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1. Introduction

Tailoring laser pulse properties, referred to as pulse shaping, is
increasingly used in ultrafast spectroscopy to induce classical or
quantum interferences and to control the excitation–relaxation
processes in atomic and molecular systems [1–3]. Given the
insufficient knowledge about the complex underlying dynamics
and/or the control mechanism in many practical optimizations,
pulse shaping is commonly implemented using an adaptive
scheme [4–8]. Despite successful demonstration of the phase-
sensitive nature of many light-matter interactions using adaptive
schemes, efficient implementations of optimization algorithms in
such experiments and the extraction of (even qualitative) insight
from the “optimal” phase profiles are still key challenges [9–12].

A common depiction of pulse shaping describes a pulse with the
magnitudes and the relative arrival times of the constituent
wavelengths. These two features are usually quantified by the
amplitude and the phase of the pulse in its frequency domain
formulation. Here we show that directly modeling the group delay,
rather than coding it in phase, can benefit adaptive pulse shaping at
both fundamental and practical levels.

Some benefits of delay-based pulse shaping are as follows. First,
delay is a physical observable with intuitive meaning; while phase is
an abstract and congruent quantity (different phase values may be
considered equivalent modulo 2π). Second, delay-basedmodeling can
be used for a one-to-one mapping of delay to phase over phase spans
exceeding 2π, and an efficient use of phase masks providing such
spans. Third, a direct estimation of delay eliminates the challenges of
phase unwrapping and numerical artifacts of differentiation, encoun-
tered in obtaining the delay profile from an estimated phase profile.
The reader interested in a more fundamental treatment of this subject
is referred to [13] for contrasting phase and delay in coherent control,
and to [14] for an investigation of nontrivial ambiguities of relative
phase and delay associated with isolated spectral components.

Here, we investigate the performance of delay-based adaptive
optimizations in terms of efficiency, noise robustness, convergence
speed, repeatability, fitness sensitivity, and parameter insensitivity in
this contribution. We conduct a comprehensive study of “differential
basis” reported in some earlier experiments in adaptive laser pulse
shaping (1D) [15], which is comparable to a similar approach in image
processing (2D) for the estimation of the unwrapped phase profile
[16]. Our numerical and experimental results show that in most cases
and under similar conditions, a delay-based optimization outperforms
a phase-based optimization.
2. Basic concepts

2.1. Adaptive laser pulse shaping with evolutionary algorithms

Numerical optimizations, such as evolutionary algorithms, are based
onfindingpatterns innumerical data (top–downapproach), rather than
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an analytical formulation of the problem or the optimization strategy
(bottom–up approach).

Evolutionary algorithms explore an optimization space by trying a
set (here referred to as population) of candidate solutions. The relative
success of optimization for each candidate solution is quantified by a
figure of merit (optimization fitness). By knowing (simulating or
measuring) the fitness values of different candidate solutions and
applying some stochastic statistical operations in each iteration
(generation), a new set of candidate solutions is generated. Quanti-
fying the minimum, the average, and the maximum fitness values in
each generation gives an impression of the relative spread of the
population in the search space, or equivalently the richness (flat vs.
structured shape) of the optimization space at points corresponding
to the current population. Furthermore, tracking the average (or the
minimum/maximum) fitness in consecutive generations (learning
curve) gives qualitative and quantitative insights regarding the
optimization. One main aspect of an optimization is its vulnerability
to being trapped in local optima, instead of reaching the global
optimum. This issue will be addressed in Sections 3.3, 3.4, and 4.3.2.
The stochastic nature of these optimizations implies that even in the
absence of noise andwith exactly similar parameters, the outcomes of
several runs of the same program can be different, as different
realizations of random number sequences are employed in
calculations.

Here, we use an evolutionary algorithm with promising results in
adaptive laser pulse shaping, namely the covariance matrix adapta-
tion evolution strategy (CMA-ES) [17]. Details of implementation of
the code have been reported before [18].

Fig. 1(top) shows the block diagram of an adaptive laser pulse
shaping system. The pulse shaper block adds a phase profile φshaper(ω)
to the phase of the input laser pulseφin(ω). The shaped pulsewith a net
spectral phase of φnet(ω)=φin(ω)+φshaper(ω) is then applied to the
optical process. The optimization algorithm uses feedback from the
experiment to generate a new set of parameters, which determine
φshaper and φnet via a given parameterization. The optical process in our
study is broadband second harmonic generation, which is optimized
when φnet(ω)=0. We will also address a different (resonant) optical
process in Section 5.

2.2. Optical process: second harmonic generation

We consider collinear type I phase-matched second harmonic
generation (SHG) of a laser pulse in the non-depleted pump regime,
as the optical process shown in Fig. 1. The pulse is incident normally
on a thin uniaxial crystal (phase-matching bandwidth considerably
larger than the pulse bandwidth), with instantaneous χ2 nonlinearity
and ideal anti-reflection coatings on both sides. Under these
conditions and with the slowly-varying envelope approximation,
the nonlinear component of the output electric field (referred to as
the SHG signal) is proportional to the square of the input electric field
in the time domain. Equivalently, the complex envelope of the SHG
φ(ωn)= an
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Pulse Shaper Optical Process

FeedbackParameterization Optimization
Algorithm
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{an}φ(ω)
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Fig. 1. (Top) Block diagram of an adaptive pulse shaping experiment, and (bottom) two
different parameterization schemes. Algorithm outputs {an} may first be shifted and/or
scaled by the parameterization block (before being assigned to the phase variable or its
derivative).
electric field is the autoconvolution of the fundamental electric field
envelope in the frequency domain [19].

By applying different phase profiles to the input laser pulse,
different profiles and total energies of the SHG signal can be obtained.
We define the optimization fitness to be the ratio of the energy of the
SHG field associatedwith a given phase function, normalized to that of
a zero-phase pulse. Maximizing this fitness function, referred to as
SHG optimization, is equivalent to compensation for the phase of the
input laser pulse and achieving a transform-limited shaped pulse in
Fig. 1 [19]. SHG optimization is commonly used in pulse shaping
spectroscopy as a routine preliminary step to achieve and/or verify a
flat-phase pulse at the sample position before shaping the pulse for
the main experiment. It is also often used as an independent test case
to evaluate an adaptive pulse shaping system.

2.3. Significance of parameterization

An important aspect of the CMA-ES algorithm is incorporating only
a few internal parameters, with almost similar optimal values (or
ranges) for different optimization problems [20]. As such, once an
optimal implementation of the algorithm is found, one can change the
parameterization block in Fig. 1(top) for different experiments,
without changing the algorithm parameters. In this way, an efficient
implementation of a given optimization is considerably disentangled
from an efficient implementation of the algorithm itself. It will also
enable one to use an efficient parameterization (of a given process)
with alternative algorithms [21] with little or no modification.

Fig. 1(bottom) shows two different implementations of the
parameterization block. The common phase-based parameterization
uses the algorithm output parameters {an} as samples of the phase
profile to be programmed on the pulse shaper (φshaper). The delay-
based parameterization, the subject of this study, uses the algorithm
output parameters {an} as samples of the derivative of φshaper. In both
parameterizations, intermediate values of the sampled profile are
obtained by interpolation (in our study by spline interpolation), and
algorithm outputs may also be shifted and/or scaled (see Section 3.2).

This contribution is primarily focused on the relative success of the
two (delay- and phase-based) parameterizations under similar
conditions, and not a comparison of different conditions (such as
linear vs. spline interpolation) or alternative (basis-set [11] or model-
based [22]) parameterizations.

2.4. Significance of range and number of parameters

The range of algorithm parameters should be large enough to
ensure an estimated profile with large enough phase (or delay) span.
On the other hand, an inappropriately-large range of parameters can
slow down the algorithm. The pixelated nature [23] and the finite
temporal range of a pulse shaper and also the finite dephasing time of
an excited state [24] put an upper bound (as small as sub-ps) on the
parameter span, too. The number of parameters should also be
sufficiently high to estimate the target profile with reasonable
resolution, and sufficiently small not to slow down the algorithm
(“curse of dimensionality” [20]). As such, the performance of adaptive
optimizations shown in Fig. 1 is best assessed by a simultaneous study
of the effects of the range and the number of algorithm output
parameters. Similar limitations exist in optimizations using basis set
parameterization (see Fig. 6 in [11]).

In many adaptive pulse shaping studies, a relatively large number
of parameters (compared to the order of the target polynomial, for
instance) are used to achieve high fitness values. Even if such high
fitness values are achieved in practical spectroscopic problems in the
presence of noise, there are two fundamental issues associated with
such formulations. First, the slow down of the algorithm by the
increased number of parameters is a serious issue, while facing laser
instabilities and sample degradations. Second, the imperfect
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estimation of phase wraps in the estimated wrapped phase profile
makes it difficult to unwrap the phase for the calculation of the group
delay or even a qualitative understanding.

Here, we limit our study to a relatively small number of
parameters (up to 30) and investigate the relative performance of
delay- and phase-based optimizations under similar conditions in this
regime. As in a pioneer study of adaptive pulse shaping [25], we
perform our comparative studies by limiting the number of genera-
tions. The number of function evaluations (used as a common cost
index) is simply proportional to the number of generations, since the
population size is constant (40) in all our optimizations.

2.5. Phase vs. delay

While the group delay can be observed directly (in the time
domain) at microwave and lower frequencies, it is common to
estimate the group delay indirectly (in the frequency domain) by
differentiating the unwrapped phase profile at optical frequencies. The
group delay can also be extracted directly from a spectrogram (time-
frequency domain) at optical frequencies [26].

Our study is limited to many-cycle laser pulses, for which the
constant term of the spectral phase can be reasonably discarded.
Hence, the constant of integration, transforming the group delay
profile to the phase profile, can be chosen arbitrarily. Note that in
many cases (and possibly also in adaptive optimizations), an efficient
modeling of pulse distortions in the single-cycle pulse regime [27]
depends on explicit consideration of the constant phase term.

We employ the same hardware and calibration parameters (in
experiments) and also the same code (in simulations) to program
spectral phase profiles on our phase mask, in the case of both phase-
and delay-based optimizations. The difference between these two
optimizations is simply the existence of an integrator in the feedback
path (or lack there of), or equivalently in the quantity directly
estimated by the algorithm.

3. Simulation results and discussions

3.1. Simulation parameters

The simulation domain is scaled and discretized similar to the
shaping coordinate (pulse shaper) with 640 points and a wavelength
calibration of 0.155 nm/pixel. It is then re-sampled to have a uniform
sampling rate (dω=0.654 rad/ps) required for Discrete Fourier
Transform (DFT) calculations, and also centered at zero to correspond
to the spectrum of the envelope field. The input spectrum is a
Gaussian with a full-width at half-maximum (FWHM) bandwidth of
35 nm centered at 670 nm, and has a phase profile φin(ω) with
quadratic (φ2=200 fs2), cubic (φ3=−4000 fs3), and quartic (φ4=
−10,000 fs4) phase terms. It features a maximum and a minimum
point, positive and negative curvatures, and a span exceeding 2π. We
refer to this phase profile as the target phase profile in the rest of this
article.

The CMA-ES algorithm settings (except the size of the output
vector; i.e., the number of an parameters in Fig. 1) are similar to those
used in our previous studies [18]; i.e., a population size of 40, a parent
number of 20, an initial step size of 10%, and parameter values limited
to the interval [0,1]. Given the stochastic nature of evolutionary
algorithms, any simulation program is executed 20 times, and the
results are averaged to find the expected value of the solution and to
verify the repeatability of optimizations.

3.2. Effect of range and number of parameters

Here, we try to quantify and to contrast the sensitivities mentioned
in Section 2.4 in the cases of phase- and delay-based optimizations. We
consider the number of parameters from the set {3,4,5,8,10,12,15,20,30}
to model the 4-th order polynomial describing the target phase. The
parameterization block in Fig. 1 converts the algorithm output
parameters an to phase samples as φ(ωn)=2φM(an−0.5), or to delay
samples as τ(ωn)=2τM(an−0.5). In order to have a fair comparison
between the ranges of parameters for delay- and phase-based
optimizations, we take two points into consideration. First, the profiles
estimated directly in both cases (delay and phase) are related via the
linear operator of differentiation. So, the two parameters τM and φM

should vary over similar spans; i.e., φM,Max/φM,Min=τM,Max/τM,Min.
Fig. 2 shows sucha common spanof4 octaves (φM,Max/φM,Min=τM,Max/
τM,Min=24=16) for fitness values after 60 generations. Second, the
minimum values of τM and φM should be “equivalent”. We match the
values of “small” τM and φM such that they have the same maximum
fitness (obtained by varying the number of parameters). This common
maximum fitness is considerably smaller than unity, and is arbitrarily
chosen to be ~0.87. The corresponding values of parameters are
τM=15 fs and φM=π/4.

Many intermediate values of τM and φM (corresponding to the two
panels of Fig. 2) have also been considered, and corresponding
optimizations have been simulated. They simply show a gradual shift
from the red curves towards the blue and then towards the black
curves. As such, these intermediate curves have not been plotted for
the sake of clarity.

Comparing the two panels of Fig. 2 shows significant insensitivity
of delay-based optimization to the number and the range of
parameters, compared to a phase-based optimization. The final fitness
(after 60 generations) in delay-based optimizations with τM=50 fs
has an almost unity average and very small standard deviation, almost
independent of the number of parameters. High fitness is achieved by
phase-based optimization only with 4 and 5 parameters. The final
fitness then drops significantly (compared to the delay-based case)
depending on the number of parameters. Comparing the largest
values of parameter in both cases (black curves on each panel) shows
significant sensitivity and also less repeatability (large standard
deviation) of phase-based optimization (right panel). Note that a
given value of standard deviation (σF) is associated with a larger value
of normalized deviation (σF,norm=σF /Fmean) at smaller values of the
mean value (Fmean).

3.3. Disentangling the speed factor

The reduced fitness for large numbers of parameters in Fig. 2 can
be the result of more structured landscapes and being trapped in local
optima, or simply a signature of the curse of dimensionality (slow
convergence). In order to disentangle these two mechanisms, we
consider the largest number of parameters (30) and the largest
parameter values (τM=250 fs and φM=4π) from the simulation
parameters shown in Fig. 2. We then repeat the simulations by
increasing the number of generations to 200, 400, and 800. The
distribution of the final fitness values for all these numbers of
generations is shown in Fig. 3(left). The complete distribution of the
final fitness values (20 runs of a given simulation program) after 800
generations is also shown in Fig. 3(right).

Fig. 3(left) shows the better performance of delay-based optimi-
zation in the sense of higher mean values and smaller (and
decreasing) standard deviations of the final fitness. The increased
value of the mean fitness by going from 60 to 200 generations (for
both parameterizations) shows a partial contribution of the curse of
dimensionality. On the other hand, the existence of a considerable
standard deviation (even after 800 generations) implies structured
landscapes (occasional vulnerability to local optima), especially in the
case of phase-based parameterization.

Note that slower optimizations with large parameters can be
because of not only the two aforementioned factors, but also their
combined effect. Even if the algorithm manages to emerge out of a
local optimum and reach the global optimum, this “detour” still takes
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the algorithm a few generations to concentrate (the population of
solutions) around a local optimum and then leave it. This behavior
may also partially account for a counter-intuitive decrease of the
mean final fitness vs. the number of generations, as in Fig. 3(left) by
going from 400 to 800 generations. Such a decrease can also originate
from the large standard deviation of fitness values and the
dependence of the mean final fitness on the specific ensemble used
for averaging. Note that the results shown in Fig. 3(left) for different
numbers of generations are all obtained by different optimizations,
and without recording intermediate results.

An interesting feature in Fig. 3(left) and also both panels of Fig. 2 is
the extension of error bars beyond themaximum fitness of unity. Note
that standard deviation is an intuitive measure of spread for a random
variable with a normal (or a similar bell-type) distribution profile.
Error bars extended beyond unity imply an asymmetric distribution of
final fitness values, with a major contribution to variance from a
“considerably small” value (the majority of the distribution being
greater than the mean value). Fig. 3(right) shows such a distribution
for delay-based parameterization. The mean and the standard
deviation of this distribution form the point corresponding to 800
generations in Fig. 3(left).

3.4. Fitness distribution and implication of local optima

As mentioned in Section 2.1, the stochastic nature of evolutionary
optimizations can result in different fitness values for different runs of
a given optimization (fixed parameters, yet different realizations of
random variables). Geometrically, such different fitness values are
associated with different optimization trajectories in the optimization
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Fig. 3. (Left) The effect of longer optimization time on the achieved final fitness in delay-
(τM=250 fs and φM=4π, respectively), and (right) the distributions corresponding to the
final fitness values achieved by 20 runs of the same optimization problem in each case.
space that end up in different local/global optima. Here, we take a
closer look at delay- and phase-based optimizations from this
perspective. In order to get better insight into the meaning and
significance of fitness distributions, we run the simulation program
corresponding to delay-based optimization with τM=500 fs and 15
parameters several times. We notice three patterns in the results.
These three patterns are shown by plotting the associated learning
curves (fitness vs. generation index) and the final estimation of the
phase profile after 200 (as opposed to 60) generations. With a
considerably larger number of generations and in the absence of
noise, a distribution of the final fitness implies the existence of local
optima and the probability of bypassing them during the search for
the global optimum.

Fig. 4(top-left) shows the fastest learning towards the global
optimumwithout a noticeable slow down. Fig. 4(top-middle) shows a
slower learning towards the same maximum fitness with an obvious
approach to a local optimum around the 50th generation. Finally,
Fig. 4(top-right) shows an even slower learning towards a smaller
final fitness value by emerging out of at least two noticeable local
optima.
3.5. Noise robustness

Numerical differentiation can enhance numerical errors [28],
while integration can have the opposite effect. Here, we investigate
the potential noise suppression impact of the integration operator,
required to obtain the spectral phase profile from the group delay
profile, on our stochastic optimizations.
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and phase-based optimizations with 30 parameters and the largest parameter values
error bars with 800 generations shown on the left panel. These distributions show the



620 640 660 680 700 720

-4

-2

0

2

4

6

8

Wavelength, λ(nm) Wavelength, λ(nm) Wavelength, λ(nm) 

Original Phase
Retrieved Phase
(Scaled) Spectrum

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Generation Index

Fi
tn

es
s

Max
Mean
Min

620 640 660 680 700 720

-4

-2

0

2

4

6

8
Original Phase
Retrieved Phase
(Scaled) Spectrum

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Generation Index

Fi
tn

es
s

Max
Mean
Min

620 640 660 680 700 720

-4

-2

0

2

4

6

8

Sp
ec

tr
al

 P
ha

se
, φ

(r
ad

) 

Sp
ec

tr
al

 P
ha

se
, φ

(r
ad

) 

Sp
ec

tr
al

 P
ha

se
, φ

(r
ad

) 

Original Phase
Retrieved Phase
(Scaled) Spectrum

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

Generation Index

Max
Mean
Min

Fig. 4. Demonstration of (top) the learning curves and (bottom) the estimated phase profile after 200 generations in 3 runs of the same optimization program. All parameters are the
same in the 3 cases, and the differences merely arise from a stochastic search (similar parameters, but different random number realizations) in a structured search space. The final
estimated phase profiles have been shown along with the target phase profile and the pulse spectrum. The optimization program uses delay-based parameterization with 15
parameters and a parameter range of τM=500 fs.

3752 D. Yang et al. / Optics Communications 284 (2011) 3748–3758
We repeat the simulations described in Section 3.2 for some values
of parameters by adding a phase noise [12] to the spectral phase of the
laser pulse. The phase noise is the realization of a zero-mean and
unity-variance random variable with normal (Gaussian) distribution,
which is multiplied by a factor φN to introduce different noise levels.
The numerical results of estimating the target phasewith phase-based
and delay-based optimizations at different levels of phase noise are
shown in Fig. 5. As in previous simulations, each simulation program
is executed 20 times, and the results are averaged. The noise signal is
generated in the innermost loop of the program (each time with a
different seed of the pseudo-random number generator) to ensure
that no two realizations of the noise signal are the same (except
statistically) [11].

Comparing the plots of the first row in Fig. 5 with corresponding
plots of the second row suggests a superior performance of the delay-
based optimization compared to the phase-based optimization
(except for the second column). This superiority is both in terms of
comparison with the simulated target phase (accuracy) and insensi-
tivity to the noise level (precision).

The second plot on the first row (10 parameters, τM=250 fs)
seems to have the worst performance among delay-based optimiza-
tions, and it is not easy to compare it with the corresponding phase-
based optimization results just by visual inspection. As such, we also
plot the mean and the standard deviation of optimizations with
different parameterizations in a single graph for easy comparison.
Fig. 6 shows that in all these cases, delay-based optimizations
outperform phase-based optimizations in the sense of the mean
value, the insensitivity to the number of parameters, and in most
cases, also in the sense of smaller standard deviation.
Note that the fitness values corresponding to different noise levels
cannot be readily compared with each other, as (the expected value
of) the maximum fitness is a noise-dependent value, and not unity
[12]. Also care must be taken in the interpretation or generalization of
these results, in the case of other types or levels of noise.

4. Experimental results and discussions

4.1. Setup

In order to verify the simulation results in practice and in the
presence of different sources of disturbance, several experiments with
different parameterizations are conducted. The experimental setup
has been described previously [5]. In brief, laser pulses centered at
670 nm with a FWHM bandwidth of 35 nm are generated by a non-
collinear optical parametric amplifier (NOPA; Clark-MXR), which is
pumped by an amplified femtosecond laser system (Clark CPA-2001;
Clark-MXR). The pulse shaper uses a dual-stack liquid-crystal spatial
light modulator (SLM-1280-VN-R; Cambridge Research & Instrumen-
tation Inc.) placed in the Fourier plane of a 4-f (f=500 mm) zero-
dispersion compressor with two 1200 grooves/mm gratings and
cylindrical mirrors, leading to the resolution of 0.155 nm/pixel. Only
one mask of the SLM with 640 pixels is used for phase-only pulse
shaping. A concave mirror (f=250 mm) focuses the output of the
pulse shaper, with a FWHM diameter of 2 mm and energy of 210 nJ/
pulse, onto a β-barium borate (BBO) crystal with a thickness of 20 μm.
The SHG signal is collimated and then coupled into a spectrograph
(SP2150; Princeton Instruments) using a parabolic mirror with
f=150 mm. A 256-pixel diode array converts the optical output of
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Fig. 5. The impact of phase noise on the estimation of the target phase with (top) delay- and (bottom) phase-based optimizations. The blue, the black, and the red curves correspond
to phase noise amplitudes of φN=0, φN=0.4, and φN=0.8. The number and the maximum value of parameters corresponding to the top row and from left to right are (n=10,
τM=50 fs), (n=10, τM=250 fs), (n=30, τM=50 fs), and (n=30, τM=250 fs). The number and themaximum value of parameters corresponding to the bottom row and from left
to right are (n=10, φM=π), (n=10, φM=4π), (n=30, φM=π), (n=30, φM=4π), for phase-based optimizations. The target phase profile is similar to the one shown in Fig. 4, and
is not shown here for the sake of clarity.
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the spectrograph into electrical signals, which are then sampled at a
rate of 1 kHz to have single-shot statistics. The fitness is calculated by
integrating the weighted SHG spectrum. The weighting is simply
dividing an SHG spectrum by a Gaussian profile (similar for all
N=10, Small N=10, Large N=30, Small N=30, Large
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Fig. 6. The impact of phase noise on the final optimization fitness using phase- and
delay-based approaches with four combinations of the number and the range of
parameters in each case. The number of parameters is denoted by N, and the range of
parameters is expressed as Small (τM=50 fs or φM=π) or Large (τM=250 fs or
φM=4π). Different colors represent optimization results with different noise levels.
The points connected by solid (dash) lines correspond to delay-based (phase-based)
optimizations. The lines are guides to the eye, only.
experiments) to enhance the contribution of the tails of the pulse to
the total energy [11].

4.2. Data validation

The fitness with zero added phase (reference fitness) is measured
along with the fitness measurements for each generation of each
optimization. The reference fitness corresponds to a pulse obtained by
programming a flat phase on the pulse shaper, and not a shaped pulse
with a net phase of zero. Ideally, the reference fitness values should be
equal during an optimization. In practice, the plot of the reference
fitness vs. generation is a horizontal line with some fluctuations.
Assuming that such variations originate from slow and small
variations of the spectrum (drift with no phase distortion), one can
normalize the fitness values of each generation to the corresponding
reference fitness to find comparable fitness enhancements of different
generations. If the fluctuations of the reference fitness have large
amplitudes or occur rapidly, it will become more difficult to
disentangle the learning process of the algorithm and laser fluctua-
tions. Fitness fluctuations can also originate from phase instabilities,
even with a stable spectrum (amplitude). Normalizing the fitness
values in such a case will be non-trivial, if not impossible.

An important practical issue in nonlinear spectroscopy with
shaped pulses is the degradation of the spatial (M2 parameter),
temporal (shot-to-shot energy and phase stability and also drift), and
the spatio-temporal (spatial chirp and pulse front tilt) characteristics
of optical pulses along the nonlinear conversion pipeline; i.e., from the
femtosecond oscillator to the regenerative amplifier, and then to the
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parametric amplifier. In general, a successful “experimental result”
obtained by use of a femtosecond oscillator can be more difficult to
repeat with the same success level using a regenerative amplifier, and
even more difficult with a parametric amplifier. We have chosen a
parametric amplifier in this study to investigate the performance of
the algorithm under the same condition that our molecular
spectroscopic studies are performed.

The results of many optimization experiments are discarded,
because of relatively large drifts (a standard deviation more than ~8%
of the reference fitness, as opposed to b2% for the most stable
reference fitness profiles). In all cases, single-shot measurements of
the energy of the fundamental pulse show stabilities better than 1%.
With an almost constant energy of the fundamental beam, SHG
fluctuations are primarily attributed to slight redistribution of energy
across the spectrum (during the two-stage broadband parametric
amplification in NOPA [29]) and also phase fluctuations. All
experimental data presented in this contribution correspond to
optimizations having passed the validity test.

Unless otherwise stated, fitnessmeasurement for any phase profile
is done by averaging the results of high enough number of laser shots
to achieve an energy tolerance better (smaller) than 0.15%. The
number of shots is further limited to a minimum of 200 and a
maximum of 2000 shots to have practical and comparable sizes of
ensembles. These parameters are only changed in experiments
reported in Section 4.3.3 to assess noise robustness.
4.3. Results

Experimental verification of all investigations reported in Section 3
is a demanding (if not an impossible) task. In simulations, one
optimization usually takes a few seconds (on average), and there is no
uncertainty about the parameters. Experimentally, most of our
optimizations take between 30 min and 2 h. Furthermore, the target
phase profile may change from one lab session to another (or even
during one day), and hence many results may not pass the validity
test. Also, because of the stochastic nature of optimizations, the result
of a valid optimization may be considerably different from those of
many other optimizations performed under similar condition, as
shown in Fig. 3(b). In general, while experimental results are
insightful in understanding the performance of optimizations in
real-life situations, they are not rigorously conclusive and should be
interpreted by care.

The employed maximum values of parameters are τM=300 fs for
delay-based optimizations and φM=π and φM=20π for phase-based
optimizations, based on some initial experiments. Note that the shape
and the span of the estimated target phase profile in the lab are not
the same as the ones considered in simulations. As such, while the
trends can be similar, the specific values (optimal number and range
of parameters) are not necessarily the same. The choice of φM=π (in
addition to φM=20π) is because of its unique property in estimating
phase samples over a maximal incongruent span (Δφ=2π).

In most experiments, the (unwrapped) phase profiles found by the
algorithm share a common M-shaped pattern around the center
wavelength, which is primarily attributed to the non-uniformity of
the phase mask. Our auto- and cross-correlation measurements of the
output of the pulse shaper (with and without the phase mask) and
also the input to the pulse shaper after compression by a prism
compressor suggest that this M-shape pattern primarily originates
from the nonuniformity of the phase mask. Note that in practice, the
phase added to light by a phase mask can be decomposed into two
parts; a dynamic component (as in an ideal phase mask), and also a
static component originating from the nonuniformity of the phase
mask (even when the control signals to all pixels are zero) [30]. What
we refer to as the “input beam” in experiments is the input to the
pulse shaper with the static phase of the phase mask added to it. In
this way, applying a control signal to the phase mask affects the light,
as an ideal phase mask would do.

Depending on the initial chirp of the input laser pulse (different
from one lab session to another), the accuracy of one optimization
experiment compared to another (verified by a higher fitness under
similar conditions), and also the existence of a linear phase term,
details of these M-shaped profiles can vary from one experiment to
another (especially at wavelengths with low intensities, far from the
center wavelength). The phase profiles obtained from different
experiments have been added with appropriate linear (with respect
to frequency) phase terms as φnew(λ)=φ(λ)+a(λ0 /λ−1)+b,
where λ0=670 nm is the center wavelength, and the fit coefficients
a and b (with the common unit of radians) are chosen to match
corresponding features of different phase profiles.

4.3.1. Repeatability
The learning curves and the retrieved phase profiles associated

with four optimization experiments with 10 parameters are shown in
Fig. 7(left) and (right), respectively. The experiments for different
parameterizations are done alternatively (between the two para-
meterizations) to disentangle possible unwanted changes caused by
laser drift. The phase-based optimization uses φM=π.

The similarity of the learning curves can be interpreted as the
repeatability and the similarities of optimization trajectories, for the
chosen set of parameters. The optimal solutions in Fig. 7(right) are
also reasonably similar for a given parameterization. As shown in
Fig. 4(bottom row), the tails of the phase profile correspond to regions
with significantly smaller power spectral density, and less significant
values of phase.

The smaller final fitness obtained from phase-based optimizations
can simply originate from an inappropriately small value of φM, and
does not necessarily imply the superiority of the delay-based
optimization. Interestingly, the final phase profiles obtained from
both parameterizations are similar in shape (but not in the range of
the profiles). This observation further supports the hypothesis that a
small value of φM has been used. In both cases, the learning curves
have negative curvatures and relatively high sensitivities (fitness
variations over a given number of generations) at the beginning of the
optimization. The delay-based optimization features a larger sensi-
tivity, though.

4.3.2. Range and number of parameters
The learning curves and the retrieved phase profiles associated

with 6 optimization experiments are shown in Fig. 8(top) and
(bottom), respectively. These data correspond to two sets of (10 and
30) parameters. For each set of parameters, we investigate the
performances of optimizations with τM=300 fs, φM=π, and
φM=20π.

An investigation of optimizations with 10 parameters shows that
all three parameterizations (τM=300 fs, φM=π, and φM=20π)
estimate the same shape (yet different scales) of the target phase
profile. Comparing the learning curves and the phase profiles implies
that the parameterization with φM=π is using an inappropriately
small range of phase, as also seen in Section 4.3.1. The similarity of
final fitness values obtained by parameterizations with τM=300 fs
and φM=20π, despite different learning curve profiles and estimated
phase profiles, suggests that final phase profiles may correspond to
different local optima with similar fitness peak values in the solution
landscape.

By increasing the number of parameters from 10 to 30, a small
increase (~6%) is observed in the final fitness in optimizations with
τM=300 fs and φM=20π parameterizations. However, the φM=π
parameterization shows a more pronounced improvement (~25%). In
terms of the final estimated phase profile, the parameterizations with
τM=300 fs and φM=20π show the M-shape phase pattern, but with
a new small feature appeared around the center wavelength of
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670 nm. Given the slight increase of the final fitness by increasing the
number of parameters (from 10 to 30), this new phase feature is
considered real, and its appearance is attributed to better sampling
resolution.

The impact of increasing the number of parameters from 10 to 30
is most significant in the case of the parameterization with φM=π.
Comparing the blue and the red curves in Fig. 8(bottom right) shows
that the second parameterization is also able to find the new feature
(with relatively small amplitude) around the center wavelength of
670 nm. However, each peak of the M-shape pattern is now split into
two peaks. Note that as the number of parameters increases, a profile
limited between −π and π can estimate the wrapped target profile
with increasing accuracy. However, such a parameterization still has
some disadvantages. It is not easy to differentiate between main
features and phase wraps in the phase profile, which makes a direct
and intuitive interpretation of the phase profile for spectroscopic
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Fig. 8. (Top) The learning curves and (bottom) the optimal spectral phase profiles correspon
correspond to parameterizations with delay, phase (limited to ±π), and phase (limited
optimizations with 10/30 parameters. The legends show the parameterization used in each
applications difficult. Also, a constant or a linear phase term can
result in a completely different-looking profile. Furthermore,
increasing the number of optimization parameters slows down the
algorithm.

As for the initial sensitivity, parameterizations with τM=300 fs
and φM=π show considerably higher sensitivities at initial stages of
optimizations, compared to parameterization φM=20π. This differ-
ence is more pronounced, as the number of parameters increases from
10 to 30. The curve of the mean fitness first drops considerably, and
then increases with small slope and curvature. The slope gradually
increases until reaching a turning point (around the 90th generation),
after which the curvature becomes negative and the slope starts to
decrease in approaching the steady state fitness. While successful in
achieving high fitness values, the parameterizationwithφM=20π has
a learning pattern not suitable for spectroscopic studies of samples
vulnerable to precipitation or optical degradation.
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ding to second harmonic energy optimizations: the blue, the red, and the black curves
to ±20π), respectively. In each row, the two plots on the left/right correspond to
case.
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4.3.3. Noise robustness
A common approach for noise reduction in pulse shaping

experiments is to average out noise by increasing the number of
measurements. Assuming statistical independence between the “real
signal” and a contaminating additive noise, averaging the results of N
measurements will decrease the noise energy by the factor N (or its
amplitude by the square root of N). Here we investigate the
repeatability of adaptive SHG with delay- and phase-based optimiza-
tions with different noise levels. We control the noise level indirectly
by modifying the number of laser shots per measurement, as detailed
in Section 4.2. The employed ranges of laser shots in these
measurements are 30–60, 10–20, and 1. The experiments for different
parameterizations are done alternatively with the two parameteriza-
tions (P–D–P–D–P–D …, where P and D denote phase- and delay-
based experiments, respectively) to disentangle possible unwanted
changes caused by laser drift.

The optimal spectral phase profiles obtained by delay-based and
phase-based (φM=20π) optimizations with 10 parameters and after
40 generations are shown in Fig. 9 with blue and red, respectively. The
relative signal to noise ratio (SNR) in the measurements is
symbolically encoded in the thicknesses of the curves. Fig. 9 shows
that for the given choice of parameters, the delay-based optimization
is more robust to noise, and the corresponding spectral phase profiles
(blue curves) are more similar, compared to the profiles associated
with phase-based optimization (red curves). Note that the pulse has a
FWHMbandwidth of 35 nm centered at 670 nm, and the deviations of
the estimated phase profiles have less significance at the tails of the
spectrum.

The need for fewer (down to 1) laser shots for a successful
adaptive optimization has an important practical significance, since
the measurement time corresponding to each phase profile depends
on the number of laser shots (on the order of hundreds). Of course,
there is no need to go down to 1 laser shot for a fast optimization. The
measurement time is further limited by the settling time of a phase
mask (~100 ms). Also the noise suppression factor (1/N) has its
highest sensitivity for small numbers of laser shots. As such, using a
few laser shots can have a significant impact on the noise level,
without increasing the measurement time significantly beyond the
phase mask settling time.
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5. Discussion

5.1. Integration, stability, and temporal shift

A time-domain integrator is an inherently unstable operator
(mapping a bound constant input to an unbound ramp output) and
can lead a classical control system towards instability. However, the
introduced integrator in delay-based formulation is a frequency-
domain integrator, and is implemented in software over a finite
spectral range with no stability consequences. Also, a linear phase
component (corresponding to a constant term in the delay profile)
has in general no effect on a single-beam pulse shaping experiment. In
experiments with multiple beams, such as pump–probe with shaped
pumps [5,31], linear phase terms can be explicitly taken into account
and removed to have a stationary reference point for zero delay.

5.2. Alternative (resonance) process

Here we extend our comparative study of phase- and delay-based
optimizations to a different nonlinear optical process with resonance
features, namely coherent anti-Stokes Raman scattering (CARS).
Details of the process, the optimization, and numerical considerations
have been reported elsewhere [32–34]. In brief, we study a CARS
process with a broadband shaped femtosecond laser pulse centered at
800 nmwith a bandwidth of 25.6 nm, and a narrowband Stokes pulse
centered at 1064 nm and a bandwidth negligible compared to that of
the pump (=probe) beam. For a given phase profile φ(ω), two CARS
experiments in bulk polystyrene are performed with the phase
profiles +φ(ω) and −φ(ω), and the energies of the resultant CARS
signals are subtracted from each other. The fitness function is defined
to be proportional to this difference. The fitness is representative of
the energy of the CARS signal, by discarding the purely non-resonant
component. With as few as 20 CMA-ES parameters, an optimal
solution is found with a fitness value slightly greater than 2
(compared to a fitness of one by using the molecular phase profile).
Increasing the number of parameters slightly changes the fitness to a
maximum of 2.04, but just by minimizing interpolation errors and not
by finding a new optimal phase profile [32].

The results of optimizations with phase- and delay-based para-
meterizations are shown in Fig. 10. Both optimizations use 25
parameters, and their learning curves are shown up to the 90th
generation. They converge to close values of 2.00 (delay-based) and
2.01 (phase-based), respectively. Comparing the corresponding
(mean or maximum fitness) curves shows similar trends; i.e., a
sharp initial increase, followed by an increase with decreasing slope
(negative curvature) towards a steady state value. However, there is
an important difference between the two optimizations. The delay-
0 20 40 60 80
0

0.5

1

1.5

2

Generation Index

Fi
tn

es
s

Delay-based (Max)

Phase-based (Max)
Delay-based (Mean)

Phase-based (Mean)

Fig. 10. The learning curves of a phase-shaped CARS process with delay-based (blue)
and phase-based (red) optimization schemes. The solid/dashed curves show the
maximum/mean fitness of the solution set (population) as a function of generation.



3757D. Yang et al. / Optics Communications 284 (2011) 3748–3758
based optimization approaches significantly higher fitness values
within the initial stage. In other words, a relatively high fitness value
(say 1.8) is achieved by the delay-based optimization within 5
generations, while it takes the phase-based optimization more than
30 generations to approach this same value.

This initial high sensitivity of a delay-based optimization has also
been observed frequently in both numerical and experimental studies
of SHG optimization (see Section 4.3.1, for instance). A simple hand-
waving justification is that the first population in a delay-based
optimization is a (scaled) lowpass-filtered version of the first
population in a comparable phase-based optimization. The required
diversity for good sampling of the solution space is reasonably
maintained in lowpass-filtered phase profiles. However, each indi-
vidual features a more smooth profile and does not chirp the pulse
dramatically. This property is expected to be more pronounced by
increasing the number of parameters (with less contribution from
spline smoothing in phase-based optimizations).

An interesting observation is the simultaneous improvement of
both sensitivity and noise robustness by delay-based formulation,
contrary to the common trade-off between the two features (as in a
comparator with hysteresis or a Schmitt trigger [35]).

5.3. Parameterization and landscape subsets

A fundamental question in comparing phase- and delay-based
optimizations is the similarities and differences between the
optimization landscapes in these two cases. The global solution
landscape of an optimization problem is the locus of all points in a
multidimensional space, each representing a candidate solution and
the associated optimization fitness. Numerical implementations of an
optimization problem are commonly performed in finite-dimensional
subsets of the global landscape, by imposing different constraints on
the original optimization problem.While simplifying the optimization
by reducing the dimensionality, such a finite-dimensional (subset)
landscape can also complicate the problem by introducing new local
optima or excluding the global optimum.

The landscape formed by a given differentiable basis set {Pn(ω)} in
phase-based optimization can also be considered as the landscape
corresponding to the basis set {dPn(ω)/dω} in delay-based optimiza-
tions. In both cases, the independent variables (landscape axes)
correspond to the weights of the corresponding basis functions, and
the dependent variable represents the fitness. Such a landscape can
also equivalently correspond to a phase- or a delay-based formulation,
if the number or the ranges of landscape coordinates are limited. For
example, the landscape of a phase-based optimization with the basis
functions {ω2,ω3} and weight factors limited to [−2,3] can also be
considered as the landscape of a delay-based optimization with basis
sets {2ω,3ω2} and the same parameter range of [−2,3].

In a direct parameterization (as shown in Fig. 1), the number of
parameters and the type of interpolating functions (linear, cubic …)
impose discrete boundary conditions and also continuous constraints
between the boundaries. In this case (contrary to the aforementioned
case of basis set parameterization), two “corresponding” ranges of
parameters in phase- and delay-based formulations do not represent
equivalent phase profiles and fitness values. Traversing optimization
trajectories in such (phase- and delay-based) spaces are not expected
to yield similar results, either (see Fig. 2).

Note that in a direct parameterization, the interpolating functions
and hence the estimated phase function depend on the parameters in
a nonlinear way, whereas in the case of basis set parameterization, the
estimated phase function depends linearly (aside from a possible
offset) on the landscape coordinates. Also note that practical
constraints such as the finite resolution, range, sensitivity, and bit-
depth of the experimental setup impose further constraints on the
optimization problem and hence the solution landscape. Finally, in the
presence of noise, the landscape is not stationary, and one may
alternatively consider the expected value of the landscape (in a
statistical sense, and different from instantaneous landscapes) [12].

6. Conclusions

Our numerical and experimental studies show an overall superi-
ority of a delay-based formulation, compared to a conventional phase-
based formulation, for adaptive laser pulse shaping. We have studied
efficiency, noise robustness, convergence speed, repeatability, fitness
sensitivity, and parameter insensitivity. These issues have been
mostly studied in the case of second harmonic generation and briefly
in the case of coherent anti-Stokes Raman scattering. The benefits of
delay-based pulse shaping (for adaptive experiments) are in addition
to trivial benefits of a direct and intuitive formulation, capable of
efficient use of phase masks with a dynamic range N2π (in general
pulse shaping experiments). Although our results are limited to a
specific choice of the range and the profile of the target phase function
and the pulse spectrum, the observed trends in the results are
insightful (if not the same) in more general cases.
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