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High point densities obtained by today’s laser scanning systems enable the extraction of features that are
traditionally mapped by photogrammetry or land surveying. While significant progress has been made in
the extraction of roads from dense point clouds, little research has been performed on modelling uncer-
tainty in extracted road polygons. In this paper random sets are used to model this uncertainty. Based on
the accuracy reported by the data provider, positional errors in laser points are simulated first by a Mar-
kov Chain Monte Carlo method. An algorithm is developed next to detect the positions of road polygons
in the simulated data and integrating the random sets for the uncertainty modelling. This algorithm is
adapted to point data with different densities and variable distributions. Uncertainty modelling includes
modelling of the dependence between the vertices of a road polygon. Road polygons constructed from
vertices with different truncated normal distributions along with their uncertain line segments are rep-
resented by random sets, and their parameters are estimated. The effect of distributions on the area of the
mean set is analysed and validated by a set of reference data collected from GPS measurements and
image digitising. Results show that random sets provide useful spatial information on uncertainties using
their basic parameters like the core, mean and support set. The study shows that random sets are well-
suited to model the uncertainty of road polygons extracted from point data.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

LiDAR is a terrain and urban information acquisition technique
based on laser technology. The use of LiDAR data for urban model-
ling and visualisation has received much attention recently. Specif-
ically, digital city modelling is benefiting from realistic
visualisations. Advantages such as short data acquisition and pro-
cessing times, relatively high accuracy and point density, and low
costs have caused LiDAR to be preferred over traditional aerial pho-
togrammetric techniques.

Laser scanners nowadays can acquire point clouds with densi-
ties of 20–50 pts m�2 from airborne platforms. These point densi-
ties enable the use of laser scanning data for various mapping
tasks. Studies on the use of laser points typically focused on the
applications such as DTM generation (Kraus & Pfeifer, 2001), 3D
building modelling (Brenner, 2005; Oude Elberink & Vosselman,
2009; Pu & Vosselman, 2009), and change detection (Matikainen,
Hyyppä, & Hyyppä, 2003). In the context of road furniture and for-
est inventories, algorithms for the detection of pole-like objects
have been developed (Brenner, 2009; Pfeifer, Gorte, & Winterhal-
der, 2004; Rutzinger, Pratihast, Oude Elberink, & Vosselman,
2010). Recent research shows that objects such as traffic islands
and pavements can be extracted from airborne point clouds (Zhou
& Vosselman, 2012). Positional accuracy of the extracted objects is
improved by fitting a sigmoid-shaped surface. Uncertainty, how-
ever, still exists in the modelled road polygons due to the limita-
tion of designed model and various point densities and
distributions in different study areas. As the shapes of road poly-
gons are diverse in urban areas, the designed mathematical models
have their limitations in precisely modelling these diverse shapes.
Hence, properly modelling this uncertainty in the extracted road
polygons will be interesting for data users and stimulate other
applications in urban environments.

As a basic GIS operation, the area of a polygon is calculated from
the coordinates of the vertices representing its boundary. There-
fore uncertainty in the coordinate values leads to uncertainty in
area calculation (Van Oort, Stein, Bregt, De Bruin, & Kuipers,
2005). Traditional probability theory has been used for modelling
error propagation in spatial objects. Positional uncertainties are
mainly caused by measurement errors (Zhang & Goodchild,
2002). Analytical approaches have been developed for modelling
uncertain points (Thapa & Bossler, 1992) and lines (Shi & Liu,
2000). Models for uncertain polygons are mostly based on models
for points and lines, as the uncertain location of the outline of a
polygon is specified by the joint probability distribution function
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of its primitive points (Zhao, Stein, & Chen, 2010). Research has
been conducted to model the uncertainty of individual polygons
(Bondesson, Stahl, & Holm, 1998; Chrisman & Yandell, 1988;
Griffith, 1989; Liu & Tong, 2005; Magnussen, 1996; Næset, 1999;
Shahin, 1997). Prisley, Gregoire and Smith (1989) derived variance
and covariance equations from an area equation that required the
coordinate values of each polygon’s centroid. Based on the work of
Chrisman and Yandell (1988), Van Oort et al., 2005 derived vari-
ance and covariance equations, which are independent of polygon
centroid coordinates. In most of the above studies, assumptions
were made that the uncertainty in the area of a polygon originated
from the uncertainty of the vertices defining its outline. Liu and
Tong (2005) developed an error model to describe the influence
of line uncertainty on the uncertainty of polygon area where the
effect of uncertainty in parametric curves on the uncertainty of
polygon area, however, was not explicitly modelled. The main rea-
son is that an error model for parametric curves is complicated as
the error may be either in the endpoints or in the parameters
(Chrisman & Yandell, 1988). Since spatial objects derived from re-
mote sensing data may have gradual transition boundaries (Stein,
Hamm, & Ye, 2009), estimating the probability density function
(pdf) for each polygon vertex may be difficult. In addition, geore-
ferencing of remote sensing data and manual digitization may
introduce correlations between boundary points (Heuvelink,
Brown, & Van Loon, 2007).

Alternatively, uncertain spatial objects can be modelled by ran-
dom sets. Random sets were originally developed for the study of
randomly varying geometrical shapes (Stoyan & Stoyan, 1994)
and for image segmentation (Epifanio & Soille, 2007). Zhao et al.
(2010) used random sets to model the uncertainty of wetland de-
rived from satellite images. It quantifies extensional uncertainty of
spatial objects and models the broad boundaries extracted from
images (Zhao, Stein, Chen, & Zhang, 2011). Its parameterization is
adapted for monitoring seasonal dynamics of wetland variation
and interannual changes of wetland inundation extents (Zhao,
Stein, & Chen, 2011). In this way, a natural entity with uncertain-
ties is treated as random sets in population space. The objects de-
rived by digitizing, thresholding or segmentation of image data
were modelled as a set of observations in sample space. A statisti-
cal analysis helps to understand the characteristics of the sample.

The aim of this paper is to examine the feasibility of employing
random sets to model the uncertainty of road polygons derived
from airborne laser scanning data. This is realised in three steps.
First, the uncertainties in airborne laser points are simulated and
their effect on the uncertainties of derived polygons is explored.
Second, random sets theory is used to model the uncertainties of
derived polygons. Third, a statistical analysis is employed to esti-
mate the characteristics of the derived polygons. The study is ap-
plied on a set of six road polygons from the city of Enschede, The
Netherlands.
2. Data description

Airborne laser scanning data used in this study were acquired
with a FLI-MAP 400 system (Fugro Aerial Mapping., 2011) with for-
ward, nadir, and backward looking scan directions. The system
consists of an airborne laser scanner, two digital cameras and
two video cameras. The dataset contains 15 strips with a point
density of 20 pts m�2 and was recorded at a flight height of
275 m above ground in Enschede, The Netherlands. The systematic
errors (offsets between strips) are in the order of 4–8 cm for the X,
Y coordinates and 2–3 cm for the Z coordinates. The stochastic
platform positioning error is approximately 2–3 cm for X, Y and Z
coordinates. Planimetric standard deviations of 2 cm have been
achieved with a little additional calibration following Vosselman
(2008). This is superior to the accuracy reported in the platform
specification of 5 cm accuracy in both horizontal and vertical direc-
tions at the 95% confidence interval. Fig. 1 highlights the six road
polygons digitised from the orthophoto, being the subject of the
study. More details are provided in Sections 3 and 4.
3. Methodology

The quality of objects derived from remote sensing data de-
pends upon properties of the input data and the processing steps.
Uncertainty modelling of the output objects should include errors
in the input data as well as errors caused by data processing meth-
ods. In this study the positional errors in laser points were as-
sumed to have a bivariate normal distribution and were
simulated by using Markov Chain Monte Carlo (MCMC) simula-
tions (Besag, 2001). A previously developed method (Zhou &
Vosselman, 2012) was used to detect and model the road polygons
from the error-contaminated data. Every extracted road polygon
consists of a sequence of vertices and the uncertainty of each ver-
tex is represented by its uncertain line segment. Random sets were
used to model the uncertainties in the extracted road polygons and
results of statistical analysis were discussed. The impact of viable
distances between two neighbouring vertices and their depen-
dency on the uncertainty of derived road polygons is analysed by
means of different experiments.

3.1. Simulating the positional errors in laser points

Markov Chain Monte Carlo methods consist of a class of algo-
rithms for sampling from probability distributions. To conduct an
MCMC simulation, the probability distribution of random variables
should be known. Hunter et al. (1996) found that the standard
deviation supplied by the data producer is useful to simulate ran-
dom errors. In this research, it is assumed that the horizontal error
of each LiDAR point has a bivariate normal distribution with a
mean of zero and a standard deviation (SD) known from data pro-
vider. Since the vertical error of LiDAR points has less influence on
the positional uncertainty of a polygon, we do not take it into ac-
count. The Metropolis–Hastings algorithm is applied on the MCMC
method for obtaining a sequence of random samples from a prob-
ability distribution. As the laser points have been calibrated to a
high degree of accuracy, a planimetric standard deviation of 2 cm
was achieved. For each laser point, a sequence of 1000 random
samples was selected by the Metropolis–Hastings algorithm from
a bivariate normal distribution X �Nðl;RÞ, where X ¼ ½x; y�;

u ¼ 0
0

� �
and R ¼ 4 0

0 4

� �
(Fig. 2).

3.2. Mapping road polygons from simulated data

In urban areas, curbstones often separate the road surface from
the adjacent pavement. These curbstones are mapped using a three
step procedure. First, the locations with small height jumps near
the terrain surface are detected. Second, midpoints of high and
low points on either side of the height jump are generated, and
are put into a sequence to obtain a polygon describing the approx-
imate curbstone location (Zhou & Vosselman, 2012). A sigmoidal
function (Eq. (1)) is then fitted to the simulated points near the
polygon to increase the accuracy. We use this function to describe
the height Z as a function of the location x perpendicular to the
road side. In this equation W is the slope parameter, xip is the
inflection point, and Zt and Zb are the top and bottom height
(Fig. 3a). Further, the longitudinal shape of the curbstone is as-
sumed to follow a cubic polynomial xip ¼ a0 þ a1yip þ a2y2

ip þ a3y3
ip

where the y-direction is taken parallel to the local road side



Fig. 1. Digitised road polygons (blue) from orthophoto (a), colour-coded laser points by height with cycle length of 0.3 m (b).

Fig. 2. Thousand random samples selected by Metropolis algorithm (a), theoretical bivariate normal distribution with mean of zero and variance of 4 cm (b).

Fig. 3. Sigmoidal curve (a) and sigmoidal curve surface (b).
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Fig. 4. Five percent (red line) and 95% (green line) height of a sigmoidal curve (a) and recorded 1000 positions of them, blue line segments are the uncertain line segments of
each vertex (b).
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direction. This polynomial is used to substitute xip in Eq. (1). The
resulting Eq. (2) describes a 2.5D surface (Fig. 3b).

Z ¼ Zb þ
Zt � Zb

1þ ewðxip�xÞ ð1Þ

Z ¼ Zb þ
Zt � Zb

1þ e
w a0þa1yipþa2y2

ip
þa3y3

ip
�x

� � ð2Þ

The method uses polygons reconstructed by means of the
detection method and simulated points near the ground surface
as input data. A window is created and moved along each polygon
with a small step size, thus determining the number of vertices on
each polygon. A smaller step size leads to more vertices. By fitting
the sigmoidal surface to the simulated laser points in the moving
window, parameters of a sigmoidal curve in the centre of this win-
dow are estimated. Even though these parameters are accurately
estimated by least squares, the position of a vertex is still uncer-
tain, because it may appear between the two transitional phases
in (Fig. 4a), with boundaries that are also not crisp. In our study,
we assumed that the position of the vertex varies along the sigmoi-
dal curve from 5% to 95% of its height (Fig. 4a). For each vertex, the
positions at the 5% (red1 points in Fig. 4b) and at the 95% (green
points in Fig. 4b) height of a sigmoidal curve are estimated and re-
corded 1000 times by simulated laser points. The uncertainty of each
vertex is within the line segment (blue) between the innermost and
outermost end points (Fig. 4b) and this line segment is defined as the
uncertain line segment of a given vertex.

Random data types can be either random point, random line or
random regions (Zhao, Chen, & Stein, 2009). Random regions can
be regarded as random sets and used for spatially modelling areal
geographic entities, such as clouds, dunes, field patches and lakes.
We consider a polygon constructed from the uncertain vertices as
an element of the random set. The distribution of all the elements
of a random set is described by its covering function as described
below.

3.3. Constructing random sets from extracted polygons

3.3.1. Random sets
We equate the road polygons with a random set X. A random set

X on the Euclidean space Rn associates a probability value to each
1 For interpretation of colour in Figs. 1,2,4–13, the reader is referred to the web
version of this article.
element x e Rn. It quantifies how likely it is that x belongs to X.
The random set X on Rn is a function Px:Rn ? [0,1], called the cov-
ering function of the random set, taking values between 0 and 1.
The set Xa ¼ fx 2 rnjPxðxÞP ag is the a-level set of X, whereas
the set X0 = {x e Rn|Px(x) > 0} is the support set of X and
X1 = {x e Rn|Px(x) = 1} is the core set of X. We denote the set of all
random sets in Rn by RRn. The mean Xm of the random set has been
defined in several ways (Stoyan & Stoyan, 1994). Following (Zhao
et al., 2009), we choose the Vorob’ev expectation because it consid-
ers sets with a finite number of points. In a 2D space I � R2, the
mean area EA of the random set X is then defined as
EAðXÞ ¼

R
R2 PxðxÞdx. According to the definition of the Vorob’ev

expectation, the set Xm is equal to Xm ¼ fx 2 R2j0 6 am 6

1jPxðxÞP amg where am is such that Xm has the area EA(X). If am

is not unique, then it is set equal to the infimum of all such ams.
When am = 1/2, the mean and median are identical.

3.3.2. Random sets generated by extracted polygons
The uncertainty of each vertex is represented by a line segment

described in Section 3.2. In order to construct random polygons by
means of uncertain vertices, the position of each vertex is sampled
from its uncertain line segment (Fig. 5a). Oversampling the posi-
tions of each vertex along its uncertain line segment increases
the computation costs, whereas too few samples cannot truly rep-
resent the distribution of a random set. In this experiment, each
uncertain line segment has been subdivided into 100 intervals of
equal length (Fig. 5b). It is assumed that the probability of a vertex
appearing on its uncertain line segment has a normal distribution.

Approaches for modelling the uncertainty in spatial objects
have been discussed in (Clementini, 2005; Schneider, 1996;
Tøssebro & Nygård, 2008), but none has modelled the dependency
between adjacent vertices of a single object. Dependence exists be-
tween adjacent vertices during different mapping tasks like digitiz-
ing and land surveying. It should be considered during the
uncertainty modelling. The shape and size of an object vary and
dependence may change from one mapping task to another. No ex-
plicit methods exist to model these dependencies. In this study, we
assumed that the probability distribution of one vertex located
along its uncertain line segment is positively correlated with the
distribution of its neighbours. For example, if the probability of a
vertex appearing towards the exterior of a polygon is high, the
remaining vertices are likely following the same tendency. In order
to model this, the probability of a vertex located on its uncertain
line segment is modelled as a truncated normal distribution



Fig. 6. Truncated normal distribution on an uncertain line segment with mean = 0 and standard deviation = 1, k is taken as the ratio between the length on the left (green line)
and right (red line) side of the mean.

Fig. 5. Uncertain line segments (a) and equally divided uncertain line segments (b).
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depending on an assumed position of the mean. Because the uncer-
tain line segment of each vertex has a different length, a range of
ratio values (k) between the length on left and right side of the
mean is selected to define the positions of mean on each uncertain
line segment and probability distribution along them will be scaled
accordingly. Fig. 6 shows five assumed positions of means defined
as the ratios 0%, 25%, 50%, 75% and 100%. The truncated normal dis-
tribution is simulated with mean = 0 and standard deviation = 1
and covers the uncertain line segment within a six sigma precision.

Five groups of 1000 polygons are constructed according to the
five different truncated normal distributions. Each group is treated
as a random set and the X1, X0 and Xm are calculated by a covering
function. For each random set, the arithmetic mean of the polygon
area is calculated. Then a covering function is built for each sam-
pled vertex from its uncertain line segment. The core X1 is made
up by those vertices, which are covered by all random polygons
(pink line in Fig. 7). The support X0 is the largest random polygon
that contains all random polygons (red line in Fig. 7). Xm is the Vor-
ob’ev mean of a random set, which area is close or equal to the
arithmetic mean of the random sets (green line in Fig. 7).

3.4. Validation

Two types of reference data were collected for polygon 5 to val-
idate the modelling results. From a RTK-GPS field campaign in total
eight GPS points are selected along the boundary of traffic island 5
(Fig. 1). The positions of these GPS points are preferred at the dis-
tinct points of this traffic island, which can largely represent its
shape. The GPS points have a standard deviation below 3 cm. This
accuracy was confirmed through re-visiting some points after sev-
eral hours (Gerke, 2011). These GPS points are overlaid with
orthophotos and used as a guide to digitise the complete outline



Table 1
Relationship between polygon area and step size.

Step size (cm) X0 (m2) Xm (m2) X1 (m2) r (m2) Vertices (n)

10 19.66 16.64 13.88 0.05 165
15 19.63 16.62 13.88 0.05 110
20 19.58 16.58 13.84 0.06 83
25 19.63 16.61 13.84 0.07 67
30 19.54 16.52 13.83 0.07 56
35 19.51 16.51 13.72 0.08 48
40 19.47 16.51 13.71 0.09 42

Fig. 9. Mean, core and support set of random sets with step size of 25 cm.

Fig. 7. The calculation of core (pink line), support (red line) and mean set (green
line) for ratio of 50% (normal distribution).
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of this traffic island. The orthophotos were produced from the
aerial photos collected alongside the LiDAR data with a spatial
resolution of 10 cm. The quality of the direct georeferencing was
reported as the total system accuracy with a standard deviation
of 5 cm. As the geographical accuracies of aerial photos were cor-
related to the quality of the LiDAR data, the produced orthophotos
cannot be considered as a truly independent validation source. The
areas of the digitised road polygons, however, can be used to eval-
uate the area variations of derived road polygons as they are not
subject to the quality of the georeferencing. Good quality of regis-
tration between the GPS points and orthophotos can be observed
in Fig. 8. These reference data presented in Fig. 8 are used as
ground truth and compared with the output from uncertainty
modelling.
4. Results

4.1. Effect of step size on the variation of polygons

To investigate the relationship between the number of vertices
and the calculated polygon area, different step sizes for the moving
Fig. 8. Reference data in orthophoto, red points are collected by GPS, blue polygon
is manually digitised on orthophoto by using GPS points as guide.
window are used in the experiment. One traffic island (Fig. 8) was
selected to analyse the relationship.

The step size of moving widow shown in Table 1 ranges from
10 cm to 40 cm. Random sets are built up regarding the differences
of step size and the sets X0, Xm and X1 are calculated accordingly
(Fig. 9). The dependency between adjacent vertices has a normal
distribution along its uncertain line segment in this test. The gen-
eral trend can be observed that the areas of X1, X0 and Xm increase
slightly with the decrease of step size. If there are more vertices on
a polygon, its boundary becomes smoother and the areas tend to
become stable, as shown by the standard deviation (r).
4.2. Impact of dependencies of vertices on the variation of polygons

Next, dependencies of vertices on each polygon are simulated.
Five k values are used to simulate the distribution of each vertex
on its uncertain line segment. As observed from Table 1, the area
of Xm becomes stable if the step size is less than 25 cm. Hence,
the polygons with step size of 15 cm are taken as an example
and random sets are generated by the polygons with different
dependencies on their vertices.
Table 2
Different random sets generated by polygons with different dependencies on their
vertices.

Dependency k (%) X0 (m2) Xm (m2) X1 (m2) r (m2)

0 19.66 18.34 13.88 0.08
25 19.66 17.92 13.88 0.08
50 19.66 16.66 13.88 0.08
75 19.66 15.47 13.88 0.08

100 19.66 15.07 13.88 0.08



Fig. 10. Mean sets of random sets with different distributions on adjacent vertices.
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Table 2 shows that the areas of X1 and X0 remain the same by
increasing k. The reason is that they are constructed by the inner-
most and outermost points on the uncertain line segment of each
vertex. The changes of the distribution have a large impact on
the area of Xm. Fig. 10 shows the position of mean on uncertain line
segment has linear relation with the area of the mean set, if the
mean is closer to the interior of the polygon (with higher k value)
the area of the mean set is smaller.

4.3. Applying algorithm to more polygons

The developed algorithm is further applied to polygons 2, 3 and
4 in Fig. 1. Fig. 11 shows that polygons 2 and 3 have an irregular
shape in comparison with polygons 4 and 5 and contain sharp cor-
ners in the south-eastern parts. Such irregular shapes are caused
by the variation of the point density and distribution, making
uncertainty modelling more difficult. Even though modern laser
scanners can acquire point clouds with high point density, due to
the different perspective and incidence angle of the laser beam
the point spacing is not guaranteed to be regular. The advantage
of this algorithm is that the mapping algorithm is not constrained
to the point density and distribution in the local area. The size of
the moving window is adjusted by the point density, allowing to
carry out uncertainty modelling in an area with variable point den-
sity. The internal and external boundaries given by X1 and X0

respectively are more irregular than Xm for polygons 2 and 3. So
if Xm is considered as the true representation of a polygon then
the result is acceptable, because it is calculated from the covering
function, in which the shapes of X1 and X0 have only a little effect.

Table 3 shows that with the decrease of k the area of Xm de-
creases for each polygon. Table 3 suggests that the area of Xm

shows a linear relation with k. If we refer to Fig. 12, however, the
relation between these two variables is not linear. The general
trend is that the area of Xm significantly changes from 25% to
75% of k, whereas for the remaining intervals of k the area of Xm

varies slightly. The maximum area variation is 0.42 m2.

4.4. Comparison between modelling outputs and references

The area of polygon 5 as digitised from orthophoto equals
16.74 m2 which is higher than the area of each Xm in Table 1. By
increasing the number of vertices, the area of mean set is
approaching the reference but still less than it. This indicates that
the distribution of a vertex along its uncertain line segment may
not be normal. But if we compare the reference with the area of
the mean set in Table 2, it suggests that the reference lies between
the mean sets calculated by the vertices with k ranging from 0.25
to 0.5 and close to 0.5. Fig. 13 shows the GPS points together with
the output mean sets with different k values. All P3–8 fall within
both sides of the Xm with k = 0.5, whereas P7 is the closest to the
Xm with k = 0.25. P1 and P2 are close to the support set, because
they are on the boundary of the polygon where the local shape is
right angular (Fig. 13). Such a shape cannot be properly modelled
by the designed mathematical model, which assumes longitudinal
shape of a polygon is a 3rd order polynomial. As a result the sharp
corner on a polygon is rounded, leading to problems in the uncer-
tainty modelling step.
5. Discussion

In this paper, we presented random sets method to model the
uncertainty of objects derived from airborne laser points. Due to
the nature of laser scanning, measurements are rarely acquired
at the distinct positions of an object, such as its outlines, corners
or edges. We show how these objects can be detected and mod-
elled by means of developed road detection algorithms and math-
ematical models respectively, while uncertainty in the road
polygons is analysed by random sets. The advantage of the road
detection algorithm is that it is not limited to the point density
and distribution, which have a large effect on the uncertainty in ex-
tracted polygons. By using the statistical parameters (X0, Xm and
X1) of random sets, we demonstrate that random errors in the laser
points and randomness of detection parameters have different ef-
fects on extracted features when objects have different extensional
uncertainties.

Current methods for detecting and modelling the traffic poly-
gons can use variable step sizes for the moving window, resulting
in different vertices on the polygons. Results suggest that the area
of the polygon tends to be stable when a smaller step size is se-
lected. Selection of a small step size, however, may increase com-
putation costs while confronting large objects. Furthermore, to
make the detecting and modelling generic, it is assumed that the
boundary of a traffic island can be modelled by a 3rd order polyno-
mial. This may not hold for all situations. For example, the study
polygon in Fig. 8 has actually two right angular corners, which can-
not be properly modelled by such a polynomial. In order to get a
more accurate boundary around these areas, either a more specific
model needs to be considered or a data-driven approach without



Fig. 11. Mean sets of random sets with different distributions for polygon 2 (a), 3 (b), 4 (c) and 5 (d).

Table 3
Relationship between mean set area and k.

Polygon X1 (m2) k = 1 k = 0.75 k = 0.5 k = 0.25 k = 0.00 X0 (m2)

2 9.15 10.06 10.35 11.27 12.25 12.57 13.61
3 8.17 9.12 9.44 10.40 11.44 11.75 12.82
4 7.67 8.83 9.20 10.38 11.63 12.05 13.38
5 13.88 15.07 15.47 16.66 17.92 18.34 19.66

Fig. 12. 2D plot mean set area against k.
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any geometrical model involved could be an optimal solution in
further study.

Random set theory is selected in this study to model uncer-
tainty. The empirical covering function for positions in random sets
can also be regarded as a fuzzy membership value, thus indicating
the possibility of covering a position by the object. Furthermore,
a-cuts as an important concept of a fuzzy set, used as an efficient
interpretation tool to describe the internal structure of a fuzzy
boundary. It can be regarded as a nested random set in our ap-
proach. Therefore, random set can serve as an alternative approach
to simultaneously obtain fuzzy membership functions and a-cuts.

Dependence between adjacent vertices varies due to the size
and shape of an object and also changes from one mapping task
to another. There is no explicit way to combine the dependence
in uncertainty modelling. Current work assumed that each vertex
has a truncated normal distribution along its uncertain line seg-
ment, which is subject to current detecting and modelling method.



Fig. 13. GPS points overlaid with output polygons from uncertainty modelling step.
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This uncertain line segment has been subdivided in 100 intervals of
equal length. As the maximum length of all uncertain line seg-
ments in this study are less than 1 m, the sample distance is then
less than 1 cm, which is sufficient for any current mapping pur-
poses. Another assumption can be made when the detecting strat-
egy changes. By simulating the distribution of a vertex along its
uncertain line segment, the effect of the distribution on the uncer-
tainty of a road polygon is properly modelled.

In dense urban areas, LiDAR can serve as a promising technol-
ogy for data acquisition. As the data quality is essential for urban
applications, uncertainty assessment of raw LiDAR data and the re-
sults of reconstruction are important. The uncertainty in raw LiDAR
data arises both in planimetric as well as height features. We are
currently investigating methods for modelling planimetric errors
using the simulation method. Future work may focus on the com-
bined effect of planimetric and height errors on the uncertainty of
object reconstruction.

6. Conclusions

Random errors in LiDAR data can be properly modelled by sim-
ulation methods. By applying the developed road detection proce-
dure to simulated data, the derived road polygons contain the
uncertainty in the point data itself and also those obtained during
data processing. Each road polygon is then treated as an element of
a random set, which can spatially model objects with uncertain
boundaries.

Random sets applied to road polygons are useful for modelling
the uncertainty, which is not clearly addressed in either traditional
analytical methods or other popular methods. A statistical analysis
of random sets is encouraging for determining and characterising
the variation of the uncertainty in detected road polygons.

In traditional methods the correlation between the adjacent
vertices of an object is not explicitly modelled or taken into ac-
count. This study shows that simulating the correlation between
the vertices and experimenting with different possibilities the
model’s sensitivity is clearly determined.

The reference data collected from fieldwork can assist in analys-
ing the characteristics of uncertainty modelling outputs. These re-
sults show that random sets are well-suited to model the
uncertainty of road polygons extracted from point data.
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