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Soil organic carbon (SOC) is a key soil property and particularly important for ecosystem functioning and the
sustainable management of agricultural systems. Conventional laboratory analyses for the determination of
SOC are expensive and slow. Laboratory spectroscopy in combination with chemometrics is claimed to be a
rapid, cost-effective and non-destructive method for measuring SOC. The present study was carried out in
Limpopo National Park (LNP) in Mozambique, a data- and access-limited area, with no previous soil spectral
library. The question was whether a useful calibration model could be built with a limited number of samples.
Across the major landscape units of the LNP, 129 composite topsoil samples were collected and analyzed for
SOC, pH and particle sizes of the fine earth fraction. Samples were also scanned in a near-infrared (NIR) spec-
trometer. Partial least square regression (PLSR) was used on 1037 bands in the wavelength range
1.25–2.5 μm to relate the spectra and SOC concentration. Several models were built and compared by
cross-validation. The best model was on a filtered first derivative of the multiplicative scatter corrected
(MSC) spectra. It explained 83% of SOC variation and had a root mean square error of prediction (RMSEP)
of 0.32% SOC, about 2.5 times the laboratory RMSE from duplicate samples (0.13% SOC). This uncertainty is
a substantial proportion of the typical SOC concentrations in LNP landscapes (0.45–2.00%). The model was
slightly improved (RMSEP 0.28% SOC) by adding clay percentage as a co-variable. All models had poorer per-
formance at SOC concentrations above 2.0%, indicating a saturation effect. Despite the limitations of sample
size and no pre-existing library, a locally-useful, although somewhat imprecise, calibration model could be
built. This model is suitable for estimating SOC in further mapping exercises in the LNP.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The increasing need to manage land sustainably has triggered the
debate on soil quality, its definition and the indicators best reflecting
it (Arshad and Martin, 2002). Some researchers have developed indi-
cators based on selected specific combinations of soil characteristics
to characterize soil quality (Yemefack et al., 2006) but still there is
no consensus on how the indicators should be interpreted (Bouma,
2002). However, all indicators related to soil quality include soil or-
ganic carbon (SOC) as one of the most important properties (Arshad
and Martin, 2002). Shukla et al. (2006) state that if only one soil attri-
bute were to be used for monitoring soil quality changes, it should be
SOC. The widely-used soil fertility-crop production model QUEFTS
uses SOC, or total nitrogen as a proxy (assuming a stable C/N ratio),
as the major yield-explaining variable (Janssen et al., 1990; Liu
et al., 2006; Pathak et al., 2003; Smaling and Janssen, 1993). This
mbule).
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comes as no surprise in strongly weathered tropical soils that largely
rely on the organic fraction for their inherent soil fertility. SOC is also
recognized as the best entry point for land degradation assessment
(Gisladottir and Stocking, 2005).

Assessment of SOC over larger areas by field sampling and conven-
tional laboratory analysis is expensive and slow. Laboratory spectros-
copy is widely-applied in chemometrics (Geladi and Kowalski, 1986)
and recently also to soil characterization (Brown et al., 2006;
Shepherd and Walsh, 2002). It offers rapid and about 50% cheaper
soil analysis (Cécillon et al., 2009a; O'Rourke and Holden, 2011),
and, as an added benefit it is non-destructive, so samples can be ana-
lyzed repeatedly.

The most common form of spectroscopy for SOC determination
is visible and near-infrared reflectance (VNIR, 0.4–3.0 μm) and mid-
infrared (MIR,−3.0–30 μm) (Clark, 1999). Other authors indicate dif-
ferent spectral ranges for the same regions, e.g. Vis-NIR-SWIR to be
0.4–2.5 μm (Ben-Dor, 2002; Shepherd and Walsh, 2002). SOC pro-
duces a spectral signature, defined by the reflectance or absorbance
of electromagnetic radiation as a function of wavelength. In the case
of SOC, as with the absolute majority of absorbants, combination of
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Fig. 1. The eight major landscape units of Limpopo National Park and sampling loca-
tions for model calibration (stars) and validation (triangles).
Redrawn from Stalmans et al. (2004), with permission from Koedeo.

Table 1
Main geological, soil and land cover occurring in the different landscape units in the
study area.

Landscape Geology Major soil groupings Vegetation/land cover

CMR Rhyolite/basalt Eutric leptosols Grasslands
LLF Fluvial sediments Eutric fluvisols Broadleaved deciduous

trees
MSC Sandstone/limestones Calcaric cambisols Broadleaved deciduous

woodlands
NS Aeolian sand Arenosols/haplic

luvisols
Open shrubland

PS Aeolian sand Ferralic arenosols Open shrubland
SAF Fluvial sediments Eutric fluvisols Open to closed shrubland

(Riverine)
LN Rhyolite/basalt Eutric leptosols Grasslands
MCM Rhyolite/basalt Eutric leptosols Grasslands/broadleaved

deciduous woodlands
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bands and overtones of the fundamental spectral features is detected
in the NIR region (Shepherd and Walsh, 2002).

Direct quantitative prediction from spectra is almost impossible
because soil constituents interact in a complex way to produce a
given spectrum. Therefore, quantification of the property of interest
is done with multivariate statistical models (Cécillon et al., 2009b).
Viscarra Rossel et al. (2006) demonstrated the potential of reflectance
spectroscopy alongwith the chemometricmethods applied to develop
these multivariate statistical models to predict soil properties. Partial
least-squares regression (PLSR) and principal components regression
(PCR) were the multivariate methods most applied for SOC determi-
nation, while sample size varied from 68 to 674, resulting in a calibra-
tion R2 of 0.86–0.96. However, only three of the reported 14 studies on
SOC had a sample size below 150. Shepherd and Walsh (2002) indi-
cate that as the sample size decreases, the predictive performance de-
creases gradually at large sample sizes but rapidly as sample size
decreased between about 100 and 200 samples to a R2b0.7 and even
below 0.5 for sample sizes smaller than 100, implying more relative
variation in the dataset.

Despite the reported problems with small sample sizes, there are
many situations where it is impractical to obtain large sample sizes.
Typical limitations are financial, access, and logistical (limited con-
ventional laboratory facilities, limited access to spectrometers, limited
trained technicians). Studies with such limitations have to make the
best out of the limited data that can be collected and analyzed. How-
ever, local calibrations with small sample sizes may be possible if
soil variation is limited within a specific study area (Brown, 2007).

Small sample sizes in a particular study are not a problem if there
is a calibrated spectral library which includes soils similar to those
collected in the new study (Shepherd and Walsh, 2002), but for
many areas of the world, and for many soil types, such libraries do
not exist.

Thus, the objective of this study was to test whether a locally-
developed calibration model for SOC based on a limited number of
samples can be developed within the context of a project with limited
resources, in an area of limited access, and where no soil spectral
library exists.

2. Material and methods

2.1. Study area

This study is part of the “Competing Claims on Natural Resources”
project (Giller et al., 2008), centered on the trans-frontier national
parks of the Mozambique–Zimbabwe–South Africa (RSA) border fo-
cused on the Limpopo National Park (LNP) of Mozambique with an
area about 1.0 million ha (Stalmans et al., 2004). The park is located in
a semi-arid climate, with annual precipitation between 380 (north)
and 400 mm (south) and average max/min temperatures of 33/13 °C
(south) and 35/15 °C (north) (INGC et al., 2003; Reddy, 1984).

The LNP is covered by savanna vegetation type made up of 15
plant communities, whose combinations resulted in eight major land-
scape units (Stalmans et al., 2004) (Fig. 1): Combretum/Mopane
Rugged Veld (CMR), Limpopo Levubu Floodplains (LLF), Limpopo
north (LN), Mixed Combretum/Mopane woodland (MCM), Mopane
Shrubveld on Calcrete (MSC), Nwambia sandveld (NS), Pumbe Sand-
veld (PS), Salvadora angustifolia Floodpalins (SAF). Land use is pri-
marily conservation area, with some villages (mostly planned to be
relocated) practicing low-input, subsistence farming, with rainfed
maize the primary crop and large herds of foraging domestic cattle.
The characteristics of these landscape units in terms of geology
(Manninen et al., 2008; Rutten et al., 2008), soils (FAO and Unesco,
1997) and land cover/use (Cenacarta, 1997) are presented in Table 1.

The park has only a few improved roads, and access is quite diffi-
cult, especially off-road, due to dense vegetation, rough ground, and
large wild animals.
2.2. Soil sampling and spectral acquisition

As part of a project to determine the spatial variability and map
SOC in LNP by digital soil mapping (DSM) techniques, 412 soil sam-
ples (2/3 for calibration and 1/3 for validation) were collected follow-
ing a stratified clustered random sampling for its high operational
efficiency (De Gruijter et al., 2006). We refer to these as the “DSM cal-
ibration” and “DSM validation” samples. The DSM calibration clusters
proportionally represented all accessible (b2.5 km from the road net-
work) LNP landscape units and were randomized within each unit,
whereas the DSM validation clusters were randomly collected across



Fig. 2. Score plot of the first two principal components principal of spectra from DSM
calibration set symbolized by their cluster (a) and sample influence plot (b) used to se-
lect samples for reference laboratory analysis.
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the whole LNP. A DSM cluster was defined as two orthogonal and
midway crossing transects of 720 and 360 m containing seven sam-
pling points at 180 m intervals. Each sample was a composite of five
sub-samples from the four corners of a 90 m square plus the center.
Each sub-sample was from a (variable-thickness) field-identified A
horizon, collected with a hand shovel after scooping out the upper
2–5 cm (to remove sticks, undecomposed leaves, etc.). Subsamples
were thoroughlymixed in a bucket, then about a half a kgwas collected
in a plastic bag and sent to soil laboratory.

Samples were air-dried, gently crushed and passed through a
2 mm mesh sieve to collect the fine earth fraction. Samples were
put in Petri dishes and then scanned in a Bruker FR-NIR MultiPurpose
Analyser (MPA), (Bruker optic GmbH, Ettlingen, Germany) located in
the Instituto de Investigação Agronómica de Moçambique (IIAM),
Maputo. This instrument has built-in validation to perform instru-
ment internal (operational and performance) quantification tests,
and its spectrum is calibrated before each scan to an internal gold
reference. Spectra were recorded from 0.8 to 2.6 μm at a spectral res-
olution of 1250 μm, with zero-filling factor of 2, resulting in an effec-
tive bandwidth of 3.86 μm. Each spectrum is an average of 64 scans.
Spectra were further reduced to the range 1.25–2.5 μm as these
bands contain most of relevant information.

2.3. Selection of soil samples for reference analysis

To form a subset of samples for reference analysis, a total of 129
samples were selected from both DSM calibration (104) and valida-
tion (25) sample sets as described in the previous section. The sam-
ples represent one third and one fourth of DSM calibration and
validation sets, respectively. These proportions are commonly used
in laboratory spectroscopy (Brown et al., 2005; Grinand et al., 2008).
Reference samples from DSM calibration were used for model calibra-
tion (about four fifth) and those from DSM validation, used for model
validation (about one fifth); note we refer to these as “model” calibra-
tion and validation, as opposed to the “DSM” calibration and validation
sets from field sampling. To select a representative set covering the
range of spectra and SOC contents, the spectra were compressed using
principal component analysis (PCA), to summarize the data and exam-
ine its structure. The PCA scores were grouped by computing a K-
means clustering in the Unscrambler 9.7 program (CAMO Software
AS, Nedre Vollgate, Oslo, Norway). The number of groups was deter-
mined iteratively to minimize the sum of distances (SOD). Samples
were randomly chosen from the different groups as suggested by
Martens and Naes (1986) in order to enhance sample set diversity
(Stenberg et al., 1995). Sampleswerethendrawnfromthesegroups,ex-
cludinganythatmetanyofthefollowingthreeconditions:(1)highresid-
uals and low leverage, (2) both high residual and leverages or (3) high
leverages andaway fromthePCAmodel trend,were consideredoutliers
andnot considered for laboratory analysis (Esbensen, 1994). Outliers as
thus definedwere automatically flagged based on the default threshold
valuesinUnscrambler9.7.

2.4. Laboratory analysis

The selected samples were analyzed in the soils laboratory of
Eduardo Mondlane University, Maputo, for SOC and possible co-
variable predictors soil pH and particle size fractions, following stan-
dard ISRIC methods for soil laboratory analysis (van Reeuwijk, 2002).
SOC was determined by theWalkley–Black method. Soil pH was mea-
sured potentiometrically in a supernatant suspension of 1:2.5 soil:
liquid mixture (two determinations: in distilled water and 1 M KCl
solution). Particle-size separates of the fine earth (b2 mm) fraction
were determined after cementing agents were first removed by means
of hydrogen peroxide, calgon and calcium chloride solution. The sand
fraction (2 mm–50 μm) was washed onto a 50 μm sieve, after which
silt (50 μm–2 μm) and clay (b2 μm) fractions were determined by
hydrometermethod. Twenty randomly-selected sampleswere analyzed
in duplicate for quality control and to quantify laboratory precision.

2.5. Calibration and validation

Mathematical and statistical procedures were carried out in the R
environment for statistical computing (Ihaka and Gentleman, 1996),
Unscrambler (CAMO Software AS, Nedre Vollgate, Oslo, Norway),
and ParLes (Viscarra Rossel, 2008). The “pls” package was used within
R for multivariate calibration (Mevik and Wehrens, 2007).

PLSR was used to develop models based on spectra and reference
laboratory data of the 129 selected soil samples. Models were evalu-
ated in two ways: (1) “leave-one-out” cross-validation on models
developed with all 129 samples and (2) true validation by splitting
the sampling set into spectral calibration (104 samples) and valida-
tion (25 samples) sets. The former was used to search for the best
pre-processing of the raw spectra and the latter to obtain realistic
estimates of prediction accuracy.

Models were attempted with the original spectra, multiplicative
scatter corrected (MSC) spectra, first derivatives of these; and all of
these also after applying a Savitsky–Golay filter (2nd order polynomial
covering 11 adjacent bands).MSCwas applied since the original spectra
showed additive effects which could result from differential scattering
in the granular sample. The derivative transformation minimizes the
effect of variation in sample grinding and optical set-up (Shepherd
and Walsh, 2002). Transformations of the laboratory measurements
were also attempted but did not improve results and therefore are not
reported.

Model calibration accuracy was evaluated by means of the root-
mean squared error of calibration (RMSE) of the cross-validation pre-
dictions, and R2 (proportion of variation explained) of the SOC vector.
Because the resulting model was intended to be used to map SOC
across the LNP, we did not have the option of rejecting any observa-
tions as outliers. Prediction accuracy was assessed by the ratio of
standard deviation (SD) to RMSE of cross-validation (RPD) and by
the multiple R2 (Chang et al., 2001; Waiser et al., 2007).

In an attempt to improve the predictive performance of the best
PLSRmodel and following a suggestion by Fearn (2010), the proportion
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Table 2
Summary statistics for 129 soil samples set submitted for reference laboratory analysis.
Included is the correlation coefficient (r) of duplicate samples as well as the RMSE from
1:1 line.

Summary statistics
(N=129)

Soil property

pH water pH KCl SOC (%) Clay (%) Silt (%) Sand (%)

Minimum 3.7 3.4 0.0 5.3 0.0 2.2
1st quartile 5.7 5.3 0.4 8.7 1.8 74.4
Median 6.7 6.2 0.7 13.9 4.6 81.3
Mean 6.5 6.1 0.9 14.4 7.4 78.3
3rd quartile 7.6 7.3 1.2 17.3 8.7 88.8
Maximum 9.0 8.1 2.7 47.3 50.5 93.5
SD 1.1 1.2 0.6 7.1 8.5 14.4
r (duplicates, n=20) 0.96 0.99 0.97 0.89 0.93 0.98
RMSE (from 1:1 line) 0.32 0.17 0.13 2.6 3.2 2.9
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of clay in the fine earth – a commonly used covariate for SOC spatial in-
terpolation (McGrath and Zhang, 2003; Mutuo et al., 2006), – was
added to the spectra information as a supplementary “band”, and a
new PLSR model built. Clay proportion may be helpful for PLSR model-
ing in cases where a collection of samples and its laboratory analysis re-
sults for clay (but not SOC) from past surveys is kept. For new surveys
the laboratory costs of determining clay and SOC are comparable, so
these models are not relevant. Clay variance was inflated 86 times to
match the true dimensionality of spectra predictors so that it could be
properly weighted, on the basis that previous PLSR model explained
most of SOC variation with about 12 factors (as shown in the results,
below); 12×86=1037, the approximate number of spectral bands.
3. Results and discussion

3.1. Sample selection for reference analysis

Fig. 2 shows the sample selection procedure for reference analysis
from the DSM validation set. The first two principal components
explained 98% (91+7%) of spectra variation; the SOD was achieved
for 6 clusters. The influence plot was used to identify outliers. The
same procedure was followed for the DSM calibration set, where
the first two PC's explained 98% (95+3%) of spectra variation and
the minimum SOD was achieved for 12 clusters. As per the sampling
plan 25% (=25) of DSM validation and 1/3 (=104) of the DSM cali-
bration sets were selected for reference analysis. Since the number
of PCA score groups (intended to represent spectra variability) was
small, more than one sample was selected from most of them. The
small number of groups indicates the fairly homogeneous nature of
the sample sets. This procedure has also been followed by other
Fig. 3. Distribution of soil properties in laboratory samples; bars = histogram, dashed line=
along the x-axis show individual sample location.
workers (Viscarra Rossel and Behrens, 2010) to select samples
based on spectral variability. Whereas PCA score grouping enhances
spectral diversity, it may also enhance the spatial autocorrelation be-
tween the selected samples due to possible coincidence of PCA score
groups with the field sample clusters. This raises the possibility of
false precision (Brown et al., 2005). However, RPD (see Section 3.5,
below) suggests that this effect is minimal in our case.

3.2. Soil properties

The summary statistics of laboratory analysis (Table 2, Fig. 3)
show a fairly wide range for SOC in this semi-arid environment,
from below the detection limit to moderate values (2.7%), thus pro-
viding a good range for model calibration. Soils range from quite
acid to alkaline, with a somewhat left-skewed distribution emphasiz-
ing the alkaline range. Most are coarse-textured. The empirical distri-
butions of SOC, clay and silt appear positively skewed while that of
the sand fraction is negatively skewed. Parametric correlations be-
tween duplicates were all linear and generally very good. Laboratory
duplicate RMSE's (on the expected 1:1 line) were low, indicating
good analytical precision. The moderate precision for particle sizes
matches the expected precision of the hydrometer method. These
RMSE set an upper limit on the precision of any calibration. Bivariate
correlations between soil properties showed positive correlations be-
tween SOC and pHH20 (0.50), pHKCl (0.49), clay (0.56) and a negative
correlation between SOC sand (−0.65), all significant at 0.01 level.
These results are expected: finer-textured soils retain moisture lon-
ger, and neutral to alkaline soils generally support more soil microor-
ganisms and more vigorous vegetation (hence more leaf litter); both
of these situations are conducive to higher levels of SOC.

3.3. Laboratory SOC vs landscape units

Mean SOC per landscape units is highest in CMR (2.00%), decreas-
ing through PS (1.15%), MSC (0.95%), SAF (0.91%), LLF (0.60%) and NS
(0.45%). Note that the laboratory RMSE for SOC (0.13%) is a significant
proportion of the low-SOC landscape units. Duncan's multiple-range
test shows that CMR is clearly separated from all other landscape
units, NS and LLF are grouped at the lower end and cannot be separated
from the grouping of MSC and SAF. This group cannot also be statisti-
cally separated from PS, due to the wide ranges of SOC for MSC, SAF
and NS (Fig. 4). ANOVA shows that landscapes explain about 24% of
the total SOC variation. Thus SOC is rather similar over most of the
landscape,which should reduce prediction errors due to the small sam-
ple size. Separate analysis per landscape is in any case not possible
because of the limited number of samples; this result shows that such
an analysis would be unlikely to result in different models.
density and fine dashed line= normal fit, Soil fractions units in percentages. Rug marks
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Fig. 4. Box-plots and Duncan's multiple range test (alfa=0.05 and Df=117) for the
SOC per landscape unit.
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3.4. Spectral features

The raw spectra (Fig. 5) generally showed the typical pattern of
soil spectra, with three major absorption features around 1.37–1.46,
1.86–2.06 and 2.14–2.26 μm. The first absorption region (near
1.4 μm) is the first overtone of OH stretches (moisture adsorbed to
the clay surfaces) and near 1.9 μm it is the combination of OH
stretches and H\O\H bend in water molecules trapped in the crystal
lattice (not present in for example well developed dried kaolinites).
Near 2.2 μm it is OH-metal bend and OH stretch combinations
where the metals can be Al or Fe or Mg substituting Si (Fe and Mg
closer to 2.3 μm) (Clark et al., 1990). In addition, a number of spectra
showed two noisy (or fluctuating) reflection regions around 1.34–1.39
and 1.79–1.92 μm. These ranges overlap with the first two absorption
features. These raw spectra are similar to those found by other authors,
e.g. Ben-Dor and Banin (1995) and Ben-Dor et al. (1999). The SOC com-
ponent normally affects the overall positioning and shape of the spec-
trum (Shepherd and Walsh, 2007).
Fig. 5. Spectra of the soil samples showing three major absorption features, related to OH gro
(Ben-Dor and Banin, 1995).
3.5. Prediction of SOC from NIR spectra

Since there is no a priori way to determine which spectra pre-
processing methods result in the best predictive model (Ben-Dor
and Banin, 1995), a number of spectra pre-processing methods
were compared (Table 2). Pre-processed spectra showed peaks at
around the same wavelength ranges as the raw spectra, regardless
of pre-processing method.

The best PLSR model (Fig. 6, MSC smoothed and 1st derivative) for
the prediction of SOC in the LNP was obtained with nine factors with a
RMSEP of about 2.5 times that obtained from laboratory analysis on
duplicate samples. The model also explained 99.5% of spectra vari-
ance. The median cross-validation residual was −0.0035%, inter-
quartile range (IQR) −0.015 to +0.013%, but there were some very
poorly-modeled points, at the extremes, −1.25 and +1.75% SOC.
The loadings of the first two model factors explained 95.1% of the
spectral variation. The other pre-processing methods (Fig. 6) resulted
in PLSR models with RMSE slightly higher (0.36 to 0.32% SOC) and
therefore lower SOC explained variation. In addition about half of
these models suffered from non-linearity effects expressed in the
form of “banana-like” trends, causing underprediction for the highest
values. The 5% absolute extreme values of best model's regression
coefficients (Fig. 8) show regions that were important for SOC
predictions. These regions are in good agreement with those where
assigned SOC spectral features are located.

However, these interpretations should be considered with caution
given the fact that they are made on the base of pre-processed spectra
(MSC smoothed 1st derivative spectra), which may not be as useful as
if the analysis would have been carried out on the base of raw spectra.
In derivative spectra following the derivatives, peaks will occur at
maximum slopes of the original spectra and the original peaks will
occur as crossing the zero line. Thus, in the derived spectrum each
original peak will be represented by one positive and one negative
peak.

The MSC minimized the amplification and offset effects of light
scattering in the raw spectra, which resulted in PLSR calibration im-
provement. Shepherd and Walsh (2002) preferred the first derivative
pre-processing technique to MSC, as the latter did not improve multi-
variate adaptive regression tree (MART) calibration. The first derivative
is the most commonly applied transformation to minimize variation
among samples caused by variation in grinding and optical set-up
(Stenberg et al., 2010). MSC is not preferred by many authors because
ups in both absorbed water (≈1.4 and 1.9 μm) and the crystal lattice water (≈2.2 μm),

image of Fig.�4
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Fig. 6. SOC PLSR prediction models derived as a function of spectra pre-processing method; (a)–(h) which included a combination of raw (original)/smoothed spectra, multiplica-
tive scatter correction (MSC), standard normal variate (SNV), and 1st derivative. (i) shows SOC PLSR model derived from inclusion of clay covariable in the predictor set.
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it is difficult to locate an adequate spectral range to apply, raising the
risk of affecting relevant spectral features for the component of interest
(Esbensen, 1994).

Despite the acceptable model reliability, the proportion of RMSEP
to the mean SOC of sample set is substantial, about 36%. Literature
shows this proportion varies considerably. For example Fidêncio
et al. (2002) determined SOM by radial basis function networks and
NIR spectroscopy and found a proportion of RMSEP to mean SOC of
between 9 and 108%, Brown et al. (2006) obtained a proportion around
265%, and Terhoeven-Urselmans et al. (2010) of about 190%. Better pro-
portions were obtained by Shepherd and Walsh (2002), about 18%,
Fystro (2002) about 20%, and Wetterlind et al. (2008) about 8%. Most
of the high proportions are from studies covering large areas as does
the present study, which suggests room for further improvement by
spiking (Guerrero et al., 2010), i.e., inclusion of a few local samples.
Our results are between the local and large-area studies, hence our
characterization of our results as “regional”.

Although the best model found in the present study fitted well the
1:1 validation line, all eight observations with SOC concentrations
above 2.0% were under-predicted. In addition there were three obser-
vations with moderate SOC concentrations but large negative residuals
(over-predictions). The cause for these poor predictions was investi-
gated by plotting the SOC against pH and clay proportion. Clay did
not give an obvious explanation as it spanned a wide range for the
poorly-predicted samples. The pH was in the range 6–7.5 for the
underpredicted samples and around 8 for overpredicted ones. The pH
range 7.8–8.4 is often indicative of carbonate presence (Schumacher,
2002). However we did not observe any effervescence after addition
ofHCl 10% to the samples. Therewas also no apparent relation between
landscape units and poor predictions (Fig. 7).
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Fig. 7. The best PLSR prediction model showing the samples symbolized by the land-
scape unit (Stalmans et al., 2004) from where they were collected.
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A scatterplot of SOC against clay or clay+silt revealed a fairly
strong relation at lower values, which degraded above about 18%
clay or 25% clay+silt. This disagrees with results reported by
Stenberg (2010), who found that prediction of SOM could be substan-
tially improved by removing the sandiest soils.

The wavelengths contributing most for the best model in the pre-
sent study are near 1.4, 1.9 and 2.2 μm, which correspond to OH
groups of soil moisture (first two) to the crystal lattice in soil clay
minerals (last) (Ben-Dor and Banin, 1995) (Fig. 8). Although the lat-
ter do overlap with assigned wavelength for the determination of
the alkaline-earth carbonates, calcite and dolomite by near infrared
spectroscopy, it was not possible to identify them, possibly because
carbonate content was not detected (far below the 10% weight basis
threshold) and that samples were not pre-heated to 600 °C for 8 h
in order to remove the strong absorption features of OH groups
both in the organic matter and clay minerals, to enhance CO3 features
(Ben-Dor and Banin, 1990).

Ben-Dor and Banin (1995) identified the 1.4 and 1.9 μm bands as
important for prediction of soil organic matter, while they are at the
same time characteristic for OH and water molecules. This confirms
Fig. 8. The 5% extreme values of PLSR coefficients (2.5% positive and 2.5% negative) of
best model, showing the most contributing wavelengths ranges for model predictions.
the difficulty in identifying with confidence the spectral ranges charac-
teristics for different compounds (Ben-Dor et al., 1999; Brown et al.,
2006; Clark, 1999; Stenberg, 2010).

PLSR is a data compression method that summarizes most of vari-
ables' variance in a few factors and by so doing helps to reveal hidden
patterns in the data (Esbensen, 1994). The analysis was performed
here on the pre-processed spectra to help explain whether landscape
units may have influence on the model prediction ability and there-
fore explain its poor performance for some of the samples. The
score plot of the first three PLSR components (factors) did not reveal
landscape-related pattern, except for the LLF (Limpopo Levubu Flood-
plains) landscape unit which did follow a specific pattern, but sam-
ples collected in this unit were not a problem for the prediction
model. Thus there are groups of similar samples but these did not
separate under- from over-predictions.

The normal probability plot of SOC residuals suggests that the
PLSRmodel may still have some non-linearity, as the sample residuals
at both ends slightly deviated from the tails of the normal distribu-
tion. All the under-predicted samples are located at the upper end
of this plot while, surprisingly, the over-predicted ones do fall within
the linear range of the plot.

3.6. Calibration subset models

The best model form (smoothed first derivative of MSC-corrected
spectra) was fit to the 104-observation DSM calibration subsample. A
nine-component PLSR model had an internal cross-validation RMSEP
of 0.323% SOC, just a little worse than the model from the full set,
0.315%. Predictions from this model for the 25-observation spectral
validation had errors from −0.50 to +0.65%SOC, with a median of
−0.10% and inter-quartile range (IQR) from −0.22 to +0.27%; com-
pared to cross-validation errors these are much lower extremes but
wider IQR. The true validation RMSEP was 0.331%, just a bit higher
than the full-set cross-validation RMSEP of 0.315%.

This shows that (1) cross-validation gives a realistic estimate of
the true validation error, (2) the model built from DSM calibration
spectra only is a little less accurate than that built from all spectra;
(3) the 104/25 split fairly reflects model performance; (4) the DSM
calibration and validation samples have similar characteristics.

3.7. Prediction of SOC from NIR spectra and clay

The PLSR model based on the NIR+clay (Fig. 6), following same
spectra pre-treatment, shows some improvement compared to that
based on the NIR spectra only. The best model now contained only
seven factors (Fig. 6 (i)), explaining 100.0% of clay+spectra and
84.0% of SOC variances, with a RMSEP of 0.28% SOC, about 0.04% bet-
ter than the model without the covariate and slightly above twice as
much as that obtained for laboratory analysis on duplicate samples.
Almost all clay+spectra variance is explained by the first factor, while
this component explains about 32% of SOC. The remaining 52% of
explained variance attained at the seventh factor of the model is gener-
ated by a cumulative b1% clay+spectra variance. This result is not sur-
prising, given the generally good relation between clay and SOC in this
sample set, and the strong diagnostic features in clay spectra.

This result agrees with that of Brown et al. (2006), who showed
that the inclusion of sand fraction and soil pH as auxiliary predictors
improved calibrations.

4. Conclusions

Using only 129 samples combined from the different landscape
units of the LNP resulted in a fairly stable, effective NIR PLSR calibra-
tion model for SOC prediction in the target area. The model predicted
fairly well irrespective of landscape unit. However, model performance
was limited at higher SOC concentrations. The stable and effective

image of Fig.�7
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model here obtained from a limited number of samples shows that rea-
sonable models can be built for areas of limited access, where a limited
number of representative samples can be collected, as it is the case of
LNP.

The addition of a moderately-correlated covariable (here, clay
concentration) in the set of predictors slightly improved the precision
(RMSE). This is of interest in the case where there are stored samples
where particle-size has been analyzed in the lab; these samples may
now be scanned and the developed predictive equations used to esti-
mate SOC.

Despite the improvement of model accuracy by inclusion of clay,
errors are still a substantial proportion of mean prediction. This sug-
gests that caution must be considered when using spectroscopy to es-
timate SOC for mapping or monitoring low-SOC landscapes. While
the model has a potential for SOC prediction in regional and baseline
studies, it can be improved further for detailed ecological and farm-
level studies within the LNP or in similar nearby soil landscapes by
recalibrating the model after adding a few “local” samples (spiking).
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