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Abstract. Maximum likelihood classifier (MLC) and support vector machines (SVMs) are com-
monly used supervised classification methods in remote sensing applications. MLC is a para-
metric method, whereas SVM is a nonparametric method. In an environmental application, a
hybrid scheme is designed to identify forest encroachment (FE) pockets by classifying
medium-resolution remote sensing images with SVM, incorporating knowledge-base and
GPS readings in the geographical information system. The classification scheme has enabled
us to identify small scattered noncontiguous FE pockets supported by ground truthing. On
Baratang Island, the detected FE area from the classified thematic map for the year 2003
was ∼202 ha, and for the year 2013, the encroachment was ∼206 ha. While some of the
older FE pockets were vacated, new FE pockets appeared in the area. Furthermore, comparisons
of different classification results in terms of Z-statistics indicate that linear SVM is superior to
MLC, whereas linear and nonlinear SVM are not significantly different. Accuracy assessment
shows that SVM-based classification results have higher accuracy than MLC-based results.
Statistical accuracy in terms of kappa values achieved for the linear SVM-classified thematic
maps for the years 2003 and 2013 is 0.98 and 1.0, respectively. © 2016 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.10.016016]
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1 Introduction

Natural disasters like floods, cyclones, drought, desertification, water scarcity, and soil erosion at
large scales and their increasing frequency causing loss of human lives are being attributed to
deforestation. The common driver for forest degradation and deforestation leading to such envi-
ronmental problems is forest encroachment (FE).1–5 The phrase “forest encroachment,” or FE,
was coined and legalized by the British Government in the Dean Forest (Encroachments) Act
1838 (1 and 2 Vict c 42). The Food and Agriculture Organization of the United Nations defined
forest degradation as the reduction of the capacity of a forest to provide goods and services.6

However, there is no globally approved definition for FE and forest degradation exist to date.7 In
India, the National Commission on Agriculture in 1976 considered FE a part of forest degra-
dation and defined it as an unauthorized harvesting of forest produce and diversion of forest land
to nonforest land use/land cover (LULC) practices, including “jhumming” (shifting cultivation).
It is essential to maintain equilibrium in the biodiverse and fragile ecosystem; however, detecting
and managing FE is an uphill task for any government or organization. Ever-increasing trends in
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the deforestation and degradation of forest must be reversed to save generations from their
harmful effects.8–12

Environmental threats and impacts resulting from encroachments inside forested land, defor-
estation, forest degradation, and bad land use practices in the Andaman and Nicobar group of
islands have been described in detail by several researchers.13–17 The total forest cover of the
island group is about 87% of its total geographical area.18 A sudden increase in the population in
the Andaman and Nicobar Islands during the 1970s resulted in increased FE, where people are
largely dependent on the forests for their livelihood.16,19 FE took place in remote areas in a
concealed manner. Antiencroachment drives were not successful because of the inaccessibility
of the remote FE areas, an inadequate number of forest officials, and a lack of political will. With
the ever-increasing population and establishment of forest-based small-scale industrial units,
there has been tremendous pressure on these natural forests, hence the problem of effective pro-
tection of forests has assumed greater importance, particularly to control illicit felling and
encroachment on forest land. We have chosen Baratang Island, which is a part of the
Andaman and Nicobar group of islands, to study FE in the area. It has several remotely located
small noncontiguous FE pockets. The island has several landcover classes, which can be broadly
divided into four classes: waterbody, mixed forest, mudflat, and builtup. The builtup class is a
mixed landcover class that includes paddy field, house, bare soil and clay, and natural/planted
trees. Monitoring of the class builtup is especially important, as periphery of the builtup area
gradually expands with further encroachment.20

Remote sensing and a geographical information system (GIS) are powerful tools that help us
in detecting FE due to their synoptic view to map large and small areas.21 Using remotely sensed
imagery, we get an updated and accurate map of geospatial features/targets in the form of LULC
changes over large areas.22–24 Furthermore, remote sensing provides data from inaccessible
areas, repetitive coverage, and easy data acquisition at different scales and spatial resolutions.

Forest cover change or FE mapping has been performed using remote sensing and GIS in
several studies.25–29 Several digital image classification techniques are adopted to detect and map
LULC classes from remote sensing data. These techniques can broadly be categorized into para-
metric, nonparametric, and visual interpretation. In many cases, different combinations of these
techniques have provided better classification results.25,26

1.1 Parametric Method

In this statistical method of classification, a particular form of density distribution function (e.
g., Gaussian) is assumed where statistical parameters for a class, such as mean and variance, need
to be determined. As is true with any other statistical method, in this technique, the number of
sample observations or training sites plays a crucial role in the estimation of statistical param-
eters. Examples of statistical classifiers based on parametric methods include maximum like-
lihood, Bayesian estimation, and stratified sampling, among others. These methods may lead
to poor classification results in cases where the assumed distribution functions are not repre-
sentative of the whole area under study. Some of the studies related to forest cover based on
parametric methods are Assefa and Bork,30 El-Tayeb et al.,31 Kaoneka and Solberg,32

Sunderlin and Resosudarmo,33 Tiwari and Tolpekin,34 and Tiwari et al.20 Maximum likelihood
classifier (MLC) is a commonly used and robust parametric method for LULC classification.
When the data is normally distributed, MLC is an optimal choice wherein classification has a
minimum overall probability of error.35 However, accuracy of the thematic maps based on MLC
is limited by the fact that the assumed characteristic distribution function may not be represen-
tative; it also lacks contextual information in its priori part among the pixels.36–38 We have used
MLC as the parametric classifier in this study and compared the results with those from support
vector machine (SVM), which is a nonparametric classifier. The theoretical background of the
MLC method is included as an Appendix A.

1.2 Nonparametric Method

Nonparametric classifiers, on the other hand, do not assume any statistical distribution function.
Methods such as SVMs, artificial neural networks, nearest neighbor rule, fuzzy classification,
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and kernel density estimation are nonparametric classifiers, which estimate distribution function
based on training samples.39 Such methods are important when there are overlapping classes and
pixel values cannot be represented by a well-defined distribution function. Examples of non-
parametric method–based studies to identify FE are Arekhi and Jafarzadeh,40 Fauzi et al.,41

and Mehdawi and bin Ahmad.42 We have used SVM as the nonparametric method in our clas-
sification scheme.

Vapnik and Kotz43 pioneered the SVM method and it is extensively used for signal process-
ing in electrical engineering and other disciplines. However, it became popular in the field of
remote sensing only about one-and-a-half decades ago.44 Several studies in the field of remote
sensing have been performed using SVMs.45–53 A brief introduction to SVMs and relevant for-
mulations is given as an Appendix A.

1.3 Visual Interpretation Method

Visual interpretation of a remote sensing image is a complex process of identifying objects based
on tone, texture, shape, size, pattern, shadow, location, and association. In this technique, inter-
pretation can be done on multiple false color composites of the same remotely sensed image with
the help of photo interpretation key elements. In this type of technique, interpretation can be
done by changing the band combinations of the multispectral data. In addition to that, it provides
interpretation at the desired scale and allows us to apply various image enhancement techniques
to extract information from the data. However, visual interpretation of FE is a subjective, time-
consuming, and labor-intensive process, and it is also error prone.20,54 Using the visual inter-
pretation technique, we have selected training pixels to be used in parametric and nonparametric
classification methods and evaluated the classified thematic maps.

1.4 Hybrid Method

Depending upon the types of data available, two or more methods can be combined in a hybrid
approach; for example, parametric classifier and/or nonparametric classifier with knowledge-
based methods. In a case study by Sastry et al.,25 a hybrid method has been performed
using interpretation enhancement techniques like lookup table stretch, histogram equalization,
histogram match, haze reduction available in Erdas-Imagine software, and visual analysis to map
FE in Manipur, India. Redowan et al.28 studied forest cover change (or FE) using GIS with
remotely sensed data. They used the normalized difference vegetation index and supervised clas-
sification method based on the density of forest cover to detect change over a period of 22 years.
Kumari et al.29 detected considerable change in the forest area using the remote sensing GIS
technique with multitemporal satellite data.

In this study, we have compared LULC thematic maps of Baratang Island resulting from
MLC and SVM. Distribution patterns of carefully selected training samples show deviation
from a normal distribution. In such a case, we have chosen to use SVM as a nonparametric
classification method. Different classes are well separated in feature space; therefore, SVM clas-
sification produced results with improved accuracy over MLC. Several other studies have also
shown improvement in LULC classification with SVM when compared to other classifiers like
MLC.55–58 The objective of this study is to develop a hybrid scheme based on SVM classification
with the aid of a knowledge base and GIS on the nominal scale of remotely sensed data to map
FE. The hybrid method with recoding of few FE pockets has shown better classification results.
However, small FE pockets in comparison to the spatial resolution of the test bed remotely
sensed data could not be detected with SVM on a nominal scale.

2 Study Area and Data Used

Baratang Island is located between the latitudes of 12°8′N to 12°15′N and the longitudes of 92°
45′E to 92°53′E, covering an area of 29,760 ha. The island is a habitat of many endangered
species, and the ecosystems of the island need to be protected from human impact.19 The island
has a typical wet tropical climate. Minimum and maximum mean temperatures during the last 3
years were recorded to be 24.5°C and 31°C, respectively, and the average annual precipitation
was 3233 mm.59 Baratang Island is one of the principal islands in the Baratang forest division.
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The Baratang group of islands and Ritchie’s Archipelago are separated by a channel (the Diligent
Strait). Figure 1 shows a map of the study area. The entire landmass of this island is covered with
luxuriant, almost impenetrable growth of tropical rain forest, characteristic of warm, humid, and
wet tropics, except for the areas cleared for revenue settlements (the Government of India col-
lects revenue from the inhabitants of these legalized settlements).

FE on the island over a decade is being studied using Indian Remote Sensing (IRS) satellite
data from LISS-III sensors for the years 2003 and 2013. As given in Table 1, both IRS-1D and
Resourcesat-2 have four spectral bands in the LISS-III sensors. All four spectral bands of
Resourcesat-2 were used in the processing. However, the fourth band (i.e., B5) of IRS-1D
could not be utilized in the image classification. The band B5 is full of strips, and destriping
could not be performed, as the sensor details of IRS-1D LISS-III data are not provided to the users.

2.1 Training and Validation Dataset

Separate training data and accuracy assessment data were carefully selected from the IRS-1D
LISS-III and Resourcesat2 LISS-III imagery for their respective years. For accuracy assessment,
we took 560 pixels (140 pixels in each LULC class) from IRS-1D LISS-III images and 500
pixels (125 pixels in each class) from Resat2 LISS-III images. The areas for accuracy assessment
were identified with the aid of visual assessment on the merged IRS-1C with PAN, with a 5.8-m
spatial resolution for the year 2000, and on Resourcesat2 LISS-IV (5 m) for the year 2013 along
with Google Earth data, ground truthing with GPS, and a knowledge base. A total of 1200 pixels
(300 pixels for each LULC class) were selected for the training set in both image sets separately.
An equal number of pixels in each class provides equal weight in the estimation of overall accu-
racy (OA). While selecting training data and accuracy assessment data, we ensured that the two
did not intersect each other.

3 Methods

We have designed a hybrid method for digital classification of remotely sensed images for FE
mapping [Figs. 2(a) and 2(b)]. In the first step, geometric and radiometric corrections were

Fig. 1 Baratang Island is the study area, which is in the northern part of an archipelago including
the Andaman and Nicobar Islands in the Indian Ocean.
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applied to the raw satellite data, followed by removal of discrepancies (e.g., haze removal). In the
next step, a hybrid classification scheme, i.e., supervised classification (MLC/SVM), combined
with the knowledge base, was implemented on the test bed data. While qualitative accuracy of
different classes is assessed with the help of high-resolution imagery including Google Earth,
statistical parameters, such as κ-statistics, Z-test, user accuracy (UA), and producer accuracy
(PA), are estimated for quantitative assessment.

The knowledge base was obtained from geospatial data (i.e., high-resolution remotely sensed
images, topographical maps, and village maps) and nongeospatial data (i.e., interviews and field
visits). Interactions with the Andaman and Nicobar Forest Department (ANFD), local institu-
tions (revenue department), and field officers (i.e., expert knowledge) associated with FE were
also made for updating the knowledge base.

In the image classification process, training and validation datasets for the Resourcesat-2
LISS-III and IRS-1D LISS-III images were created using a random pixel selection strategy,
which guarantees maximum variation and representativeness available for each class.60 The
training set consisted of four classes, namely mudflat, mixed forest, waterbody, and builtup.
The target FE is close to the class builtup. It should be noted that the builtup class is a
mixed land cover class composed of harvested paddy field, house/hut, natural and planted
trees, wet/dry soil, and clay. In the case of class mudflat, it was very difficult to get pure training
pixels, as it also contains bare/wet/dry soil, clay, and sand. In the medium-resolution images of
LISS-III, getting pure pixels of the builtup and mudflat classes was even more challenging. Since

Fig. 2 (a) The hybrid method followed to produce digitally classified FE maps. (b) Steps involved
in qualitative and quantitative accuracy assessment of the classified FE maps.

Table 1 Remote sensing data used for the study is summarized here. All the data are from Indian
remote sensing satellites.

Name of
satellite/sensor Date of acquisition Spatial resolution Spectral bands

IRS-1D LISS-III January 24,
2003

23.5 m 0.52 to 0.59 μm (B2)
0.62 to 0.68 μm (B3)
0.77 to 0.86 μm (B4)

IRS Resourcesat-2
LISS-III

February 5,
2013

23.5 m 0.52 to 0.59 μm (B2)
0.62 to 0.68 μm (B3)
0.77 to 0.86 μm (B4)
1.55 to 1.70 μm (B5)

IRS Resourcesat-2
LISS-IV

March 1,
2013

5.8 m 0.52 to 0.59 μm (B2)
0.62 to 0.68 μm (B3)
0.77 to 0.86 μm (B4)

IRS-1C – LISS-III-PAN
merged data

February 14,
2000

5.8 m IRS-1C – LISS-III 0.52 to 0.59 μm (B2)
0.62 to 0.68 μm (B3)
0.77 to 0.86 μm (B4)

IRS-1C PAN 0.50 to 0.75 μm
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the number of pixels in the classes acts as weight in the estimation of OA, equal numbers of
homogeneous pixels for each LULC class were selected. IRS-1C LISS-III merged with PAN and
Resourcesat-2 LISS-IV high-resolution images (Fig. 3) were used as a visual aid/guide when
selecting training pixels and validation polygons.

We have implemented MLC- and SVM-based image classification by writing codes in R, a
free software environment for statistical computing and graphics.61 The “kernlab” package is
used for the SVM method, and the “k-SVM” function is used for both linear and nonlinear
SVM with optimal hyperparameters.

4 Results

4.1 Application of Maximum Likelihood Classifier

MLC is a parametric classifier that takes into account the mean and covariance of the input data
to classify it into an output thematic map. Normality tests of various classes in different bands
using Q-Q plots do not show normal distribution except for the mixed forest class in the near
infrared (NIR) band (Figs. 4 and 5). This is expected because of higher reflectivity from veg-
etation in the NIR band. We have applied MLC on the input remotely sensed data and compared
the results with the SVM results. It should be noted that while nonintersecting training and val-
idation datasets are prepared separately for different images, they are not changed for different
classification algorithms.

4.2 Application of Support Vector Machine

We have used SVM as a nonparametric classifier. Both linear and nonlinear SVMs have been
used to classify the remote sensing images, and the output thematic maps are compared among
themselves as well as with MLC-based thematic maps. Feature space plots of training datasets
are shown in Figs. 6 and 7. Visibly, waterbody and mixed forest are linearly separable, while
builtup and mudflat show some overlap. In case of nonlinear SVM, a Gaussian radial basis
function (RBF) kernel has been used on all test bed multispectral remotely sensed images.
The performance of SVM is affected by the kernel functions, and the behavior of SVM
with different types of kernel functions has been investigated by various researchers.57,62,63

Fig. 3 (a) False color image (RGB:321) of Resourcesat-2 LISS-IV (5.8 m) for the year 2013 and
(b) IRS-1C LISS-III image for the year 2000 merged with PAN (5.8 m) data.
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Right optimization of the hyperparameters (C and σ) associated with RBF leads to better per-
formance of SVM. Theoretical background and details on the optimization of hyperparameters
are given in the Appendix A.

A tuning set with all the LULC classes was used to obtain an optimal range of the hyper-
parameters. In the next step, we optimize hyperparameters for the linear case (i.e., C) and the
nonlinear case (i.e., C and σ) by assessing qualitative and quantitative results of the validation
dataset. Using these values of hyperparameters, we have classified the study area test bed of
remotely sensed images. The optimal values of C and σ for the RBF kernel are 1 and 0.3, respec-
tively, for the classification of Resourcesat-2 LISS-III images. For the classification of IRS-1D
LISS-III images, the optimal values of hyperparameters are C ¼ 1 and σ ¼ 0.6.

4.3 Classification of Resourcesat-2 LISS-III Image for the Year 2013

Output thematic maps of the MLC classifier and of the two SVM classifiers are shown in
Figs. 8(a)–8(c). Qualitative investigation of the results suggests that SVM outperformed MLC.
The southern part of Baratang Island is enlarged in Fig. 9 to show that the classification results of
MLC are nosier and separations of FE pockets are not good in comparison to the classification
results of SVMs. Comparison of linear and nonlinear SVM results [Figs. 9(b) and 9(c)] shows
that the nonlinear SVM overdetected mudflat areas and the builtup class in some places.
However, FE pockets in both SVMs show negligible change. There are 56 FE pockets on
the island, covering an area of 210 ha. SVM detected 1.9% less than the actual FE, whereas
MLC overdetected FE by 16.6% (Table 2). These results are further assessed quantitatively
and compared in terms of UA, PA, and OA.20 A comparison of MLC, linear SVM, and nonlinear
SVM results in terms of accuracy parameters derived from confusion matrices for different
classes is shown in Table 3. The classification map from linear SVM has the highest accuracy.

Fig. 4 Q-Q plots of training pixels for different classes. Different bands are represented in different
colors. A reference line is drawn to show deviation from normal distribution. The data are from an
IRS-1D LISS-III image from the year 2003. Details of the spectral bands are given in Table 1.
(a) Mixed forest; (b) waterbody; (c) builtup; and (d) mudflat.
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Furthermore, we calculated kappa (κ) statistics for each map and performed the Z-test to com-
pare two different classified maps (Table 4).64,65 The statistical results indicate that while linear
and nonlinear SVM classified maps are similar in the 95% confidence interval (i.e., with prob-
ability of significance of 1.645), both of them are significantly better than the MLC classified
map. Thus, SVM performance was superior to MLC for FE mapping in our area. The FE pocket
polygons overlaid on the classified maps [Figs. 8(a)–8(c)] were constructed from the
Resourcesat-2 LISS-IV (5 m) data, GPS readings, and the knowledge base [Fig. 3(a)]. It
should be noted that each FE pocket in the study area was visited to capture its GPS
reading. The FE areas of the GPS polygons were in agreement with the data provided by
ANFD.

Fig. 6 Three bands of IRS-1D LISS-III (i.e., B2, B3, and B4) for the training set are plotted in the
feature space. (a) B2 versus B3; (b) B2 versus B4; (c) B3 versus B4.

Fig. 5 The data for Q-Q plots from Resat-2 LISS-III (year 2013). Different bands of training pixels
are plotted in different colors. Deviation from a reference line shows non-normal distribution.
Spectral details of different bands are given in Table 1. (a) Mixed forest; (b) waterbody; (c) builtup;
and (d) mudflat.
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4.4 Classification of IRS-1D LISS-III Images for the Year 2003

The resultant images of the MLC and SVM classifiers on the test bed of the IRS-1D LISS-III data
are shown in Figs. 10(a)–10(c). Separation of small FE pockets in the classified images of SVMs
is evidently better than that of the MLC classified images. Furthermore, MLC classified images
appear nosier than SVM (both linear and nonlinear) classified maps, as seen in Fig. 10. The
southern part of Baratang Island is enlarged in Fig. 11 to compare the noise pattern in the clas-
sified images. We observe that SVMs output better classification maps qualitatively as compared
to MLC for the year 2003 as well.

Quantitative assessments of the two methods for image classification are given in Table 5.
MLC has falsely detected 8.97% more FE, whereas only 4.71% of the FE area remained

Fig. 8 Output thematic maps for the year 2013 based on (a) MLC, (b) linear SVM, and (c) nonlinear
SVM. Polygons on the thematic maps show encroached area.

Fig. 7 Four bands of Resourcesat-2 LISS-III (i.e., B2, B3, B4, and B5) for the training set are
plotted in the feature space. (a) B2 versus B3; (b) B2 versus B4; (c) B2 versus B5; (d) B3 versus
B4; (e) B3 versus B5; (f) B4 versus B5.
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Fig. 9 Output thematic maps showing southern part of Baratang Island using (a) MLC, (b) linear
SVM, and (c) nonlinear SVM. Encircled areas show presence of noise in MLC thematic map.
Boxed areas show overdetection with nonlinear SVM classification.

Table 2 Quantitative comparison between SVM and MLC classified maps, 2013.

Number of FE pockets Area (Ha)

Area (in Ha) detected by
Difference in area (in %)

detected by

MLC Linear SVM MLC Linear SVM

56 210 245 206 16.6 (+) 1.9 (−)

Table 3 User accuracy (UA), producer accuracy (PA), and overall accuracy (OA) derived from
confusion matrix of SVM and MLC classified maps, 2013.

MLC Linear SVM Nonlinear SVM

OA 95 100 99

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Mudflat 100.0 99.2 100.0 100.0 99.2 99.2

Mixed forest 100.0 82.4 100.0 100.0 100.0 100.0

Waterbody 100.0 100.0 100.0 100.0 100.0 100.0

Builtup 84.4 100.0 100.0 100.0 99.2 100.0

Table 4 κ- and Z -statistics for MLC and SVM classified maps, 2013.

κ-statistics MLC Linear SVM Nonlinear SVM

0.93 1.00 0.99

Z -statistics Linear versus MLC Nonlinear versus MLC Linear versus nonlinear

jZ j ¼ 4.9 jZ j ¼ 4.3 jZ j ¼ 1.42
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undetected by linear SVM. Note that the FE area for the year 2003 and its location are provided
by ANFD. Furthermore, extensive fieldwork with GPS was conducted to corroborate the area of
FE pockets in the study area. Statistical accuracy for different classified maps, as summarized in
Table 6, shows that SVM has an edge over MLC when compared in terms of OA. UA in the
confusion matrix for SVM, in comparison with MLC, has significantly improved in the case of

Fig. 10 Output thematic maps for the year 2003 based on (a) MLC, (b) linear SVM, and (c) non-
linear SVM. Polygons on the thematic maps show encroached area.

Fig. 11 Southern part of Fig. 10 zoomed in. The classification maps are based on: (a) MLC, (b) lin-
ear SVM, and (c) nonlinear SVM. Encircled areas show presence of noise in MLC thematic map.
Boxed areas show overdetection with nonlinear SVM classification.

Table 5 Quantitative comparison between linear SVM and MLC classified maps for the year
2003.

Number of FE pockets Area (Ha)

Area (in Ha)detected by
Difference in area (in %)

detected by

MLC Linear SVM MLC Linear SVM

55 212 231 202 8.97 (+) 4.71 (−)
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class builtup, which matches the FE. Performance based on statistical measures of SVMs and
MLC for image classification is shown in Table 7. Although linear SVM has a higher value of
kappa (κ), there is no significant difference between the three maps in terms of Z-statistics in the
95% confidence interval.

Using the classification scheme based on linear SVM, the change in the builtup class area is
studied from the thematic maps of the years 2003 and 2013. In Figs. 12(a) and 12(b), the
observed changes are circled. In the northwestern part of Fig. 12, encroached forested land
has now been vacated by the encroachers after the tsunami in 2004. The encroachment is clearly
seen on the same spot of Fig. 12(a). A photograph taken during the field visit is shown in
Fig. 13(a). The picture shows a mudflat in front of planted coconut and arecanut trees and
an emptied and imperceptible structure on the left. Two newer FE pockets are observed on
the maps, one in the southern part and another in the eastern part of Fig. 12, which resulted in
an increase of FE during the year 2013 in comparison to year 2003. Figures 13(b) and 13(c) are
snapshots from the southern FE pocket. One can see a newly built house, planted coconut and
arecanut trees, cattle grazing the field, and straw and stubble in the field. Figure 13(d) is a snap-
shot from the eastern FE pocket. A simple tin shade structure is seen in the backdrop of the arable
area. Also, there appears to be an increase in the mudflat area in the post-tsunami period, as
evident in the eastern part of Fig. 12.

5 Discussion

Remote sensing–based FE mapping on Baratang Island is supported by extensive fieldwork that
was conducted with handheld GPS, visiting and identifying each FE pocket in the study area.
GPS reading polygons were overlaid on the images in a GIS environment. An expert knowledge
base and departmental data on FE were incorporated to outline each FE pocket.

Out of the four different LULC classes (mudflat, mixed forest, waterbody, and builtup),
changes in the builtup area between classified images from 2003 and 2013 has been used as
a proxy for FE, supported by field visits and the knowledge base. The randomly picked training
dataset had only 1.2% pixels for the IRS-1D LISS-III as unknown, and only 0.75% pixels for the
Resourcesat-2 LISS-III were recognized as unknown. Out of the four classes, waterbody and

Table 6 UA, PA, and OA derived from confusion matrix of SVM and MLC classified maps, 2003.

MLC Linear SVM Nonlinear SVM

OA 97 99 98

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Mudflat 97.0 95.0 97.8 97.8 98.5 95.0

Mixed forest 100.0 97.6 100.0 100.0 100.0 100.0

Waterbody 100.0 100.0 100.0 100.0 100.0 100.0

Builtup 93.1 97.1 97.8 97.8 95.1 98.5

Table 7 κ- and Z -statistics for MLC and SVM classified maps, 2003.

κ-statistics MLC Linear Non-linear

0.96 0.98 0.97

Z -statistics Linear versus MLC Nonlinear versus MLC Linear versus nonlinear

jZ j ¼ 1.81 jZ j ¼ 1.05 jZ j ¼ 0.78

Tiwari et al.: Forest encroachment mapping in Baratang Island, India, using maximum likelihood. . .

Journal of Applied Remote Sensing 016016-12 Jan–Mar 2016 • Vol. 10(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 25 Sep 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



mixed forest are classified with 100% accuracy, which is due to high spectral discrimination
capabilities for these particular classes, as seen in Figs. 6 and 7. In the feature space, they
are separable in bands B2, B3, and B4. Also, bands B2 and B4 have spectral values close
to normal distribution for mixed forest and waterbody (Figs. 4 and 5). It is important to
note that the vegetation reflects almost half of the NIR (band B4 in this case) back into the
atmosphere. In the case of dense forest, one would expect multiple atmospheric scattering of
reflected NIR radiation contaminating the values from the clearings (i.e., FE). In our study, how-
ever, spectral characteristics of the builtup area and the forested area are well separated in the

Fig. 13 These snapshots were taken in the year 2014. The snapshot (a) is from the area that had
been vacated after the tsunami in 2004 (upper left encircled area in Fig. 12). The snapshots (b) and
(c) are new FEs corresponding to the encircled area in the southern part of Fig. 12. The snapshot
(d) is new FE corresponding to the encircled area in the eastern part of Fig. 12.

Fig. 12 Part of SVM classified maps to show change in FE between (a) 2003 and (b) 2013.
Changes are encircled in both maps for comparison. Polygons on the thematic maps show
encroached area.
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feature space (Figs. 6 and 7), resulting in FE mapping with high accuracy. Mixed pixels resulting
from increasing forest density and decreasing FE size would reduce the accuracy of FE mapping
with this method. This study ignored the adjacency effect related to atmospheric scattering but
still managed to get reasonably high classification accuracy.

In general, builtup and mudflats have less accuracy compared to mixed forest and waterbody.
Furthermore, we observe that in case of MLC, the UA of the class mudflat is higher for the LISS-
III image in 2013 compared to that for the LISS-III image in 2003 (Tables 3 and 6). This could be
a result of the fact that four bands (i.e., B2, B3, B4, and B5) in the larger spectral range of
Resourcesat-2 LISS-III have been used in the classification, whereas only three bands (i.e.,
B2, B3, and B4) of the LISS-III sensor of IRS-1D were useful in the image classification.
The separability of the class mudflat improves with the inclusion of band B5, as seen in the
B2 to B5 and B3 to B5 feature spaces (Fig. 7). A detailed analysis of confusion matrices
shows that it is due to confusion of builtup with wetland, and wetland is confused with
mixed forest with complex and close boundaries. The UA of the builtup and mudflat classes
in SVM is better than that in MLC.

While application of MLC on the normally distributed class with Gaussian distribution
brings better results, the particular probability distribution of the class is irrelevant in the
case of SVM. In both SVM and MLC classified maps, some noise is observed because the mud-
flat and builtup classes have large variance. MLC maps are noisier in comparison with SVM
maps. It is pertinent to mention here that both test bed images were captured by the sensors in the
postharvest period. In Andaman and Nicobar Islands, paddy is harvested before January 15 of
each year. Hence, there is no paddy present in the field; it is open. However, at several places, the
field is covered by straw or very small grasses. There are few and scattered locations of houses in
the builtup area, occupying only a small amount of ground in comparison to the paddy field. In
addition to that, there are natural forested trees inside the builtup area. Nonetheless, we have
successfully identified FE pockets located in the study area. The FE area provided by ANFD
matches with our field data. The statistical accuracy of the linear and nonlinear SVM classifi-
cations for both years, i.e., 2003 and 2013, outperformed the MLC classifier. Comparison of the
thematic maps for the year 2013 in terms of Z-test also suggests that while linear and nonlinear
SVM results have the same proportions, they are somewhat different from MLC results. The
small difference between linear and nonlinear SVM (Tables 4 and 7) may be attributed to random
selection of accuracy assessment sites. Thus, in our application of mapping FE, SVM proves to
be a better classifier than MLC qualitatively and quantitatively. In a few places, FE pockets were
only partially detected, as they are too small with respect to the spatial resolution of the remotely
sensed images. We have the limitation of using high-resolution images, which is beyond the
scope of this study. The SVM classifier produced higher accuracy (∼1%) for thematic maps
based on Resourcesat-2 compared to those based on IRS-1D. This could be attributed to the
number of spectral bands used and the radiometric resolution of the sensors. Resourcesat-2
LISS-III images have four bands with 10 unsigned bit radiometric resolution, whereas IRS-
1D LISS-III images have three bands with 8 unsigned bit radiometric resolution. Additional
separability is provided by the inclusion of band B5 and is evident from the values of the
SVM hyperparameters. The RBF kernel for the year 2013 images has a smaller standard
deviation compared to that for the 2003 images, while the cost parameter remains the same
(σ ¼ 0.3 for Resourcesat-2 images and σ ¼ 0.6 for IRS-1D images).

6 Conclusions

In this study, the commonly used image classification methods of MLC and SVM were imple-
mented with a knowledge base to identify FE in Baratang Island of the Andaman and Nicobar
group of islands, India. The classification performance of linear and nonlinear SVMs was com-
pared with MLC. A comparison study based on Z-statistics reveals that while linear SVM is
significantly better than MLC, linear and nonlinear SVM results are not significantly different.
Due to their spectral separability compared to other LULC classes, forest and waterbody were
classified with high accuracy. In our classification scheme, while the waterbody class includes
creek and sea water, the forest class consists of tropical evergreen and semievergreen forest
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types. The study shows that SVM is more effective in FE mapping than MLC. Integration of the
knowledge base with SVM-classified thematic maps played an important role in proper iden-
tification of FE. Thus, the hybrid scheme that has been developed in this study paves the path for
similar studies in small or large areas.

The study shows that effective implementation of such a classification scheme has many
implications toward mapping and monitoring of land cover change, especially for small patches
using coarse/medium resolution satellite images. Also, such an approach when operationalized
can be used to effectively map and monitor the trees outside forests over large regions, which is a
challenging issue at present. FE at the individual level is not investigated and is beyond the scope
of this study. However, by adopting the scheme developed in this study, one can implement it
over a larger area for identification of FE.

Appendix A: Theoretical Background

A1 Maximum Likelihood Classification

MLC is a widely used supervised statistical classification method in remote sensing. It assigns a
given pixel to a specific class based on the conditional probability concept. The likelihood for a
given pixel with spectral value x to be of class ωi is determined using Bayes’s theorem and is
represented as pðωijxÞ. The maximum likelihood decision rule for each pixel in the remotely
sensed image under MLC is calculated by the natural logarithm of likelihood or “discriminant
function”38 given by

EQ-TARGET;temp:intralink-;e001;116;450giðxÞ ¼ lnfpðxjωiÞpðωiÞg ¼ ln pðxjωiÞ þ ln pðωiÞ; (1)

where pðωiÞ is the prior probability of the i’th class ωi, and x represents a column vector of the
brightness value for the pixel in the multispectral bands.

Classification of pixels is based on the probability that a pixel falls within a certain class.
MLC finds the probability of a pixel belonging to a particular class based on a certain threshold
value. Each pixel is assigned to the class that has the highest probability (i.e., the maximum
likelihood). If the highest probability is smaller than the specified threshold value, the pixel
remains unclassified.

The “discriminant function” shown in Eq. (1) is a general form of MLC with respect to a
probability density function. Commonly, the multivariate normal distribution function, also
known as Gaussian distribution, is assumed for the data in each class of the multispectral
remotely sensed images. The probability density function for Gaussian distribution in N-dimen-
sional space is given as

EQ-TARGET;temp:intralink-;e002;116;275pðxjωiÞ ¼ ð2πÞ−N∕2 jCij−1∕2 expf−1∕2ðx −miÞTC−1
i ðx −miÞg; (2)

where Ci and mi are the covariance matrix and mean vector of the data, respectively, in the i’th
class. Substituting Eq. (2) into Eq. (1) and omitting the class independent term gives the dis-
criminant function as38,66

EQ-TARGET;temp:intralink-;e003;116;206giðXÞ ¼ ln pðωiÞ −
1

2
ln jCij −

1

2
ðx −miÞTC−1

i ðx −miÞ: (3)

A2 Support Vector Machine

SVM is a supervised nonparametric statistical classification method to classify multispectral
images. It started as a binary classifier in which an optimal hyperplane is constructed with a
maximized margin that separates all training vectors into two classes labeled as þ1 and
−1.36 Training samples that lie on the margins of decision boundaries are called the support
vectors. Depending on the distribution and separability of training data in the feature space,
linear or nonlinear SVM is used for classification.
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A2.1 Linear Support Vector Machine Classification

A2.1.1 Linear-separable case

Suppose that there are N numbers of a training dataset represented by
fxi; yig; i ¼ 1; : : : ; N; yi ∈ f1;−1g; xi ∈ Rd. Here, xi is the observed multispectral features
and yi is its class label.

36 A linear hyperplane in feature space is defined as

EQ-TARGET;temp:intralink-;e004;116;656w · xi þ b ¼ 0; (4)

where x is a point lying on the hyperplane, w is normal to the hyperplane, and b indicates
the bias. For a linearly separable case, the separating hyperplane can be defined for two classes
as

EQ-TARGET;temp:intralink-;e005;116;580yiðw · xi þ bÞ ≥ 1; for all yi ¼ þ1 and yi ¼ −1: (5)

The margin between the two canonical hyperplanes is 2∕kWk. In order to maximize the margin,
w needs to be minimized. It is a nonlinear optimization task and can be achieved by
minf1

2
kWk2g with Lagrange multipliers38 using the constraints as in Eq. (5).

A2.1.2 Linear nonseparable case

When the classes are not linearly separable from each other, the soft margin method can be
employed for classification of samples with minimal errors.36,67 An optimal solution is achieved
by introducing a slack variable ξ in the optimization procedure as

EQ-TARGET;temp:intralink-;e006;116;440 min

�kWk2
2

þ C
XN
i¼1

ξi

�
; (6)

where C is a penalty or cost parameter. The first part is used to maximize the margin and the cost
parameter C is used to penalize the training vectors situated on the wrong side of the decision
boundary.36 C is essentially a tradeoff between errors of the SVM on the training data and margin
maximization subject to constraints:68

EQ-TARGET;temp:intralink-;e007;116;332yiðw · xi þ bÞ ≥ 1 − ξi; ξi ≥ 0; i ¼ 1; : : : ; N: (7)

A2.2 Nonlinear Support Vector Machine Classification

A nonlinear SVM algorithm is used when a linear hyperplane with either a hard or soft margin
cannot separate the classes. The feature space is mapped into a higher dimensional space to
improve separation between classes. The training set (xi ∈ Rn) is projected into a higher dimen-
sional space (H) using a nonlinear mapping function: Φ: Rn → H.67

Avector x in the feature space is introduced asΦðxÞ inH. A scalar product of the transformed
feature is used as a kernel function and is written as57

EQ-TARGET;temp:intralink-;e008;116;196Kðxi;xjÞ ¼ ΦðxiÞ · ΦðxjÞ: (8)

Details of SVM formulation for linear and nonlinear separability can be found in Richards38

and Tso and Mather.36

There are several kernel functions used in SVM that are categorized as linear, polyno-
mial, RBF, and sigmoid kernel. However, polynomial and RBF are commonly used kernels
in remote sensing for digital image classification.53,57,58,69 In this study, we have used the
Gaussian RBF kernel Kðxi; xjÞ ¼ expð−kxi − xjk2∕2σ2Þ to map the input data into nonlinear
feature space. σ is a hyperparameter of the RBF kernel function, also known as kernel
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width.69 The algorithm is implemented with a soft margin. The performance of SVMs varies
depending on the proper optimization of the kernel parameter σ and the cost parameter C.
The optimal value of σ usually lies between the range of 0.1 and 0.9 quantile of kxi − xjk
statistics.70,71
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