not be decreased. This situation
is dealt with by re-initializing the el and er in a fraction of particles
at regular intervals.

2.7. Measurement model

The perceptive field of the robot is modelled by a rectangular
area with the LIDAR at the centre of the rectangle (the origin).
When the robot is between the rows, the perceptive field is divided
into five regions, named R1 � R5 based on the density of the plant
material (Fig. 4). R1 represents the soil region over which the robot
travels and has the least density, R2 and R4 represent the region
Fig. 4. Schematic diagram of the perceptive field of the LIDAR.
with foliage with intermediate density, R3 represents the region
with plant stems with highest density and R5 represents the (soil)
region beyond R4. Regions R2 � R4 together constitute a plant row
of width rw with stems along the centre line equidistant from each
other at q m. The stems are assumed to be cylindrical with diame-
ter 2r m.

The LIDAR makes observations by means of 541 laser beams
corresponding to the 541 angles U = (�135, �134.5, �134, . . .,
135). An observation is a point in the perspective field character-
ized by the polar coordinates (/, z), where z is the range and / is
the angle of observation. Due to the scanning mechanism, the an-
gle of observations is always fixed but the range varies depending
on how far an object is hit (foliage or stem). Thus z is a random var-
iable which can take value in any of the five intervals (0,a1], (a1, a2],
(a2, a3], (a3, a4], and (a4, zthr) corresponding to the five regions R1,
R2, R3, R4 and R5, respectively, or z falls in the category z > zthr where
zthr is a specified threshold range value. The point ai indicates the
point of crossover of the laser beam from region Ri to region Ri+1.
The intervals are different for different observation angle / and
thus are different for each beam.

Due to the difference in the density of plant material in each re-
gion, the probability of a laser beam hitting plant material is also
different. The region R1 forms the robot path and objects are not
expected in this region. There can, however, be unexpected objects
like an occasional overhanging leaf. The likelihood of sensing such
unexpected (random) objects decreases with range and thus the
probability of an observation in such situations can be described
mathematically by an exponential distribution (Thrun et al.,
2005). Region R2 consists of a random configuration of plant leaves.
As in the case of R1, the probability of an observation in R2 can be
described by an exponential distribution with a higher rate param-
eter than in region R1 because the density of the objects in R2 is
higher than in R1. From the assumption that plant stems in region
R3 are cylindrical of equal diameter 2r and at a fixed distance q
from one other, the probability of a hit was derived which was con-
verted to uniform density. The details of this derivation is included
in A. Region R4 is, like R2, a foliage region and thus has the same
exponential distribution as of R2 and region R5 has the same den-
sity as of R1.

It is assumed that each observation in the measurement
Zt = (z(1), z(2), . . ., z(541)) is independent. Thus, the probability den-
sity of the measurement Zt is the product of the probability densi-
ties of the individual observation and is expressed by

PðZtÞ ¼
Y541

j¼1

PðzðjÞÞ ð3Þ

where P(z(j)) is the probability density of the observation z(j). It is the
probability density of a beam j hitting a plant in the perspective



Fig. 5. Illustration of the relationship between the intervals of a beam and the state
vector.
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Fig. 6. Probability density of hit of a laser beam at an angle / = 45 degrees.
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field. The probability of no-hit is the probability that the beam
passes through a region without hitting anything. The probability
of a hit is different in each region due to the difference in the plant
density as well as due to the spatial arrangement of the regions. For
instance, the probability of hit in R2 not only depends on the plant
density in that region but also on the fact that the beam does not hit
any plant in region R1 i.e., probability of no-hit of region R1. In gen-
eral, the probability of a hit in region Ri depends on the plant den-
sity of region Ri as well as the probability of no-hit of all the
preceding regions through which the beam travels. Formally, it is
described as follows. If an observation x = z(j) is in R1, then the prob-
ability density of a hit at range x is given by

PðxÞ ¼ k1e�k1x ðx 2 ð0; a1�Þ ð4Þ

where k1 is the rate parameter of the exponential distribution. If
x = z(j) is in R2, the probability density of a hit at range x is given by

PðxÞ ¼ Pðno� hit in R1Þ � Pðxjno� hit in R1Þ
¼ w1 � k2e�k2ðx�a1Þ ðx 2 ða1; a2�Þ ð5Þ

where w1 ¼ e�k1a1 is the probability of no-hit in R1 and k2 is the rate
parameter of the exponential distribution in R2. If the observation
x = z(j) is in R3, the probability density of a hit at range x is

PðxÞ ¼ Pðno� hit in R1Þ � Pðno� hit in R2jno� hit in R1Þ
� Pðxjno� hit inR1;no� hit in R2Þ

¼ w1 � w2 �
p�

ða3 � a2Þ
þ ð1� p�Þe�k2ðx�a2Þ

� �
ðx 2 ða2; a3�Þ ð6Þ

where p� ¼ min 2r
q sinð/þhÞ ;1
� �

; w2 ¼ e�k2ða2�a1Þ is the probability of no-

hit in R2, and q and r are the parameters of the row of stems. The
derivation of p⁄ is given in A. Further, if the observation is in R4,
the probability density of a hit at range x is

PðxÞ ¼ w1 � w2 � w3 � k2e�k2ðx�a3Þ ðx 2 ða3; a4�Þ ð7Þ

where w3 ¼ ð1� p�Þe�k2ða3�a2Þ is the probability of no-hit in R3 (A). If
the beam goes beyond the four regions without hitting anything,
then x is in the interval (a4, zthr). In this case the probability density
of a hit at range x is given by

PðxÞ ¼ w1 � w2 � w3 � w4 � k1e�k1ðx�a4Þ ðx 2 ða4; zthrÞÞ ð8Þ

where w4 ¼ e�k2ða3�a4Þ is the probability of no-hit in R4 and zthr is a
specified threshold value. Finally, the observation may be greater
than or equal to the threshold value zthr. For such observations,
P(z P zthr) is modelled as one minus the no-hit probability in the re-
gions up to zthr.

In order to compute the probability of hit of a beam j, it is nec-
essary to compute its corresponding intervals a1, . . ., a4. The vari-
able ai not only depends on the beam angle /(j) but also on the
components of the state vector Xt as shown in the Fig. 5. This rela-
tionship enables the determination of the particle weights in the
particle filter.

Fig. 6 shows the probability density profile (pdf) of a laser beam
at / = 45 degrees for two sets of rate parameters k1 and k2. The
assumptions for creating the plot included that the plant rows
are 0.2 m wide at a distance of 0.75 m. The robot is located at the
centre of the two rows with heading at 0 degree, such that the
end of the rows are in sight at a distance of 0.8 m. Thus, the values
of the components of the state vector are h = 0, l = 0, rw = 0.2,
rd = 0.75, el = 0.8, and er = 0.8. The points a1, a2, a3, a4 and zthr on
the graphs indicate the boundaries of the different regions in the
perspective field.

Table 1 shows the pseudocode of the measurement model
although in the actual C#-code it is implemented on the logarithmic
scale to prevent numerical errors. The input to the algorithm is the
measurement Zt and the particle set X t and the output of the algo-
rithm is an array W containing the likelihood of the particles in X t .
For each observation z(k), first the regions R1, . . ., R5 are computed
in terms of the region bounds a1, . . ., a4 (Line 6). Subsequently, the
probability of hit is computed in Lines 8–12 based on the observa-
tion region of z(k). The calculation in Line 13 corresponds to the Eq.
(3) which is the likelihood of the particle. Line 7 takes care of the sit-
uation when the observation is greater than zthr.
2.8. Attenuation factor

The observations obtained from adjacent beams are not inde-
pendent. They may be correlated as they belong to the same plant
or correlation may arise due to multiple reflections of a beam from
several plants. In the measurement model, however, every obser-
vation is regarded as independent. As a result the likelihood is
highly peaked. That is, likelihoods of two similar particles differ
by orders of magnitude. This problem is addressed by expressing
the dependency between the beams by means of the attenuation
factor m (Thrun et al., 2005), where m measurements are considered
as a single unit reducing the effective number of measurements by
a factor m. This is implemented by raising the likelihood to the
power 1/m.

The appropriate value of m is determined using the effective
sample size (ESS) of the PF (Doucet and Johansen, 2009). Fig. 7
shows the plot of ESS vs m averaged over the iterations of a PF
run. At small values of m, the ESS is close to 1% indicating most of
the predicted particles are ‘far’ from the measurement and thus
have negligible weights. However, when the value of m increases
so does the ESS indicating that the particle weights are more
evenly distributed. The value of m = 160 was selected so that 70%
of the particles are retained after the resample step.



Table 1
Measurement model algorithm.

1 MeasurementModel(Zt ;X t)
2 Initialize array W to hold the likelihood of the particles
3 for each particle xt in the particle set X t do
4 w = 1
5 for k = 1 to 541 do
6 compute region bounds (a1, . . ., a4) using /(k) and xt

7 if(z(k) > zthr) then x = zthr else x = z(k)

8 if(x 2 R1) then p ¼ k1e�k1x

9 if(x 2 R2) then p ¼ w1 � k2e�k2ðx�a1Þ

10 if(x 2 R3) then p ¼ w1 � w2 � p�

ða3�a2Þ þ ð1� p�Þe�k2ðx�a2Þ
� �

11 if(x 2 R4) then p ¼ w1 � w2 � w3 � k2e�k2ðx�a3Þ

12 if(x 2 R5) then p ¼ w1 � w2 � w3 � w4 � k1e�k1ðx�a4Þ

13 w = w⁄p
14 endfor
15 W[i] = w
16 endfor
17 return W
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Fig. 7. The graph of ESS vs m.
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2.9. Experimental data

The experimental data consists of several sequences of scans ta-
ken by the robot as it navigates through the field. The sequences
are from different maize fields with different plant size and row
structure (straight rows, curved rows, gaps within the rows). The
number of scans in each sequence depends on the length of the ro-
bot run. The LIDAR records data at 10 Hz. Though it can record data
at a maximum rate of 50 Hz, it was limited to 10 Hz for computa-
tional reasons. For every scan in the sequence, the ground truth for
the most important state variables, heading (hr), lateral deviation
(lr), end of left row (elr) and end of right row (err) was established
by hand annotation of a corresponding image captured by a down-
Fig. 8. Three images for three different field conditions
ward looking camera mounted on the robot at a height of 1.65 m.
Fig. 8 shows three example images illustrating the process of
establishing the ground truth. The three images correspond to
three different experimental conditions, where the plants are in
different stages of development. These ground truth values were
used to evaluate the performance of the PF. It should be noted that
in case of large plants (Fig. 8(c)) there is some ambiguity in deter-
mining the exact position and orientation of the rows. In each pic-
ture, the yellow lines indicate the position and orientation of the
plant rows, the green line indicates the robot and the red line is
the reference line. The heading and lateral deviation of the robot
is determined with respect to the reference line.

The test set is used for calibrating the particle filter. It consists
of a single sequence of 181 scans obtained from a field with med-
ium sized plants (Fig. 8(b)) and and field conditions in which the
robot is expected to operate. The validation set, on the other hand,
is used to validate the robustness of the PF. It consists of five se-
quences of scans obtained from different fields.
3. Experiments and results

Experiments consisted of two different phases namely, testing
and validation. In the testing phase the PF algorithm and its param-
eters were calibrated with the test data. Subsequently, the cali-
brated algorithm is validated using validation data. In all the
experiments, the PF was initialized with 256 particles. This number
is empirically determined based on real-time computational con-
straints – a balance between update frequency (10 Hz) and number
of particles. At each time step of the algorithm, the weighted mean
of the posterior distribution Xt is the PF estimate of the state Xt at
time t. Thus, for every image in the sequence, its PF estimate can be
compared with the corresponding ground truth.

Calibration of the PF involved evaluating its performance on the
test dataset for various combinations of rate parameters from the
sets k1 = {0.001, 0.005, 0.001, 0.005, 0.01} and k2 = {1, 5, 10, 15,
20, 25} comparing it with the ground truth data. Fig. 9 shows the
result of the comparison for three different values of k2 in {1, 10,
20} where k1 = 0.005. The five diagrams in the figure correspond
to the five state variables. In this figure variables h, l, el and er
are plotted along with their corresponding ground-truth data hr,
lr, elr and err, respectively, while rd had no reference. Note that
rw = 0.2 m is assumed to be constant and hence not estimated by
the PF.

The Figs. 9(a) and (b) show that the PF estimate is close to the
true values of hr and lr when k2 = 10 through out the entire robot
run; while in other two cases (k2 = 1 and k2 = 20) the PF estimate
with small plants, medium plants and large plants.
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Fig. 9. The result of PF estimation of Xt of a robot run for three values of k2. The green dotted curve is the estimate when k2 = 1, the blue dashed curve is the estimate when
k2 = 10, and the cyan dashed and dotted curve is the estimate when k2 = 20. The value of k1 was fixed to 0.001 in all three cases. The red solid line indicates the reference data.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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diverges from the ground truth at the end of the row. The detection
and tracking of the end of the row is most accurate when k2 = 10.
The end of row detection fails when k2 = 1 and there are many false
detections when k2 = 20. It can also be observed (Fig. 9(c)) that the
estimation of rd is sensitive to the values of k2. The increase and de-
crease in the value of k2 leads to the increase and decrease of rd
respectively.

Based on the findings of the test phase, the calibrated PF used
for the validation phase had the rate parameters k1 = 0.005 and
k2 = 10. The performance of the validated PF is shown in Table 2.
It gives the mean and standard deviations of the Root Mean
Squared Error (RMSE) of the PF estimate of the state variables com-
puted using the five sequences. Note that the RMSE values for el
and er are determined using only the final segments of the se-
quences, where row ends are still in robot’s view.

Other validation experiments were included to test the PF at
lower scanning frequency of 5 Hz. Fig. 10 shows the comparison
of the PF estimate with ground-truth data for heading and lateral



Table 2
Mean ± standard deviation of the RMSE using validation data.

Heading (degrees) 2.40 ± 1.0
Lateral deviation (m) 0.04 ± 0.02
Left end-of-row (m) 0.30 ± 0.10
Right end-of-row (m) 0.26 ± 0.10
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deviation in two different field conditions. The results in the top
and bottom rows correspond to the test done in the field with
small (25 cm tall) and large (60 cm tall) plants, respectively.

In general, extreme values of k2 (and k1) lead to erroneous esti-
mates of the state vector components. For instance, when k2 = 1 the
PF fails to detect the end of the rows (green dotted curve in
Figs. 9(d) and (e)). Similarly, when k2 = 20 there are many false
detections due to small gaps from missing plants (cyan dotted
and dashed curve in Figs. 9(d) and (e)). The value of k2 is directly
proportional to the ‘sensitivity’ of the PF to the row ends as well
as to the gaps in the row. Increasing the value of k2 also results
in wider row distance estimates.
3.1. Model complexity

Modelling the details of the stem region R3 increases the com-
plexity of the measurement model. The trade-off between model
complexity and algorithm accuracy was quantified by means of
RMSE values of the PF estimate for h, l, el and er using the test data.
The stem region R3 can be excluded from the measurement model
simply by setting r = 0. The experimental results are tabulated in
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Fig. 10. The result of PF estimation of Xt of a rob
Table 3. They suggest that the added complexity does not signifi-
cantly improve the performance of the PF in a maize field. The
implications of this is discussed in the next section.
4. Discussion

In this study a novel sensor model was developed for a range
scanner for robot navigation in a maize field. The sensor model is
used as a constituent element in a particle filter based navigation
method for estimating the robot-environment state. The particle
filter is able to deal with different kinds of uncertainties in the
environment to provide a reliable estimate of the robot heading
and lateral deviation as it moves through the field.

There is a lower limit on the plant size in which the robot can
operate. This depends upon the height of the LIDAR mounted on
the robot. In the experiments, the scanner was mounted at a height
of 15 cm from the ground and the smallest plant size at which the
algorithm gave reliable estimates was between 20–25 cm. Ideally,
the plants should be 5–10 cm taller than LIDAR to satisfy the
assumptions of the perspective field. Similarly, the algorithm does
not perform very well when the plants are taller than 60 cm be-
cause of the dense leaves which extend across the middle of the
rows and on to the main robot path. The resulting scanner data
is unlike the one shown in Fig. 2(b) and the perspective field can-
not easily be divided into different regions based on the differences
in the density of the plants. For instance, the foliage is dense and
also covers R1. The large leaves of the plants obstruct the laser
beams such that observations are clustered around the origin. Also,
the measurement model cannot be used to reliably estimate the
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ot run when the scanning frequency is 5 Hz.



Table 3
RMSE values using the test data.

Parameter settings RMSE (with R3) RMSE (without R3)

h l el er h l el er

k1 = 0.001, k2 = 1 1.98 0.05 0.71 0.72 2.01 0.05 0.71 0.74
k1 = 0.001, k2 = 5 2 0.03 0.68 0.68 1.97 0.03 0.71 0.71
k1 = 0.001, k2 = 10 2.34 0.03 0.38 0.16 1.80 0.02 0.37 0.17
k1 = 0.001, k2 = 15 2.20 0.03 0.35 0.19 1.84 0.03 0.36 0.18
k1 = 0.001, k2 = 20 1.95 0.03 0.36 0.21 1.83 0.03 0.36 0.19
k1 = 0.001, k2 = 25 2.08 0.05 0.84 2.22 1.55 0.04 0.46 0.90
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width of the plant rows. Due to the physics of the data acquisition
process of the LIDAR as well as due to its positioning on the robot
only the front of the object can be observed. This, however, does
not affect the navigation of the robot as seen in the Section 3 where
tests were carried out in fields with different plant sizes.

The process by which the ground truth is determined is based
on the camera image corresponding to a scan. The difference in
the camera’s downward-looking and the LIDAR’s forward-looking
perspectives results in larger RMSE values for the end of row com-
ponents (er and el) than that was observed in field experiments.
This is because, in the camera image, the end of a row is deter-
mined by the tip of leaf extending furthest into the headland which
may not be accurate from a LIDAR perspective. The heading and
lateral deviation components does not suffer from this perspective
bias. The problem is further compounded by hardware errors
which result in missing scans.

The experiments showed that the added complexity of the stem
region (R3) does not improve the accuracy of PF estimation. This
may be explained by the fact that the density of the foliage is great-
er than the density of the stems for maize plants. A closer exami-
nation of Fig. 6 shows that, in the experimental situation, the
foliage density is greater than the density of the stem region (the
solid blue curve where k2 = 10). Here the exponential density of
the R2 dominates over the density of the stem region R3. This effect
may not hold for other crops as indicated by the dashed red curve
which corresponds to a situation where the density of the stems in
R3 is greater than the foliage density in R2. In conclusion, the inclu-
sion/exclusion of a particular region depends on the crop, in which
the robot will operate and the parameters of the measurement
model can be tuned as necessary.

The scanning rate impacts the performance of the algorithm.
Low scan rate leads to erroneous PF estimate, while a high scan
rate improves the accuracy of the PF estimate. This, however, in-
creases the computational burden and thus the trade off between
the two is a design decision based on the application. As demon-
strated in Section 3, scanner data acquired at a rate of 10 Hz is suf-
ficient for robust estimation of the robot-environment state.

The proposed LIDAR model is closely related to the beam model
developed by (Thrun et al., 2005). The beam model is a mixture of
four densities where each density characterizes a type of noise typ-
ically encountered when using a LIDAR. In comparison, the differ-
ent types of noise in the beam model is analogous to the different
Fig. A.11. A section of
regions in the measurement model. The two models differ in the
way in which the hit probability of the beam is computed. In the
measurement model, it depends on the spatial arrangement of
the regions as well as the sequence in which the beam encounters
these regions; whereas the beam model is simply a weighted aver-
age. A main advantage of the measurement model is that it takes in
to consideration the geometry of the perspective region and the
angles of the laser beams unlike the beam model.

Robot navigation in a maize field using a laser range finder is
not a trivial task because range data are noisy. The noise may be
due to incorrect observations due to multiple reflections, missing
observations or sometimes even missing scans. A probabilistic sen-
sor model is a good way to characterize these various types of sen-
sor noise. As far as it is known this is the first probabilistic 2D
LIDAR model for robot navigation in a maize field. The sensor mod-
el can be easily extended to included more regions within the per-
spective field if necessary. Each region can be of a new type with its
own probability distribution. As a result the model can be applied
in other fields.

5. Conclusion

This study focused on developing a probabilistic navigation
method based on a particle filter (PF). Such a probabilistic ap-
proach mitigates the effects of uncertainties in the environment.
This is demonstrated in the performance of the PF under various
field conditions, where it provided accurate estimates of the ro-
bot-environment state in a dynamic and noisy environment. The
probabilistic model of the LIDAR sensor incorporated in the PF
turned out to be an effective way of dealing with sensor noise. Be-
cause of its probabilistic nature, the model could easily be incorpo-
rated into the PF. Using a LIDAR sensor for sensing the world also
expanded the operating conditions of a robotic system in an agri-
cultural field as, for example, it did not suffer from the effects of
varying lighting conditions. In conclusion, it was shown that using
LIDAR with a Particle Filter enabled robust robot navigation within
the semi-structured agricultural environment of a maize field.
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Appendix A. Probability of an observation in R3

The top view of a section of the stem region R3 is shown in
Fig. A.11. It consists of a series of cylindrical stems of diameter 2r
with centres at a distance of q from one stem to the next. Consider
a laser beam j at an angle /. S1 and S2 represent two adjacent
the stem region.
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stems of diameter 2r and with centres at a distance q apart. The red
circles indicate the position of the LIDAR. A laser beam j with angle
/ strikes S1 between the points m1 and m2. The line through A and
m1 is tangent to S1 and so is the line through B and m2. The beam
will strike the stem S1 between the points m1 and m2 when the LI-
DAR is between the positions A and B, respectively, where m1 is the
first pointand m2 is the last point of contact. The same beam will
strike stem S2 when the LIDAR is between C and D. Assuming that
the stems are uniformly random with respect to the position of the
robot, the probability of a beam striking a stem is related to the
area covered by the stems. In other words it is proportional to

the ratio 2rþ2d
q . From trigonometry d ¼ r 1

sinðhÞ � 1
� �

where h = / + h

and thus the ratio can be rewritten as 2r
q sinðhÞ. The probability of a

stem hit is thus

p� ¼ min
2r

q sinðhÞ ;1
� �

If the beam does not hit a stem (probability 1 � p⁄), it may still hit
foliage as in R2. Assuming a uniform density for a stem hit, the final
pdf in region R3 is

PðxÞ ¼ p�

a3 � a2
þ ð1� p�Þe�k2ðx�a2Þ

Integrating this over the range (a2, a3] gives the probability of hit
with the resulting probability of no-hit in R3 being
w3 ¼ ð1� p�Þe�k2ða3�a2Þ.

References

Barawid Jr., O.C., Mizushima, A., Ishii, K., Noguchi, N., 2007. Development of an
autonomous navigation system using a two-dimensional laser scanner in an
orchard application. Biosystems Engineering 96 (2), 139–149.
Bergerman, M., Singh, S., Hamner, B., 2012. Results with autonomous vehicles
operating in specialty crops. In: IEEE International Conference on Robotics and
Automation (ICRA), 2012, pp. 1829–1835.

Doucet, A., Johansen, A.M., 2009. The Oxford Handbook of Nonlinear Filtering.
Oxford University Press, Chapter: A Tutorial on Particle Filtering and
Smoothing: Fifteen Years Later.

Edan, Y., Han, S., Kondo, N., 2009. Automation in Agriculture, in Handbook of
Automation. Springer.

Gerrish, J., Surbrook, T., 1984. Mobile robots in agriculture. In: First International
Conference on Robotics and Intelligent Machines in Agriculture,1984, St. Joseph,
MI, American Society of Agricultural Engineer, pp. 30–41.

Hague, T., Tillett, N., 1996. Navigation and control of an autonomous horticultural
robot. Mechatronics 6 (2), 165–180.

Heidman, B., Abidine, A., Upadhyaya, S., Hills, D., Robert, P., 2002. Application of RTK
GPS based auto-guidance system in agricultural production. In: Proceedings of
the 6th International Conference on Precision Agriculture and Other Precision
Resources Management, 2002, Minneapolis, USA, pp. 1205–1214.

Kise, M., Zhang, Q., Mas, F., 2005. A stereovision-based crop row detection method
for tractor-automated guidance. Biosystems Engineering 90 (4), 357–367.

Marchant, J., Brivot, R., 1995. Real-time tracking of plant rows using a hough
transform. Real-Time Imaging 1 (5), 363–371.

Reid, J., Searcy, S., 1987. Vision-based guidance of an agricultural tractor. IEEE
Control Systems Magazine 7 (2), 39–43.

Slaughter, D., Giles, D., Downey, D., 2008. Autonomous robotic weed control
systems: a review. Computers and Electronics In Agriculture 61 (1), 63–78.

Southall, B., Hague, T., Marchant, J.A., Buxton, B., 2002. An autonomous crop
treatment robot: Part i. A Kalman filter model for localization and crop/weed
classification. International Journal of Robotics Research 21 (1), 61–74.

Stoll, A., Kutzbach, H., 2001. Guidance of a forage harvester with gps. Precision
Agriculture 2 (3), 281–291.

Subramanian, V., Burks, T., Arroyo, A., 2006. Development of machine vision and
laser radar based autonomous vehicle guidance systems for citrus grove
navigation. Computers and Electronics in Agriculture 53 (2), 130–143.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics. The Mit Press.
van Evert, F.K., van der Bijl, M., Lamaker, A., Stravers, T., Polder, G., van der Heijden,

G.W., Kroon, B., Knol, J., Dhaene, M., van der Zalm, A., Bakker, T., Lotz, L., 2011.
Hugo. In: Proceedings of the 8th Field Robot Event, 2010, Braunschweig,
Germany, pp. 88–99. <http://www.digibib.tu-bs.de/?docid=00041345>.

Weiss, U., Biber, P., 2011. Plant detection and mapping for agricultural robots using
a 3d lidar sensor. Robotics and Autonomous Systems 59 (5), 265–273.

http://refhub.elsevier.com/S0168-1699(13)00247-0/h0005
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0005
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0005
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0010
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0010
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0010
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0015
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0015
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0020
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0020
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0025
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0025
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0030
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0030
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0035
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0035
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0040
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0040
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0045
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0045
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0045
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0050
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0050
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0055
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0055
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0055
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0060
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0065
http://refhub.elsevier.com/S0168-1699(13)00247-0/h0065

	Laser range finder model for autonomous navigation  of a robot in a maize field using a particle filter
	1 Introduction
	2 Materials and methods
	2.1 Maize field
	2.2 Robot architecture
	2.3 Laser range finder (LIDAR)
	2.4 Local world
	2.5 Particle filter
	2.6 Motion model
	2.7 Measurement model
	2.8 Attenuation factor
	2.9 Experimental data

	3 Experiments and results
	3.1 Model complexity

	4 Discussion
	5 Conclusion
	Acknowledgements
	Appendix A Probability of an observation in R3
	References


