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A B S T R A C T

Background and objective: This paper presents a novel method for Alzheimer’s disease clas-

sification via an automatic 3D caudate nucleus segmentation.

Methods: The proposed method consists of segmentation and classification steps. In the seg-

mentation step, we propose a novel level set cost function. The proposed cost function is

constrained by a sparse representation of local image features using a dictionary learning

method. We present coupled dictionaries: a feature dictionary of a grayscale brain image

and a label dictionary of a caudate nucleus label image. Using online dictionary learning,

the coupled dictionaries are learned from the training data. The learned coupled diction-

aries are embedded into a level set function. In the classification step, a region-based feature

dictionary is built. The region-based feature dictionary is learned from shape features of

the caudate nucleus in the training data. The classification is based on the measure of the

similarity between the sparse representation of region-based shape features of the seg-

mented caudate in the test image and the region-based feature dictionary.

Results: The experimental results demonstrate the superiority of our method over the state-

of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy.

Conclusions: In this paper, we find that the study of the caudate nucleus atrophy gives an

advantage over the study of whole brain structure atrophy to detect Alzheimer’s disease.

© 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The caudate nucleus (CN) is a periventricular gray matter struc-
ture in the center of the brain. It is a part of the basal ganglia
which is responsible for the voluntary movement and memory.
It shows up in MRI-T1 modality as a bright gray area. It is lighter
compared to the cortical gray matter. Although it has a ho-
mogeneous intensity, CN segmentation is considered as one

of the most challenging tasks in medical imaging due to its
boundary ambiguity and the topological attachment with sur-
rounding gray matter structures at multiple locations [1–3]. Fig. 1
illustrates the difficulties of CN segmentation in MRI-T1 images.

The detection of brain diseases such as Alzheimer’s disease
(AD), schizophrenia, and epilepsy via volumetric measure-
ments of subcortical structures in MRI has gained importance
[1,2]. Among brain diseases, AD is the most common degen-
erative disorder of late life. Wang et al. [5] proposed an
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interesting method for Alzheimer’s disease detection using
support vector machine. Zhang et al. [6–9] proposed four
classification methods. The methods [6,9] are based on using
the 3D eigenbrain to find distinguishing regions between normal
subjects and AD patients. The method [7] is based on the use
of displacement field estimation as a feature to classify normal
and AD brains.The method [8] consists of three steps.The first
step is a registration step, the second step is a principal com-
ponent analysis (PCA) step for feature extraction.The third step
is the classification step using kernel support vector machine
decision tree (kSVM-DT).

AD is usually associated with a progressive cerebral atrophy,
which can be revealed using MRI [10,11]. CN atrophy, 9–14% re-
duction in the CN volume, or CN abnormality in AD patients
has been reported in many studies [1,3,10–13]. Many studies
have reported that the atrophy of CN leads to motor learning
and memory disorders such as Alzheimer’s disease (AD) [10–13].
An increasing number of research focused on automatic tech-
niques for studying the brain region atrophy to detect AD
[12–15]. Cuingnet et al. [14] evaluated ten (voxel-based, corti-
cal thickness-based, and hippocampus shape-based) methods
for the AD patient classification. The methods in this evalua-
tion are either based on the volumetric analysis of the whole
brain (such as gray and white matter, and cerebrospinal fluid),
or local brain structures (such as the hippocampus).

In 2007, caudate segmentation competitions (CAUSE07) from
MRI data were held in conjunction with MICCAI [16]. Between
2007 and 2010, twenty methods were proposed using differ-
ent approaches such as an atlas registration [17], a shape prior
[18], an active appearance model [19], a level set [20], and a
voxel-based classification [21,22]. Moreover, some methods have
been proposed for caudate segmentation, which are not pub-
lished on CAUSE07 competitions. Nain et al. [23] proposed a
shape based segmentation method for CN segmentation. This

method used multiscale shape representation using spheri-
cal wavelets. Xia et al. [24] proposed a knowledge-driven method
for CN segmentation.This method considered the lateral ven-
tricle to automatically detect the CN. van Rikxoort et al. [25]
proposed a method for CN segmentation. This method is a
multi-atlas-based segmentation method.

In recent years a variety of methods have been proposed
for CN segmentation. Igual et al. [26] proposed a method for
the CN segmentation. This method is based on a multi-atlas
registration with a graph-cut method. Jiji et al. [10] proposed
a segmentation method of different brain structures. This
method is used to diagnose the AD by evaluating the atrophy
of the CN and the atrophy of the gray matter, the white matter,
and the cerebrospinal fluid.

In 2014, dementia diagnosis competitions were held in con-
junction with MICCAI conference [27]. Twenty nine methods
were proposed to classify normal, AD, and mild cognitive im-
pairment. These methods have used different classifiers such
as support vector machine, neural network, and linear dis-
criminant analysis (LDA). These classifiers are learned from
different combinations of features (volume, shape, thickness,
intensity) [27]. The best performing method, yielding an ac-
curacy of 63.0%, is based on the texture, volume, thickness, and
shape features of 7 brain structures using LDA [27,28].

Many approaches have shown that variational formulation
is the most effective method to solve many image segmenta-
tion problems, but it needs a well-defined region boundary [29].
Moreover, a voxel-wise dictionary learning and sparse coding
methods have been popular and useful tools in medical image
segmentation and classification [30,31]. Deshpande et al. [32] used
a dictionary learning and sparse coding method to detect mul-
tiple sclerosis lesions. Al-shaikhli et al. [30] proposed a global
feature-based approach for the brain tumor classification using
the dictionary learning. Tong et al. [33] proposed a method to

Fig. 1 – Overlapped boundaries (indicated by yellow ellipses) between the CN and surrounding brain structures in MRI-T1 of
the IBSR database [4]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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segment the hippocampus using a discriminative dictionary
learning. This method is based on an atlas registration and a
label fusion. Manhua et al. [34] proposed a patch-based AD clas-
sification method.This method used a sparse coding classifier.
Al-shaikhli et al. [31] proposed a voxel-wise coupled diction-
ary method for a brain tumor segmentation. This method
considers the grayscale image data and its associated label image
as coupled images because they have the same spatial exten-
sion, i.e. this method couples the voxel value of the grayscale
image and its associated voxel value in the label image. In con-
trast to this method, our method couples the feature information
in the grayscale image with the label information in the label
image, then embeds them in a level set formulation.

Volumetric analysis-based methods of the whole brain have
a limitation to classify the intermediate and advanced stages
of the AD because, normally, the brain volume is reduced with
the age [14]. In order to solve this limitation, and in contrast
to the aforementioned methods, we present a novel AD clas-
sification method via measuring the volume atrophy of the CN.

The main contribution in this paper represents a novel level
set cost function to segment the CN. The proposed level set
equation is constrained by the sparse representation of the local
image features. The sparse representation of local image fea-
tures is embedded in the level set equation using a coupled
dictionary learning approach. The coupled dictionaries are: a
voxel-wise feature dictionary of the gray image data, and a
voxel-wise label dictionary of the label image data (the ground
truth segmentation of the training data). The segmented CN
is used for the AD classification. In the classification step, a
region-based feature dictionary is built.This dictionary is learned
from CN shape features of both normal and AD subjects. The
classification is based on the measure of the sparse represen-
tation similarity between the segmented CN in the test image
and the region-based learned dictionary.

1.1. Major contribution

The method in this paper is an extension of our previous method
presented in References [31,35].The method in References [31,35]
is a voxel-wise coupled dictionary learning method.This method
is sensitive to the type of image modality used, i.e., although
it achieves a good segmentation accuracy, it has a limitation to
select correct foreground and background labels, when the gray
level values, between image regions, are quite similar as in the
MRI-T1 image modality. To solve this limitation, in this paper,
we propose the use of local image texture features instead of
voxel values to build the coupled dictionaries.Then, the coupled
dictionaries are embedded in a level set formulation.

In the proposed method, the coupling procedure is modi-
fied over the method in References [31,35]. We propose a
segmentation algorithm by coupling the local image features
with the local label information. We embed this prior knowl-
edge into a level set formulation to integrate a novel cost
function.This method is applied to detect Alzheimer’s disease
(AD) via the CN segmentation. The key idea of the proposed
framework is demonstrated in Fig. 2.

The remaining sections are organized as follows. The pro-
posed method is described in detail in Section 2. In Section 3,
experimental results are presented. In Section 4, the results
are discussed. Finally, this work is concluded in Section 5.

2. Method

The proposed method consists of two steps: the segmenta-
tion step and the classification step. In the segmentation step,
coupled dictionaries are embedded into a level set equation
to integrate a novel cost function for the CN segmentation.The
classification step uses the segmentation results to classify the
AD patients from normal subjects. The classification step is
based on the measure of the similarity between the sparse rep-
resentation of shape features of the segmented CN and a region-
based feature dictionary.

2.1. Coupled dictionaries

The grayscale image data and the corresponding ground truth
segmentation have the same spatial extension, and they can
be considered as coupled images [31]. Thus, each voxel in the
grayscale image refers to the same voxel location in the label
image [31,35]. Each voxel in the grayscale image is repre-
sented by a single texture feature.This gives an advantage over
using the voxel values directly as presented in References
[31,35]. From each coupled image, two sets of patches are ex-
tracted. The first set is local feature patches. The second set
is voxel-wise label patches. These sets of patches are coupled
to build two dictionaries: a feature dictionary and a label dic-
tionary. Alg. 14 illustrates the procedure which is considered
to couple the feature and label dictionaries.

2.1.1. Patch extraction
The size of all images, which are used in this method, is set to
256 256 170× × using Medical Image Registration Toolbox
(MIRT) [36].Two sets of patches are extracted.The first set is local
feature patches of grayscale image data, and the second set is

Fig. 2 – The key idea of the proposed framework. The caudate nucleus in the test image volume is segmented. Then, based
on the volume reduction of the segmented caudate nucleus, the subject is classified as normal or Alzheimer.
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label patches of label image data. From each slice of image data,
h = 322 patches with size of 8 × 8 × 1 are extracted, as illus-
trated in Fig. 3.

Due to the difficulties to compute texture features of a single
voxel v, we represent a texture feature of the voxel v as a texture
feature of a 26-neighborhood window with the center of the
voxel v. The contrast texture feature is computed using a gray
level co-occurrence matrix (GLCM) [37]. The GLCM is an im-
portant method for textural feature extraction. It represents
the histogram of co-occurring gray level values at a given offset
over the image data. The number of rows and columns in the
GLCM represents the number of gray levels in the image.

The contrast feature measures the change in the inten-
sity value of voxels in the image, which provides better
information than directly using the voxel values.

The feature patches of each image data are concatenated
as a matrix with size 64 × h × 170.The voxel-wise label patches
of each label image data are concatenated in a matrix with size
64 × h × 170. Then, both of feature and label patches are con-
catenated in Yf and Yl matrices respectively. The size of Yf and
Yl is n × N × z, where n = 64, N = 200, and z = 170. Fig. 3 illus-
trates how the feature and label patches are extracted and
concatenated in a 3D matrix.

2.1.2. Dictionary learning
Let Df be a feature dictionary n × K × z matrix D d d df K= ( )1 2, , ,… ,
which consists of K atoms (columns), d R i Ki

n h z∈ ={ }× × : , ,1 … .
Df is learned from the feature sample matrix Yf, where
Y y y yf N= ( )1 2, , ,… is a matrix with size n × N × z, where
y R i Ni

n h z∈ ={ }× × : , ,1 … of N feature samples and (K N� ),
as illustrated in Fig. 3. The sparse representation

A a a a Rf N
K N z= ( ) ∈ × ×

1 2, , ,… is computed s.t. y D ai f i− ≤
2

2
ε and

a K i Ni 0 1� …, , ,= , ε is a small value. Thereby, each feature
sample of the training data is represented by a linear combi-
nation of few atoms in the dictionary Df according to the non-
zero element of Af.

To build the label dictionary, let Dl be a label (voxel-wise)
dictionary matrix D Rl

n K z∈ × × . Dl is built and learned from the
CN ground truth segmentation in the same manner as ex-
plained above (see Fig. 3).The above notations can be formulated
as follows:

argmin . . ,
,D A

f f f F i
f f

Y D A s t i N a K− ∀ ≤ ≤2
01 � (1)

and

argmin . . ,
,D A

l l l F i
l l

Y D A s t i N a K− ∀ ≤ ≤2
01 � (2)

In Eqs. (1) and (2), the sparse coefficients Af and Al are
assumed to be equal in order to achieve the coupling between
the dictionaries Df and Dl. Thus, under this assumption, the
sparse coefficients Al could be used to encode the feature
patches in Df (see Alg. 1):

argmin . . ,
D

f f l F f l
f

Y D A s t i N A A− ∀ ≤ ≤ =2 1 (3)

In the label image, l = 1 for the CN label and l = 0 for the back-
ground. Let v be a set of voxels in the label atom. In a perfect
representation of the CN label in Dl, each atom in Dl is repre-
sented by voxels which have a maximum probability for the
foreground label (CN label) and a minimum probability for the
background label:

D̂ v
l max d v

backgroundl
l l( ) =

= ( )⎧
⎨
⎩

1

0
1if

if
(4)

To optimize the requirement of containing one label infor-

mation in each voxel, the optimized label dictionary Dl* is

computed by minimizing the following equation:

D D D Al
D A

l l l
Fl l

* argmin
,

= −ˆ 2
(5)

Alg. 1 illustrates the procedure to build the coupled diction-
aries.The dictionary learning procedure is done simultaneously
for both Df and Dl to approximate a solution of the error matrix.
Thus, each atom df in Df has a coupled atom dl in Dl, i.e. the label
information in Dl can be inferred on the feature information in
Df. For the update dictionary and sparse coding steps, we propose
the use of the online dictionary learning method [38]. This
method is robust and efficient when the training data are large
and it is suitable for dynamically changing data.

Fig. 3 – Schematic illustration of the matrix dimension explains how the patches are extracted and concatenated in Yf and
Yl matrices of the training samples [31,35].
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2.2. Level-set formulation

In this section, we embed the coupled dictionaries, which are
explained in Subsection 2.1, in the level set formulation using
the piecewise constant approximation of the Mumford–Shah
variational model [29]:

E u C I v u v dx C
data term regulari

,( ) = ( ) − ( )( ) +∫ 2
1

Ω� ������� �������
λ

zzation term
��� ��

(6)

where u :Ω → R3 is a constant approximation of the ob-
served image I. C is the surface of u, and λ1 is a positive real
constant. Ignoring the regularization term, the data term is a
k-mean clustering problem:

I v p I v p( ) − < ( ) −1 2 (7)

where p is the cluster. Many reports have mentioned that this
is an interesting relation between the clustering and sparse
representation [39]. In clustering method, there is a set of vectors

P pi i
K= { } =1 learned from the training data Y, and each training

sample is represented by one of the vectors {pi} that is very close
to it in ℓ2 distance measure. This notation can be represented
as follows:

min
,P X

i kY PX subjected to x x− =2
2 (8)

where X is a matrix almost zero except one non-zero element,
when pi is very close to Y.

In the sparse representation, each training sample is rep-

resented as a linear combination of few vectors di i
K{ } =1 according

to the sparse coefficients.Therefore, sparse representation could
also be inferred as a clustering problem in Eq. (8). From the
aforementioned notations, the data term in Eq. (6) can be re-
formulated as a ℓ2 norm by considering the feature dictionary
Df as follows:

Data Y D A
A

f
test

f f
f

= −( )min
2

2 (9)

where Yf
test represents the feature samples of the test image.

Since Af = Al, Eq. (9) can be rewritten in term of the sparse co-
efficients of the label data:

Data Y D A
A

f
test

f l
l

= −( )min
2

2 (10)

The initialization of the level set is sensitive due to the
boundary ambiguity of the CN as shown in Fig. 1. This sensi-
tivity may also affect the convergence of the level set, i.e. it
converges to a non-optimal local minimum. To solve the ini-
tialization problem of the level set, the label dictionary (Eq. (4))

is used. In Eq. (4), D̂l can be considered as a label state of the

CN in the test image. This means that D̂l is equivalent to the

Heaviside function H(φ) in the level set equation:

Data D v Y D Al
A

f
test

f l

Date term
l

= ( ) −( )ˆ min
2

2

� ���������� �����������

(11)

Moreover, since the label dictionary Dl represents the binary
label of the VOI, the sparse representation Al can be consid-
ered as a regularity term. Therefore, the proposed level set
equation can be presented as follows:

E A D v Y D Atotal l l
A

f
test

f l

Date term
l

( ) = ( ) −( )ˆ min
2

2

� ���������� �����������
� ����� �����

+ +λ λ1 1C Al

Regularization term

(12)

where λ is the sparsity parameter. In Eq. (12), the data term is

constrained by Df and D̂l . As we explained in Section 2.1, the

atoms in Df and Dl are coupled. When D̂l = 1 (Eq. (4)), Al 1 has

one non-zero element.Thus, the term minA f
test

f ff Y D A−( )2

2 is

optimized. This means that Yf
test has a best representation in

Df. As mentioned above, according to Eqs. (4) and (12), D̂l is con-

sidered as a function of the foreground (CN) label state. In the
regularization term, |C| represents the surface voxels of the seg-
mented object. It is used as an indicator of the convergence
during the evolution process.

2.2.1. Level-set optimization
To optimize (Eq. (12)), the best matching between the sparse
representation of the target image data and coupled diction-
aries Df and Dl is computed. Once the ℓ1 norm is applied to the
regularization term, Eq. (12) becomes difficult to solve. Here,
we adopt the concept of iteratively re-weighted (IR) algo-
rithm to handle this problem. We adopt the general idea of an
IR algorithm by reformulating the minimization problem in Eq.
(12) to the weighted mean square error at the tth iteration:

W D v Y D At
l f

test
f l

t
1

1
2

2= ( ) − −ˆ (13)

At each iteration t, |C| represents the surface of the seg-
mented volume. We consider a weighted difference Wt

2 of the
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average surface distance of the surface C at iterations t and
t−1:

W C Ct t t
2 1

1= − −λ (14)

where Ct and Ct−1 are the surface voxels of the segmented
volume at iterations t and t−1 respectively. Wt

2 computes the
average distance of all surface voxels between Ct and Ct−1 . Eqs.
(13) and (14) are constrained by the parameter ε , i.e.

Y D Af
test

f l
t− <−1

2

2
ε

λ1
1C Ct t− <− ε

which means that there is no further change with time (reach
the convergence). The same stopping criteria (ε) are used for
both W1 and W2. W1 and W2 are solved alternately, i.e. fixing
W1 when solving W2 and vice versa. Because W1 determines
the reconstruction error, W2 measures the change of the
surface. Thus, the weighted mean square error is minimized
as follows:

W W1 2+ < ε (15)

Using the above notations, the sparse coefficients Al are it-
eratively optimized:

A Al
t

l
t← −1 (16)

In all experiments, the regularization parameters λ and λ1

are set to 0.4 and 0.3 respectively.

2.3. Classification

The goal of the segmentation stage is to extract the CN volume
from the target image. The segmentation results are used to
classify the normal and abnormal (AD patients) subjects using
the fact that the CN volume in AD patient is reduced com-
pared to the normal subjects. The classification stage is based
on measure of the similarity of the region-based sparse rep-
resentation of image features, as illustrated in Fig. 4. The
segmented images (testing data) and the ground truth seg-
mentation of the training data consist of two labels: l = 1 for
foreground (CN) and l = 0 for background. Let c = 1, 2 be the
class number of normal and AD classes. From the training
data of both classes, a respective region-based feature dic-
tionary is built. As illustrated in Fig. 4, we extract six shape
features of the CN label from each class (volume, surface
area, Euler number, mean breadth, major axis length, and
minor axis length) [40].

Let Dsc be a region-based feature dictionary n K zs sc× × matrix
D d d ds Kc sc

= ( )1 2, , ,… which consists of Ksc atoms (columns),
d R i Ki

n z
s

s
c∈ ={ }× : , , ,1 2 … and each atom represents the key

features, which are extracted from Yc, where K Ns sc c�( ).
Y y y yc Nsc

= ( )1 2, , ,… is a n N zs sc× × matrix which consists of
feature matrices y R i Ni

n z
s

s
c∈ ={ }× : , , ,1 2 … . n = 6 is the number

of features used to learn Dsc , and z = 170.
The sparse representation A a a a Rs N

K N z
c sc

sc sc= ( ) ∈ × ×
1 2, , ,… is

computed s.t. y D ai s ic= and a K i Ni s sc c0 1� …, , ,= . In such a
way that each feature matrix yi in Yc is represented by linear
combination of a few atoms in the dictionary Dsc according to
the non-zero elements in Asc , as illustrated in Fig. 4. The
problem can be formulated as the following minimization:

Fig. 4 – The classification step of our method. From the sets of the training data (normal and AD sets) shape features are
extracted. These features are concatenated in Ysc and represented in Dsc according to the sparse coefficients Asc. The
classification of the test image is based on the sparse similarity between the shape features of the segmented CN in test
image and Dsc .
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min . . ,
,D A

s s s F s i s
sc sc

c c c c cY D A s t i N a K− ∀ ≤ ≤2
01 � (17)

D D cs sc= { } =, ,1 2 (18)

where Ds is the global feature dictionary. We propose
the use of the online dictionary learning method [38] to solve
Eq. (17).

To classify the testing data, the algorithm tries to find a
match between the shape features Xs of the segmented CN
volume in the test image data and the Dsc .This can be achieved
by computing the similarity of the sparse representation of the
shape features of the segmented CN in the test image data with
the contents (key shape features) of Dsc . The sparse represen-
tation of the test image data is computed using the individual
dictionaries of the two classes. If Xs is more sparse with Ds

cth ,
then it is classified as a cth class:

X D A A min A bs s s F s sc c c b− ≤ = ={ }2
0 0 1 2ε, : , (19)

In Eq. (19), we obtain the sparse representation Asc for c = 1,
2.Then, the sample Xs is classified to class cth , when Xs appears
more sparse with respect to Dsc

th (min Asc is selected).

3. Experimental results

3.1. Image database

Three medical databases (MRI-T1 modality) are used, namely,
Alzheimer’s disease neuroimaging initiative (ADNI) database
(200 AD patients and 160 normal subjects) [41], internet brain
segmentation repository (IBSR) database (20 normal subjects)
[4], and brain web database (20 normal subjects) [42]. The total

number of image data is 400 subjects, which were randomly
and equally split into 200 subjects of training and 200 sub-
jects of testing sets. ADNI provides a large normal and AD
database. The age and gender are considered when we select
subjects for training and testing (175 males and 185 females
between 40 and 90 years old). The training data and their as-
sociated ground truth segmentation (label image) are used to
build and learn the feature and label dictionaries.

3.2. Computational time and parameter selection

All experiments are conducted in MATLAB using a 2.0 GHz Intel
core I3 CPU. The average computation time per subject is 3.5
minutes.The proposed method is based on measure of the re-
construction error. Therefore, the main parameters that affect
the segmentation accuracy are the reconstruction error (ε) and
the sparsity (λ) parameter. λ is important to control the trade-
off between the reconstruction error ε and the sparsity. λ1 has
less effect than λ. To optimize the selection of these param-
eters, many experiments are conducted. We test the value of
λ and λ1 for different values (0 05 0 1 0 15 0 9. , . , . , , .… ). We find that
the best values of these parameters are λ = 0.4 and λ1 = 0.3.The
reconstruction error parameter is tested for different values
(0 0005 0 001 0 3. , . , , .… ). We find ε = 0 001. is the best value.

3.3. Qualitative evaluation

Fig. 5 shows the segmentation results of the CN of both normal
and AD cases. All segmentation examples are at the same slice
level in three different planes. From the results, a significant
difference in the shape of the CN was observed between AD
and normal cases, i.e. reduction in the CN volume in AD cases.
The CN atrophy in AD cases is mainly noticed in the tail part
on the CN, which is indicated by white arrows in Fig. 5.

Fig. 6 shows a comparison between the results of the pro-
posed method and the methods [31,35]. The improvement of

Fig. 5 – CN segmentation examples of both AD and normal cases. Each column represents three different planes of one
case. In the second row, the white arrows indicate the atrophy of the tail part of the CN in AD cases compared to the
normal.
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the segmentation of the tail part of CN is indicated by the white
arrow in the transverse section in Fig. 6.

Fig. 7 shows two CN segmentation examples (the example,
on the left, is normal case and, on the right, is AD case). The

significant reduction in CN volume can be noted in AD seg-
mentation examples. Furthermore, the ambiguity of the CN
boundaries and the gray level similarity between the CN and
surrounding brain structures are noted in all examples. The

Fig. 6 – An example of CN segmentation results of the proposed method and the results of the methods [31,35]. The first
column is the original image. The second column is the segmentation results of the methods [31,35]. The third column is
the segmentation results of the proposed method.

Fig. 7 – Two CN segmentation examples of both normal and AD cases. In each example, the first row shows the input image
data in three different planes. The second row is the segmentation results of our method. The third row shows the 3D
segmentation of the proposed method. The significant CN volume reduction in the AD case, compared to the normal case
especially in the tail part of the CN, can also be seen in the 3D segmentation.
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results show the ability of our method to solve this segmentation
challenge using the coupled patches via the level set formula-
tion, which makes the CN segmentation results more accurate.

3.4. Quantitative evaluation

For quantitative evaluation, the sensitivity SEN TP TP FN= +( )( ),
specificity SPE TN TN FP= +( )( ), positive predictive value PPV(

TP TP FP= +( )), negative predictive value NPV TN TN FN= +( )( ),
and accuracy AA TP TN TP TN FP FN= + + + +( )( ) are calculated by
computing the true positive (TP), the true negative (TN), the false
positive (FP), and the false negative (FN).Dice coefficient is useful
to measure the spatial overlap between the segmentation results
and the ground truth segmentation.

Moreover, to emphasize the segmentation step of the
proposed method, we use three evaluation metrics: dice
coefficient (DSC), the symmetric mean absolute distance
(MAD) and Hausdorff distance (HD) [43]. Dice coefficient
(DSC A B absolute A absolute B= ∩( ) ( ) + ( )( )2 ) is useful to measure
the spatial overlap between the segmentation results and the
ground truth segmentation [44]. MAD is calculated by measur-
ing the average distance from all points on the border of the
automatically segmented CN to the border of the reference seg-
mentation. HD is calculated between the border of the
automatically segmented CN and that of the reference segmen-
tation. HD is useful to assess the maximal local discrepancy
between an automatic segmentation and reference segmenta-
tion. The smaller the MAD or Hausdorff distance, the better the
points aligned on the two borders and thus the better the agree-
ment with the reference segmentation.

Table 1 shows that the proposed method outperforms the
state-of-the-art segmentation methods that are based only on

level set [10], dictionary learning [31], and atlas based segmen-
tation with dictionary learning [33]. However, the Hausdorff
distance of >3 mm sounds quite large. This number is related
to the HD in the tail part of the CN.

In Table 2, we compare our method to the state-of-the-art
classification methods that used different classification tech-
niques such as computing the relative CN volume with respect
to the total brain volume [10], and sparse coding classifier [32,34].

The results of the proposed method in Tables 1 and 2 rep-
resent the average accuracies of 10 runs. In our experiments,
firstly, the 400 samples are randomly divided into 200 for train-
ing and 200 for testing. Then, these groups are randomly re-
selected by changing 20 samples from one group to another.
This procedure is repeated 10 times.

The use of many datasets may induce a bias in the segmen-
tation and classification results. To emphasize the robustness
of the proposed algorithm, we also use a leave-5-cross-validation
for the segmentation and the classification evaluation using only
ADNI dataset (100 normal subjects and 100 AD patients). Tables 1
and 2 show the evaluation results which are computed as an
average of 40 runs of randomly selecting the testing data using
leave-5-cross-validation. The results of this evaluation are in-
dicated by (§) in Tables 1 and 2.

4. Discussion

In regard to SEN and SPE of both segmentation and classifi-
cation results, note that the sensitivity is higher than the
specificity, which means that the AD cases are better de-
tected than the normal cases. Moreover, in our method, the

Table 1 – Evaluation of segmentation results of our method compared to the state-of-the-art segmentation methods.
These results are the average of 10 runs. In each run, the training and testing sample groups are randomly re-selected
by changing 20 samples from one group to another.

Method SEN SPE PPV NPV AA MAD HD DSC

Proposed 92.4% 90.4% 91.1% 91.9% 91.5% 0.8 mm 3.5 mm 93.1%
§Proposed 92.0% 90.8% 91.3% 91.3% 91.0% 0.84 mm 3.0 mm 92.8%
Method [33] 91.3% 89.2% 90.6% 91.0% 90.6% 0.9 mm 3.5 mm 92.8%
Method [10] 90.0% 88.2% 87.7% 89.1% 88.6% 0.96 mm 3.8 mm 92.0%
Method [31] 90.0% 87.8% 87.6% 89.3% 88.4% 1.1 mm 4.5 mm 90.7%
Method [26] 88.9% 87.2% 87.7% 88.3% 87.8% 1.3 mm 4.1 mm 90.1%

Note: §The results are obtained using leave-5-cross-validation of ADNI dataset (100 normal subjects and 100 AD patients).
Highest values are in bold.

Table 2 – Evaluation of classification results of our method compared to the state-of-the-art classification methods. These
results are the average of 10 runs. In each run, the training and testing sample groups are randomly re-selected by
changing 20 samples from one group to another.

Method SEN SPE PPV NPV AA

Proposed 94.5% 90.5% 90.86% 94.3% 92.5%
§Proposed 93.7% 90.7% 90.0% 93.8% 92.1%
Method [10] 90.0% 92.5% 92.3% 90.24% 91.25%
Method [32] 91.5% 88.0% 88.4% 91.2% 89.75%
Method [34] 89.0% 90.0% 89.9% 89.1% 89.5%

Note: §The results are obtained using leave-5-cross-validation of ADNI dataset (100 normal subjects and 100 AD patients).
Highest values are in bold.
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classification step is based on using individual dictionaries
(a dictionary for each class). The results are improved
compared to method that is based on measuring the ratio
between different brain structures [10], which implies that not
only this classifier performs better than the rest, but also that
the shape features of the segmented CN provide more dis-
criminative information than the ratio itself, improving the AD
diagnostic accuracy. The SPE and PPV of the method [10] are
better than ours, since this method is a semi-automatic method.

It should be noted that our method is able to recognize the
mild cognitive impairment. Because the proposed method is
based on the measure of the CN atrophy which is sometimes
difficult to recognize in mild cognitive impairment cases, the
proposed method recognizes the mild cognitive impairment
with lower accuracy than AD cases. From the results, we found
that the atrophy of CN in all images is ranged from 12% to 20%.
The atrophy mostly occurred in the tail part rather than in the
body of the CN.

Compared to the methods [31,35], from the results in Table 2,
we observe that the coupling of image features and label in-
formation gives an improvement, in terms of segmentation
accuracy, compared to the coupling of the voxel values of real
and label image information. Moreover, embedding the coupled
dictionaries in the level set formulation gives an advantage that
its results are smoother than the results of dictionary-learning-
based segmentation methods [31,33].

Compared to the method presented by Zhang et al. [7], which
is based on the estimation of the displacement field between
normal and AD brains, this method requires a registration step,
which is considered as time-consuming step. Moreover, the use
of the dictionary learning method gives better sparse repre-
sentation of image features than the use of PCA.

In Figs. 5 and 7, behind the reduction of CN volume, there
is a significant enlargement in the ventricles in AD patients.
Although this enlargement may be considered as useful
information to detect AD, it adds a complexity to the segmen-
tation step due to the gray level similarity between the ventricles
and the background in MRI-T1 modality. In other words, the
ventricle tends to be dark region in MRI-T1 modality. Because
the level set formulation has the property of topological
changes, embedding the sparse representation of image in-
formation, via dictionary learning approach, into the level set
formulation gives an advantage of making the segmentation
results smoother than the results obtained using voxel-
based approaches.

5. Conclusion

This paper presents a method for AD detection via an auto-
matic 3D CN segmentation using a coupled dictionary learning
with a level set formulation.The data and regularization terms
of the level set equation are integrated in a novel manner. In
the segmentation step, two types of dictionaries are coupled:
the feature dictionary, which represents the texture features
of image patches, and the label dictionary, which represents
the voxel-wise CN label image patches. In the classification step,
the region-based shape features of both normal and AD cases
are used to learn the dictionary. The test image, after the CN

segmentation, is classified as normal or abnormal (AD) by com-
puting the sparse similarity of the shape features of the
segmented CN with the contents (shape features) of the dic-
tionary. The experimental results show that our method
outperforms the state-of-the-art methods by achieving a seg-
mentation and classification accuracy of 91.5% and 92.5%
respectively.

Appendix. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.cmpb.2016.09.007.
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