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Automatic traffic light detection and mapping is an open research problem. The traffic lights vary in color,
shape, geolocation, activation pattern, and installation which complicate their automated detection. In
addition, the image of the traffic lights may be noisy, overexposed, underexposed, or occluded. In order
to address this problem, we propose a Bayesian inference framework to detect and map traffic lights. In
addition to the spatio-temporal consistency constraint, traffic light characteristics such as color, shape
and height is shown to further improve the accuracy of the proposed approach. The proposed approach
has been evaluated on two benchmark datasets and has been shown to outperform earlier studies. The
results show that the precision and recall rates for the KITTI benchmark are 95:78% and 92:95% respec-
tively and the precision and recall rates for the LARA benchmark are 98:66% and 94:65%.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Accurate traffic light detection and mapping is an important
task for autonomous vehicles (Diaz et al., 2015; Jensen et al.,
2016). An autonomous vehicle should be able to detect the traffic
lights and take proper actions based on the signal of traffic lights.
Despite the fact that the autonomous driving technology is emerg-
ing, the traffic light detection is still an open challenge.

There are a number of challenges to detecting a traffic light:
typically, the lenses on a traffic light are not illuminated uniformly
and the lens color changes from center to its border, traffic lights
may be installed on a pole or suspended over the road, and road
regulations may change from one state to another. In addition to
detection, the traffic lights needs to be geolocalized for a number
of reasons: autonomous vehicle should stop in an appropriate dis-
tance from the traffic lights, and multiple traffic lights on a road
should be sorted to select the correct traffic light for the autono-
mous vehicle. In order to overcome the aforementioned problems
and geolocate the traffic lights, we propose a Bayesian probabilistic
framework.

Color has been the prominent property of the traffic lights in the
heuristic approaches. Color only based detection, however, has
limitations due to noisy data acquisition. The lenses on a traffic
light are not standard and have different shades of colors, and over
saturation becomes a problem when camera directly faces the traf-
fic lights. The Red-Green-Blue (RGB) color space is not suitable for
the traffic light detection since its channels are not independent.
Other color spaces separate the luma (image intensity) and chroma
(color) components and therefore, they are more robust to the
lighting changes and shadows. Researcher has explored various
color spaces such as normalized RGB (Diaz-Cabrera and Cerri,
2013; Diaz-Cabrera et al., 2012, 2015; Omachi and Omachi, 2009,
2010), Hue-Saturation-Value (HSV) (Jie et al., 2013; Tae-Hyun
et al., 2006), YCbCr (Cai et al., 2012), YUV (Shadeed et al., 2003),
and CIELab (John et al., 2014; Sooksatra and Kondo, 2014). Some
other researchers suggested to use multiple exposures and
improve the illumination in the images (Jang et al., 2014).

There are a few researchers who applied brightness of the traffic
light to detect them. The connected pixels can be matched with a
resizable template of the traffic light.

The traffic light has a circular shape. If the image plane and traf-
fic light plane are parallel, the circular shape of the traffic light in
the image remains a circle. In order to exploit this characteristic,
authors of Caraffi et al. (2008) and Huang and Lee (2010) use the
Hough transform based circle detection. In order to overcome the
computational complexity of the Hough transform, some research-
ers suggest the fast radial symmetry transform to detect circular
shape of the traffic lights (Sooksatra and Kondo, 2014). Moreover,
authors of de Charette and Nashashibi (2009a) detect the circular
bright spots and apply adaptive template matching to find the traf-
fic lights. The assumption that the traffic light fixture plane and
image plane are parallel, is not always correct and the traffic light
can have ellipse shape.

In addition to circular lens shape, the box-shaped fixture of the
traffic light has also been explored. Unlike the traffic light lens, the
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traffic light fixture does not have primitive shape. Hence, template
matching became a popular approach to detect the traffic light fix-
ture (de Charette and Nashashibi, 2009a,b; Trehard et al., 2014;
Wang et al., 2011). In addition, the AdaBoost classifier different
classifiers has been also applied to detect the traffic light fixture
(Gong et al., 2010; Kim et al., 2013).

The prior knowledge of traffic lights are essential for some traf-
fic light detection algorithms. Since the traffic lights are static
objects, they are geolocalized and stored in geospatial database.
If intrinsic and extrinsic parameters of camera are known and
the pose of platform is observed, the position of the traffic lights
is projected into the image space and applied to initialize the traffic
light detection algorithms (Barnes et al., 2015; Fairfield and
Urmson, 2011; John et al., 2014; Levinson et al., 2011).

There are a number of approaches apply learning algorithms to
detect the traffic lights. Convolutional Neural Network (CNN) has
been applied to generate the saliency map and detect the traffic
lights (John et al., 2014, 2015). In addition, it has been shown the
Aggregated Channel Features (ACF) approach has supperior perfor-
mance over the heuristic models (Jensen et al., 2016; Philipsen
et al., 2015).

There are a number of shortcomings in the previous
approaches: The geometry of traffic light lenses is neglected or
poorly applied; Various features are not integrated in a statistical
framework; Since the properties of traffic lights significantly vary
in each state, evaluating the results on one dataset is not sufficient.
Based on our knowledge, we are the first who has used conic sec-
tions to detect and localize the traffic lights. In addition, we utilize
the Bayesian framework to combine several features and enforce
spatiotemporal consistency. We evaluate our results using two
benchmarks and compare them with the other approaches.

2. Methodology

In our approach, traffic light detection is formulated as a binary
labeling problem and the traffic light characteristics such as color,
shape, and height are used as observations for the traffic light
detection. To ensure the detection is coherent in space and time,
we additionally introduce spatio-temporal constraints.

2.1. Binary labeling

Suppose an image It is taken at time t and xi ¼ ½ui; v i�> is one of
its pixels. State xtðxiÞ indicates whether xi belongs to the traffic
light. In other words, xtðxiÞ is 1 if xi belongs to a traffic light and
it is 0 otherwise.

The observation vector ZtðxiÞ is a vector of cues such as color,
shape, and height of the traffic lights at time t. The best estimate
of the traffic lights is calculated when all observations up to this
time, Z1:tðxiÞ, are used. Therefore, probability of a pixel belongs to
the traffic lights is given by PðxtðxiÞ ¼ 1jZ1:tðxiÞÞ. If probability of
a pixel is sufficiently high, we label the pixel as a pixel of traffic
light, such that:

xtðxiÞ ¼
1 PðxtðxiÞ ¼ 1jZ1:tðxiÞÞ > Th

0 otherwise;

�
ð1Þ

where Th is empirically selected based on the precision and recall
rate and is described later in the experiment section. The posterior
probability of the labels for pixels of an image are estimated by:

Pðxtðx1:nÞjZ1:tðx1:nÞÞ

¼ PðZtðx1:nÞjxtðx1:nÞÞPðxtðx1:nÞjZ1:t�1ðx1:nÞÞR
PðZtðx1:nÞjxtðx1:nÞÞPðxtðx1:nÞjZ1:t�1ðx1:nÞÞdxtðx1:nÞ ; ð2Þ

where n indicates to the number of pixels in the image It and x1:n

represents pixels of the image. In this equation, PðZtðx1:nÞjxtðx1:nÞÞ
is the likelihood term and relates to the observation vector and
the labels at the current time. The Pðxtðx1:nÞjZ1:t�1ðx1:nÞÞ term is
the prior term and it relates the labels to the previous observations.
The denominator is a normalization term to enforce probability
range ½0;1�.

We estimate the likelihood term of (2) by computing joint prob-
ability across all pixels:

PðZtðx1:nÞjxtðx1:nÞÞ ¼
Yn
i¼1

PðZtðxiÞjxtðxiÞÞPðxtðxiÞjxtðxiR1:nÞÞ; ð3Þ

where xiR1:n represents all pixels of an image expect pixel xi and the
term PðxtðxiÞjxtðxiR1:nÞÞ indicates the probability of the pixel xi con-
dition to the probability of the other pixels. If the spatial correlation
between pixels are neglected, then PðxtðxiÞjxtðxiR1:nÞÞ ¼ PðxtðxiÞÞ.

Assuming Markovian condition, the labels at the current time
depend only on the previous time and therefore xtðx1:nÞ and
x1:t�2ðx1:nÞ are independent given x1:t�1ðx1:nÞ. Furthermore, the
prior term of (1) is calculated from marginalization of
Pðx1:tðx1:nÞjZ1:t�1ðx1:nÞÞ over x1:t�1ðx1:nÞ:
Pðxtðx1:nÞjZ1:t�1ðx1:nÞÞ ¼ R1

i¼0Pðxtðx1:nÞjxt�1ðx1:nÞ
¼ iÞPðxt�1ðx1:nÞ ¼ ijZ1:t�1ðx1:nÞÞ: ð4Þ

In this equation, Pðxt�1ðx1:nÞ ¼ ijZ1:t�1Þ term is the posterior estima-
tion of the state in the previous time and the
Pðxtðx1:nÞjxt�1ðx1:nÞ ¼ iÞ is transition term that predicts the state
in the current time based on its estimate in the previous time.

2.2. Spatial coherency

Generally speaking, it is most likely to have the neighboring
pixels with similar color belonging to the same object. Therefore,
the probability that these pixels have the same label can be com-
puted by:

PðxtðxiÞjxtðxjÞÞ ¼ kð1� dðxtðxiÞ �xtðxjÞÞÞ

� exp � jjIðxiÞ � IðxjÞjj2
2b

 !
; ð5Þ

where k is a constant value, d is delta-kroneker function, and
kð1� dðxtðxiÞ �xtðxjÞÞ enforces the probability to be between zero
and one. In addition, b is the average of color variations and is
estimated:

b ¼ 1
n

Xn
i¼1

X
j

jjIðxiÞ � IðxjÞjj2: ð6Þ
2.3. Temporal constraint

In Eq. (4), Pðxt�1ðx1:nÞjZ1:t�1ðx1:nÞÞ is the posterior estimation of
the state probability in the previous time. In addition,
Pðxtðx1:nÞjZ1:t�1ðx1:nÞÞ is the predicted state probability at the cur-
rent time since the observations in the current time, Zt , are not
used. Pðxtðx1:nÞjxt�1ðx1:nÞÞ is applied to predict the state probabil-
ity based on the posterior estimation of this probability in the pre-
vious time.

Let’s assume that the relationship between the labels of current
and previous times is linear, such that:

xtðxiÞ ¼ lp þWxt�1ðxiÞ þ �p; ð7Þ
where lp is the constant change of labels from previous epoch to
the current time, W is the vector that contains the coefficients of
the linear function between the current and previous time and �p
is noise. Conjecturing that noise in the transition is normally dis-
tributed, Pðxtðx1:nÞjxt�1ðx1:nÞÞ is computed by:
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PðxtðxiÞjxt�1ðxiÞÞ � Nxðlp þWxt�1ðxiÞ;r2
pÞ; ð8Þ

where Nðl;r2Þ is the normal distribution with mean l and vari-
ance r2.

In the case when the platform is stationary, two images are the
same and PðxtðxiÞjxt�1ðxiÞÞ is normally distributed when
lp ¼ 0;W ¼ 1. Therefore, changes in the labels may occur due to
noise. In contrast, when the platform is in motion, the dynamics
of the platformwill affect two coefficients, l and w. Since the traffic
light which is seen from an oblique view is planar, the relationship
between the real world coordinates of the traffic light and their
projection into the image space becomes a homography transfor-
mation, H. If the projection of a 3D point, Xi, of the traffic light to
the current and the previous images are xi ¼ Ht�1Xi and x0

i ¼ HtXi,
then it can be shown that x0

i ¼ HtH�1
t�1xi, such that it follows also a

normal distribution:

Pðxtðx0
iÞjxt�1ðxiÞÞ � Nxðxt�1ðHtH

�1
t�1xiÞ;r2

pÞ: ð9Þ

For the first time where the previous label estimation is not avail-
able, the probability of the labels are assumed to follow a binomial
distribution:

Pðx1ðxiÞÞ ¼
j x1ðxiÞ ¼ 1
1� j x1ðxiÞ ¼ 0;

�
ð10Þ

where j is a constant learned from existing data and
Pðx1ðxiÞ ¼ 0Þ þ Pðx1ðxiÞ ¼ 1Þ ¼ 1.

2.4. Evidence

The traffic light has an active lens that can be either red, yellow
or green, and has a circular shape. The traffic light may be sus-
pended or installed on a pole and therefore, its height follows
the installation standards. The activation pattern of the traffic light
lenses also follows regulations which may be used to detect the
traffic lights. Last but not least, the geolocation of the traffic lights
may be retrieved from GIS maps and applied to detect the traffic
lights.

Let’s define an observation vector, ZtðxiÞ ¼ fzc; zs; zh; zi; zgg,
where the vector includes the color, shape, height, inactive lenses
pattern and GIS cues of the traffic light, respectively. The observa-
tion vector is given by:

PðZtðxiÞjxtðxiÞÞ ¼ Pðzijzh;xtðxiÞÞPðzhjzs;xtðxiÞÞ
Pðzsjzc;xtðxiÞÞPðzcjxtðxiÞÞPðzg jxtðxiÞÞ:

ð11Þ

The color characteristic generally discriminates the traffic lights
from the other objects. However, observed color may change due
to the different illumination conditions and camera response. In
order to utilize the color feature, let’s define a hidden variable,
hk, that represents the red, yellow, and green colors of the traffic
light for k 2 f1;2;3g. These colors have been shown to be normally
distributed with mean lk and variance r2

k ;Nx;kðlk;r2
kÞ and shown

in Fig. 1a. Therefore, the probability of the color cue is the mixture
of Gaussians. In addition, the color cue for the background can be
assumed as normal distribution, Nxðl0;r2

0Þ, such that:

PðzcjxtðxiÞÞ ¼
R3

k¼1wk
1ffiffiffiffiffiffiffiffi
2pr2

k

p exp � ðh�lkÞ2
2r2

k

� �
x1ðxiÞ ¼ 1

1ffiffiffiffiffiffiffiffi
2pr2

0

p exp � ðh�l0Þ2
2r2

0

� �
x1ðxiÞ ¼ 0;

8>><
>>: ð12Þ

where wk is the normalization coefficient and it guarantees that the
probability is between zero and one.

The traffic lights are circular and can transform to an ellipse
under perspective geometry. Using ellipses is important to esti-
mate the projective transformation, and consequently, the depth
of the traffic light. In the case of using circles, this geometric con-
straint will be violated. Hence, an object segmented based on its
color is a traffic light if its shape is an ellipse. Ellipse is a conic sec-
tion and can be represented by a 3� 3 symmetric matrix, C. If the
pixel xi belongs to the traffic light, it should reside inside the
ellipse, x>

i Cxi 6 0, where xi ¼ ½xi ;1� is in homogeneous coordinates
representation of the pixel xi. The probability of this inequality can
be represented by a Chi distribution with one degree of freedom,
such that:

PðzsjxtðxiÞÞ ¼
ffiffi
2

p
e�

x>
i
Cxi
2

C 1
2ð Þ x1ðxiÞ ¼ 1

1ffiffiffiffiffiffiffiffi
2pr2

0

p exp � x>
i
Cxi

2r2
0

� �
x1ðxiÞ ¼ 0;

8>><
>>: ð13Þ

where C is the gamma function in Chi distribution. Fig. 1c illustrates
the color based probability of pixels inside the traffic light. The pix-
els that are inside representing the traffic light shape have higher
probability than the ones on the borders and outside.

The homography transformation can estimate the position of
the traffic light with respect to the camera coordinate system,
X ¼ H�1x, by back-projecting the center of candidate traffic light
into the object space, which also provides a means to estimate
the height of the traffic light. If the camera is aligned with vertical
direction and the height of the camera from the ground is known,
the height of the traffic light can be estimated. Let’s assume that a
traffic light can be installed in K different heights based on the traf-
fic light installation standards. The height cue is a mixture of Gaus-
sians (as shown in Fig. 1b), such that:

Pðzhjzs;xtðxiÞÞ ¼
RK

k¼1wk
1ffiffiffiffiffiffiffiffi
2pr2

k

p exp � ðh�lkÞ2
2r2

k

� �
x1ðxiÞ ¼ 1

1ffiffiffiffiffiffiffiffi
2pr2

0

p exp � ðh�l0Þ2
2r2

0

� �
x1ðxiÞ ¼ 0:

8>><
>>:

ð14Þ
Considering that when one of the lenses is active, other lenses

are inactive. Since the traffic light dimensions are standard, the
position of the other lenses can be calculated. If one of the traffic
light lenses are active, the other lenses should be dark. Since the
gray value of the dark lens is non-negative, it follows the half-
normal distribution, such that:

Pðzijzh;xtðxiÞÞ ¼
2h
p exp � 1

I ðx2
i Þh2p

� 	
x1ðxiÞ ¼ 1

1ffiffiffiffiffiffiffiffi
2pr2

k

p exp � ðIðx0
i
Þ�liÞ2
2r2

i

� �
x1ðxiÞ ¼ 0;

8><
>: ð15Þ

where Iðx0
iÞ is the gray value of the inactive lenses and l ¼ 1

h. Fig. 1d
illustrates the half-distribution of the green lens when it is inactive.
The background is also modeled as normal distribution in (15).

In some countries, the traffic lights may be installed not only
vertically, but also horizontally. Therefore, the inactive lenses of
the traffic lights may be searched above and below the active lens
or left and right sides of it. In addition, the activation pattern of the
lights differ and yellow light can be activated before or after red
light. It also can be activated with the red or green lights.

In the case when GIS maps are available, position of the traffic
lights can be retrieved and projected into the image space. Unfor-
tunately, the accurate map production is not trivial and there are
only a few GIS maps that contain accurate positions of the traffic
lights. For instance, OpenStreetMap is a public GIS, and contains
inaccurate 2D geolocation of the traffic lights. Since the users pro-
vide the information in OpenStreetMap, its accuracy and complete-
ness is not sufficient for direct projection into the image. In
addition, the imperfect navigation solution leads to uncertainty
in position of the projected traffic light. Therefore, probability that
the pixel xi belongs to the traffic light depends on the accuracy of



Fig. 1. Observations of the traffic light (a) The color characteristics of the traffic lights are observed in HSV color space and these colors are represented as mixture of
Gaussians in hue components. The red color distribution is continuous since the hue component is circular and it is in the range ½0 2p�. (b) The mixture of two Gaussians (solid
line) is used to model height: the one for the traffic lights on the pole and the one for the suspended traffic lights on the road (dashed lines). (c) The probability of a pixel
belonging to the ellipse is 1 within the ellipse, it is zero outside the ellipse and it is modeled by Chi distribution. (d) When red signal is active and the green lens should be
inactive and dark. Therefore, the pixels of green lens follow half-normal distribution. (e) The traffic light is detected, its position is retrieved from OSM, and it is projected to
the image space. A rectangle is added to improve the visualization. (f) The probability of the labels based on GIS cue is shown by color. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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projected position of the traffic light in the GIS maps. This probabil-
ity follows a bivariate normal distribution, such that:

Pðzg jxtðxiÞÞ ¼
1ffiffiffiffiffiffiffiffi
2pR2

g

p exp � ðxi�~lg Þ2
2R2

g

� �
x1ðxiÞ ¼ 1

1ffiffiffiffiffiffiffiffi
2pR2

0

p exp � ðxi�~l0Þ2
2R2

0

� �
x1ðxiÞ ¼ 0;

8>><
>>: ð16Þ

where ~lg is the projected traffic light from the GIS map to image
space. The traffic light shown with a red rectangle in Fig. 1e is
retrieved from GIS maps and projected to the image space. The
probability of the state based on GIS cue is shown by color in Fig. 1f.

2.5. Learning

The statistical models, relates the labels with observations, are
assumed to be known in the previous sections. However, Some
parameters of these statistical models such as mean and variance
may not be known beforehand. The unknown parameters can be
learned in an Expectation Maximization framework. For simplicity,

let’s assume that Nðl½j�1�
0 ;R½j�1�

0 Þ is the background model and

Nðl½j�1�
1 ;R½j�1�

1 Þ is the traffic light model. The labels have binomial
distribution, binðjÞ. Therefore, the unknown parameters are
l0;R0;l1;R1, and j that should be learned in this process. The
labels are estimated in the E-step:
q½j�ðxtðxiÞÞ ¼
jNðl½j�1�

1
;R½j�1�

1
Þ

jNðl½j�1�
0

;R½j�1�
0

Þþð1�jÞN ðl½j�1�
0

;R½j�1�
0

Þ x1ðxiÞ ¼ 1

ð1�jÞN ðl½j�1�
0 ;R½j�1�

0 Þ
jNðl½j�1�

0
;R½j�1�

0
Þþð1�jÞN ðl½j�1�

0
;R½j�1�

0
Þ x1ðxiÞ ¼ 0;

8>><
>>: ð17Þ
where q is PðxtðxiÞjZtðxiÞ;l½j�1�
0 ;R½j�1�

0 Þ. The parameters of statistical
models are estimated in M-step based on the estimated labels,
q½j�ðxtðxiÞÞ, such that:
l̂½j�
1 ;R̂

½j�
1 ¼ argmax

l0 ;R0

ðRn
i¼1q

½j�ðxtðxiÞÞ log½jNðl½j�1�
1 ;R½j�1�

1 Þ�Þ x1ðxiÞ¼1

l̂½j�
0 ;R̂

½j�
0 ¼ argmax

l0 ;R0

ðRn
i¼1q

½j�ðxtðxiÞÞ log½ð1�jÞN ðl½j�1�
0 ;R½j�1�

0 Þ�Þ x1ðxiÞ¼0;

8>><
>>:

ð18Þ
The superscript j is iteration of the expectation maximization in the
E-step and M-step.



Fig. 2. Search space reduction: (a) red regions are selected using a red color mask; (b) non-ellipse-shaped regions are removed and the search space is significantly reduced.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The initial parameters of the models are applied in this paper. These parameters are updated in the learning process.

PðxÞ PðZc jxÞ PðZg jxÞ PðZhjxÞ PðZijxÞ
Distribution Binomial MOG Gaussian MOG Gaussian

N1ð10;8Þ N1ð3:5;0:5Þ
Pðx ¼ 1Þ j ¼ 10�4 N2ð30;10Þ N1ð~l;30Þ N1ð5:5;0:5Þ N1ð0;30Þ

N3ð180;20Þ
Pðx ¼ 0Þ 1� j N0ð180;90Þ N0ð~l;100Þ N0ð0;20Þ N0ð125;70Þ
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3. Implementation

The proposed approach estimates the probability of each pixel
belonging to the traffic light. In order to speed up our proposed
approach, the search space is reduced and many pixels that are less
likely to be traffic light are removed before we apply the proposed
approach to the remained pixels. We also discuss the initial values
of the statical models in this section.
3.1. Reduction of the search space

Ideally, all pixels of the image should be contributed in the pro-
posed Bayesian framework. However, it is computationally expen-
sive, hence, we reduce the search space for the traffic lights
detection. In order to remove the pixels that are less likely to
belong to the traffic light, color masks are utilized to remove the
objects that do not have red, yellow or green colors. In addition,
objects with low saturation and value are either too bright or too
dark and are removed. For remaining pixels, the ellipses are fitted
to connecting pixel regions and the ones with high fitting error are
removed. The remaining connected pixel regions, also called
objects, are marked as potential traffic lights and we apply the pro-
posed Bayesian framework to these objects to detect traffic lights.
The red color mask is applied to an image in Fig. 2a and the ellipse
fitting is used to reduce the search space as shown in Fig. 2b.
3.2. Initial parameters

The parameters of statistical models are learned in the learning
process as previously explained. However, the initial value of these
parameters are required in (17) and (18). Table 1 demostrates the
initial value of these parameters.

In the GIS cue, ~l is the projected traffic lights from the database
into the image space, and therefore, it is known and does not need
to be learned in learning process. The binomial constant, j, is
selected in the way that it represents a 5� 5 traffic light in a
640� 480 image. The red, yellow and green normal distributions
follow the histograms in Levinson et al. (2011). The distributions
should be chosen in the way that integration of each distribution
function becomes one. For instance, if the color range is between
0 and 255, it should be ensured that the probability of the distribu-
tion function that goes beyond the color range is negligible and its
integration is one within this range.
4. Experiments

We have applied our proposed Bayesian framework to two pub-
licly available benchmark datasets: Karlsruhe Institute of Technol-
ogy (KITTI) and La Route Automatise (LARA) benchmarks. In KITTI
dataset, multiple calibrated and synchronized sensors are mounted
on a platform and the data is collected in Karlsruhe, Germany. The
ground truth for the traffic lights are not given and we have man-
ually annotated the traffic lights in the images. The LARA bench-
mark is specific for traffic light detection and the ground truth is
given. This dataset is collected from downtown of Paris, France,
utilizing an uncalibrated camera on the platform. Since navigation
solution is not available for the LARA benchmark, the GIS cue can-
not be used for in the proposed traffic light detection approach. In
addition, height of the camera is not given in the LARA benchmark
and an uncertainty is introduced in the height cue. Traffic lights in
these benchmarks have different properties such as size and color.
For instance, the traffic lights are smaller and lower in the LARA
benchmark. On the other hand, the traffic lights in the KITTI data-
set can be installed on poles or suspended.

The camera applied in KITTI benchmark has 1027� 768 resolu-
tion and 4 mm focal length (Geiger et al., 2013) and the one in
LARA benchmark has 640� 480 pixels resolution and 12 mm focal
length. The KITTI dataset contains a total of 404 red lights, 10 yel-
low lights, and 26 green lights and the LARA dataset contains 5280
red lights, 58 yellow lights, 3381 green lights. Since the LARA
benchmark is lengthy with many stationary frames, we focus on
the part that vehicle drives in downtown of Paris. This part has
more than 1800 frames and it contains 2486 traffic lights.

In order to quantitatively evaluate our proposed approach, we
apply the PASCAL criterion, utilized in context of object detection
(Yilmaz et al., 2006). The detected traffic lights are defined as
bounding boxes. The PASCAL criterion labels an object as a cor-
rectly detected traffic light if the intersection of the bounding
box and the ground truth is more than half on the union of them.
Otherwise, the detected traffic lights are labeled as false positives.
The true negatives are not relevant and we calculate the true pos-
itives (TP), false positives (FP), and false negatives (FN).

In this paper, the proposed approach is evaluated and compared
to the previous work based on the precision and recall criteria. The
precision is the ratio of true positives to the positive outcomes:

Precision ¼ TP
TP þ FP

: ð19Þ
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The recall criterion is the ratio of true positives to the number of
traffic lights, TP þ FN, such that:

Recall ¼ TP
TP þ FN

: ð20Þ

If the probability a pixel belongs to the traffic light is higher
than a threshold in (1), we label the pixel as traffic light. In order
to find the optimum threshold, precision and recall criteria are
plotted based on different thresholds and the one with maximum
precision and recall rate is chosen. Moreover, we apply F-score cri-
terion to compare the results. In F1-score, the precision and recall
rates are evenly weighted, such that:

F1 ¼ 2� Precision� Recall
Precisionþ Recall

: ð21Þ
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Fig. 3. Precision/recall curve for the KITTI dataset. The best precision/recall rate
balance occurs at PðxtÞ > 88:4%. Number of the traffic lights is 440.

Table 2
The confusion matrix; It shows that the traffic light signals have been correctly detected.

Ground Red 404
Truth Green 26

Recall rate

Fig. 4. The traffic light detection for the KITTI dataset; (a) The lower part of the red sign
signal should be evaluated for every pixel and the choice of the color should be estimated
detect the traffic light since it imposes the temporal consistency constraint. (For interpret
version of this article.)
4.1. KITTI dataset performance

The precision and recall rates are plotted with respect to differ-
ent thresholds in (1) and shown in Fig. 3.

The maximum precision and recall rates are estimated such that
it distance to the perfect solution, with 100% precision and recall
rates, becomes minimum. The precision and recall rates is maxi-
mum when the threshold is 88:4%. The precision and recall rates
are 95:8% and 93:0%.

It should be verified wether the active color of the traffic light is
correctly recognized. The yellow traffic light has been active once
and it was not sufficiently observed. Therefore, we merged the yel-
low and red traffic lights. The results of the detected traffic lights
based on their color are tabulated in Table 2. The confusion matrix
shows that all of the traffic light signals are correctly recognized
and there is no intra-class confusion.The traditional traffic lights
are assembled by a light source and a color filter. Therefore, the
color of lens varies if the light energy is not uniformly distributed
on the lens. One instance of this situation has been shown in
Fig. 4a. A part of the lens which is closer to light source is changed
to yellow, although the traffic light signal is red. Therefore, a
weighted voting scheme has been applied to recognize the color
of every pixel that belongs to the traffic light. In addition, partial
occlusion may occur in the traffic lights. In Fig. 4b, the partially
occluded traffic light is still detectable since the temporal con-
straints has been utilized.

In Fig. 5, the platform has been waiting behind the red traffic
light, the traffic light signal converts to yellow and consequently,
green. The traffic light lens activation pattern may be different in
different countries. In addition, the red and yellow lenses are
simultaneously active and the proposed algorithm can correctly
detect the active lenses of the traffic light. Since the red traffic light
size is not precisely estimated, the distance of the red lens from
camera has been incorrectly computed.

In Fig. 6, multiple traffic lights have been utilized to regulate the
traffic in each lane. The traffic lights have been correctly detected
and their location have been estimated. Using the estimated geolo-
cation of the traffic lights, the platform can choose the one that is
corresponding to its lane.
System Classification
Red Green
380 21

380 0
0 21

94% 81%

al has more illumination and it is transformed to yellow. Therefore, the color of the
in a voting scheme. (b) The traffic light is partially occluded, but the algorithm can

ation of the references to color in this figure legend, the reader is referred to the web



Fig. 5. A scenario that the traffic light signal changes from (a) red to (b) yellow and consequently, (c) green in KITTI dataset. (d) There is a false positive that has low
probability (61%) and will be removed using threshold in (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Multiple traffic lights in KITTI dataset. The estimated geolocation of the traffic lights can be applied to find the traffic lights that correspond to the each lane.

Fig. 7. Precision/recall curve for LARA dataset. The best precision and recall rate
balance happens at PðxtÞ > 93:9%. Number of the traffic lights is 2486.

190 S. Hosseinyalamdary, A. Yilmaz / ISPRS Journal of Photogrammetry and Remote Sensing 125 (2017) 184–192
4.2. LARA dataset performance

The LARA benchmark has also been utilized to assess the pro-
posed approach. The Precision/Recall curve has been plotted for
the LARA dataset and it is presented in Fig. 7. The best precision
and recall balance is reached where the threshold in (1) is 93:8%.
By choosing this threshold, the precision and recall rates are
98:7% and 94:7%. The precision and recall rates were compared
with the previous work on this dataset and the results are given
in Table 3. The precision rate of the proposed approach is the high-
est among the previous approaches. Although the recall rate is not
the highest among other approaches, it is comparable and the
respective precision is the highest. Since the true negative is not
given in the ground truth, the accuracy criterion cannot be esti-
mated for these two approaches. Comparing F1-score of the pro-
posed approach with the previous work shows that the proposed
approach (96:61%.) and (de Charette and Nashashibi, 2009a)
(96:89%.) have the highest F1-score.

Results of the proposed approach applied to LARA benchmark,
has been shown in Fig. 8. We observed that the farther traffic lights
are more difficult to be detected since they are represented by
fewer pixels. This 15 s sequence of LARA benchmark results shows
that the traffic lights can be detected as far as 40 meters and they
are accurately tracked within the sequence.



Table 3
Comparison of the traffic light detection algorithms using LARA benchmark; Our proposed approach has the highest precision rate and the recall rate is hight, too.

de Charette and Nashashibi
(2009a)

de Charette and Nashashibi
(2009b)

Haltakov et al.
(2015)

Siogkas et al.
(2012)

Wang et al.
(2011)

Ours

Precision
rate

95:38% 84:5% 72:83% 61:22% 96:95% 98:66%

Recall rate 98:41% 53:5% 80:13% 93:75% 94:4% 94:65%
F1 score 96:89% 65:52% 76:30% 74:07% 95:66% 96:61%

Fig. 8. The traffic lights are detected in LARA dataset (a) from beginning, (b) after 1 s, (c) after 3 s, (d) after 6 s, (e) after 11 s, (f) after 14 s. The signals are correctly recognized
and the position of the traffic lights is estimated with respect to the camera.
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5. Conclusion

We have introduced a Bayesian statistical framework to detect
the traffic lights and recognize their signal. In order to preserve the
coherency in space and time, a spatio-temporal consistency condi-
tion is applied. Several characteristics of traffic lights such as color,
shape, height, inactive lenses pattern, and GIS cues are used as
observations. The color is modeled as mixture of Gaussians and a
Chi distribution is utilized to model the shape cue. The height
cue is also modeled as mixture of Gaussians since traffic lights
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can be installed on the pole or suspended and have different
heights. We model the inactive lenses pattern as half-normal dis-
tribution and GIS cue is represented by bivariate Gaussian distribu-
tion. The conic section geometry has been applied in the proposed
approach to estimate the pose of the traffic lights with respect to
the camera coordinate system. We have evaluated the results of
the proposed traffic light detection using two benchmarks and
results outperform the earlier traffic light detection approaches.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.isprsjprs.2017.01.
008.
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