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This  paper  aims  to  use  spatial  statistical  tools  to explore  the  reciprocal  spatial–temporal  effects  of  trans-
port  infrastructure  and  urban  growth  of  Jeddah  city,  a fast  developing  polycentric  city  in  Saudi  Arabia.
Global  spatial  autocorrelation  (Moran’s  I)  and  local  indicators  of  spatial  association  (LISA) are  first  used  to
analyze  the  spatial–temporal  clustering  of  urban  growth  and  transport  infrastructure  from  1980  to 2007.
Then, spatial  regression  analysis  is conducted  to investigate  the  mutual  spatial–temporal  effects  of urban
growth  and  transport  infrastructure.  Results  indicate  a  significant  positive  global  spatial  autocorrelation
of  all defined  variables  between  1980  and  2007.  LISA  results  also  reveal  a constant  significant  spatial  asso-
ciation of  transport  infrastructure  expansion  and  urban  growth  variables  from  1980  to 2007.  The  results
not only  indicate  a  mutual  spatial  influence  of  transport  infrastructure  and  urban  growth  but  also  reveal
that spatial  clustering  of  transport  infrastructure  seems  to  be  influenced  by other  factors.  This  study
patial regression
emote sensing
IS

shows  that  transport  infrastructure  is  a constant  and  strong  spatial  influencing  factor  of  urban  growth  in
the polycentric  urban  structure  that  Jeddah  has.  Overall,  this  study  demonstrates  that  exploratory  spatial
data  analysis  and  spatial  regression  analysis  are  able  to  detect  the  spatial–temporal  mutual  effects  of
transport infrastructure  and  urban  growth.  Further  studies  on the  reciprocal  relationship  between  urban
growth  and  transport  infrastructure  using  the study  approach  for  the case  of monocentric  urban  structure
cities  are  necessary  and  encouraged.
. Introduction

Rapid urban growth is a key concern for urban planners as it has
 considerable urban environmental impact (Müller et al., 2010). In
009, over 3.4 billion people in the world resided in urban areas,
nd this figure is estimated to increase to 6.5 billion by 2050 (United
ations, 2009).This increase implies that urban areas will con-

inuously witness rapid urban growth, which will impose further
hallenges to urban planners. Understanding urban growth and its
rivers is vital to deal with such challenges. New approaches to
he planning and management of urban areas, such as sustainable
evelopment and smart growth, will depend upon improvements

n our knowledge of causes and drivers of urban growth (Longley

nd Mesev, 2000; Herold et al., 2003). Moreover, spatial and tem-
oral analyses of the factors that drive urban growth are critical
o predict future changes and their potential environmental effects
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in order to mitigate the negative aspects of urban growth (Aguayo
et al., 2007).

In essence, a variety of social and economic factors trigger urban
growth, including transportation and communication (Hall and
Pfeiffer, 2000; Hart, 2001), internal and international migration
(Thorns, 2002) and public policies (Carruthers, 2002). Transporta-
tion as such plays a crucial role in urban development through the
accessibility it provides to land and activities (Meyer and Miller,
2001). Several studies have demonstrated that transportation infra-
structure is one of the main driving forces of urban growth (e.g.,
Hall and Pfeiffer, 2000; Hart, 2001; Liu et al., 2002; Handy, 2005;
Xie et al., 2005; Jha et al., 2006; Ma  and Xu, 2010; Müller et al.,
2010). Other studies have pointed out the effect of development
of high-speed roads on urban expansion and population growth
(Brotchie, 1991; Parker, 1995; Priemus et al., 2001). Moreover, most
of the urban models use accessibility to transport infrastructure as
a main driver of growth and change (see for example Batty, 2000;
Liu and Phinn, 2003; Al-Ahmadi et al., 2009; Feng et al., 2011).

Nevertheless, only one previous study (Fan et al., 2009) has ana-
lyzed the effects of different transportation infrastructure types on
urban growth. This study used a geographical information system
(GIS) spatial proximity (buffer) analysis to evaluate the influence of

dx.doi.org/10.1016/j.jag.2012.07.006
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:aljoufie@itc.nl
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ifferent types of roads on spatial expansion of Guangzhou; a devel-
ped monocentric city in China between 1979 and 2003. Thus, there
s a lack of research on the spatial and temporal effects of different
ypes of transport infrastructure on urban growth and vice versa,
articularly in the context of fast developing and polycentric cities.

The study of urban growth factors and its driving forces requires
ophisticated methods and tools. Recent advances in remote sens-
ng (RS), GIS, spatial analysis and spatial statistics tools provide a
ich opportunity for in-depth study of the complex urban growth
rocess and its interaction with the transportation. RS, GIS and spa-
ial analysis functionalities support the examination of geographic
atterns, trends, and relationships in between urban systems
Benenson and Torrens, 2004). Newer methods of spatial analysis,
patial statistics in particular, have proven relevance and usefulness
or urban analysis (Paez and Scott, 2004). Exploratory spatial data
nalysis (ESDA), including global spatial autocorrelation (Moran I
ndex) and local indicators of spatial association (LISA), and the
patial regression analysis have gained attention in urban stud-
es. Bamount (2004) has used ESDA to analyze the intra-urban
patial distributions of population and employment in the agglom-
ration of Dijon, France. Orford (2004) has identified and compared
hanges in the spatial concentrations of urban poverty and afflu-
nce for the case of inner London using a Moran I index and LISA.
eng et al. (2010) has used LISA and spatial regression models to
emonstrate the relationship between economic growth and the
xpansion of urban land for the case of Beijing in China. Neverthe-
ess, up to now only a few studies have been conducted using ESDA
nd spatial regression analysis in urban studies. In particular, there
s a lack of research using these analyses for exploring and analyz-
ng the complex urban growth phenomenon, and its drivers and

heir interaction.

This paper attempts to use ESDA and spatial regression analy-
is to explore the spatial–temporal reciprocal effects of transport
nfrastructure and urban growth for the case of Jeddah city, a

Fig. 1. (a) Geographic location o
bservation and Geoinformation 21 (2013) 493–505

developing, polycentric and fast growing city in Saudi Arabia. First,
RS and GIS techniques are used to quantify and prepare the data
on spatial–temporal urban growth and transport infrastructure
in Jeddah city during the period 1980–2007. Next, global spa-
tial autocorrelation (Moran’s I) and LISA are detected to analyze
the spatial–temporal clustering of urban growth and transport
infrastructure. Finally, spatial regression analysis is conducted to
investigate the reciprocal spatial–temporal effects of urban growth
and transport infrastructure.

2. Material and methods

2.1. Study area

Jeddah is the second largest city in the Kingdom of Saudi Ara-
bia, with a population exceeding three million. Jeddah is located on
the west coast of the Kingdom, at the confluence of latitude 29.21
north and longitude 39.7 east, in the middle of the eastern shore
of the Red Sea, and it is surrounded by the plains of the Tahoma in
the east (Fig. 1). Saudi Arabia has experienced high urban growth
rates over the last four decades, and the major cities in Saudi Ara-
bia have experienced a rapid population increase (Al-Hathloul and
Mughal, 2004). Compared to the total Saudi population, the urban
population has increased, from 21% in 1950 to 58% in 1975 and 81%
in 2005 (Al-Ahmadi et al., 2009). This huge increase has created
excessive spatial expansion and demand for transportation infra-
structure in the major Saudi cities, including Jeddah (Al-Hathloul
and Mughal, 1991, Al-Hathloul and Mughal, 2004), and this demand
imposes constant urban planning challenges. Jeddah has experi-
enced rapid urban growth, spatial expansion and transportation

infrastructure expansion over the last 40 years, with rates of change
ranging from 0% to over 100%, indicating a wide variability across
space and a complex urban dynamic (Aljoufie et al., 2011). The high-
est level of urban growth and transport infrastructure expansion

f Jeddah, (b) Jeddah city.
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as occurred and escalated significantly during the country’s oil
oom from 1970 to 1980 (Aljoufie et al., 2012). During this period,
ifferent urban growth abrupt changes and patterns have estab-

ished. For instance, airport and some major public places have
een relocated during this period (Aljoufie et al., 2012). After 1980,
eddah has experienced a tremendous and more homogenous grad-
al urban growth pattern and transport infrastructure expansion
Aljoufie et al., 2012). Jeddah’s population has grown rapidly, from
60,000 in 1980 to 3,247,134 in 2007. Jeddah’s urban mass has also
xpanded dramatically, from 32,500 ha in 1980 to 54,175 ha in 2007
Aljoufie et al., 2011). The transportation infrastructure at the same
ime has also expanded significantly, from 435 km in to 826 km in
007 (Aljoufie et al., 2011). As a result, the local government in
eddah currently faces unprecedented challenges related to urban
rowth and transportation. However, no systematic study has been
onducted on the spatial–temporal dynamics of urban growth and
ransportation changes and their reciprocal relationship in Jeddah.

.2. Data and image processing

.2.1. Data acquisition, collection and geo-referencing
This study utilizes a time series of aerial photos and satellite

mages to quantify the spatial–temporal urban growth and trans-
ortation infrastructure situation from 1980 to 2007. Aerial photo
ata from 1980 and spot satellite image data from 1993, 2002 and
007 were used. Moreover, a variety of secondary data was  col-

ected to facilitate the spatial–temporal analysis of urban growth
nd transportation infrastructure. These data include the follow-
ng: Jeddah’s master plans for 1980, 1987, and 2004; transportation
tudies of Jeddah for 1980, 1995, 2004 and 2007; census data for
993 and 2005; an urban growth boundary study for 1986; and
opographic maps of Jeddah for 2000.

.2.2. Image processing

Given the inconsistent spatial and temporal resolution of the

vailable RS data for this study and the different formats, a consis-
ent method of quantifying spatial and temporal urban growth and
ransportation infrastructure changes was critical. Visual image

Fig. 2. Visual interpretation method use
bservation and Geoinformation 21 (2013) 493–505 495

interpretation continues to be extensively used even with the
development of digital image processing techniques (Jensen, 2000).
It has been widely used in urban applications with high accuracy
(Liu and Chen, 2008). RS data can be interpreted either visually
by human experts or automatically by digital image processing
and pattern recognition methods (Jensen, 2000). Human experts
can comprehensively use shape, size, color, orientation, pattern,
texture and context in their interpretations (Zhou et al., 2010).
Although these characteristics are crucial for identifying urban
landscape patterns, they are difficult to incorporate into conven-
tional digital image processing techniques (Richards and Jia, 2006;
Shao and Wu,  2008). Hence, combining of both human knowledge
and computer processing will be more conducive in the extraction
of information from RS data.

Accordingly, a cooperative visual interpretation method (Fig. 2)
was adopted to quantify temporal urban land use and trans-
portation infrastructure as the main aspects of urban growth and
transportation in Jeddah. Cooperative interpretation is a method
in which people work with computers to interpret RS data (Liu
and Chen, 2008). This method cooperatively combines the com-
puter automatic interpretation, reference land use and transport
infrastructure data, and human experience.

First, an image-to-image registration strategy was  adopted to
geo-reference the various images using a second-order polynomial
function in ERDAS IMAGINE. Subsequently, a cooperative visual
interpretation method was applied. The process started with an
unsupervised image classification to differentiate between urban
built-up elements and non-built-up elements using the ISODATA
clustering algorithm in ERDAS IMAGINE. This process shows the
spatial pattern of the urban built-up area in Jeddah, which facili-
tates better understanding of the elements of built-up areas, such
as buildings, road infrastructure and green areas. Next, land use
and transportation infrastructure reference data from master plans
and transportation study reports were integrated with built-up

and non-built-up images, using the overlay function in ArcGIS.
Ten urban land use classes were specified for extraction: resi-
dential, commercial, industrial, institutional, informal settlements,
airport, port, roads, vacant lands and green areas. Then, visual

d to process various data sources.
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nterpretation indicators, such as pattern, shape and size, were
xtensively used to identify features from aerial photographs and
atellite images based on field knowledge of local urban planners.
onsequently, a final interpretation was conducted incorporating
ll the aforementioned processes in ArcGIS v9.3 using on-screen
igitizing, overlay tools and area of interest (AOI) functionality.
ccordingly, land use and transportation infrastructure maps for
983, 1993 and 2007 were obtained. Finally, accuracy assessments
ere performed based on a comparison of the cooperative inter-
retation outputs with the reference data. The average overall
ccuracy of land use maps produced by this approach was  90%,
hich exceeds the minimum 85% accuracy for land use data as

equired by Anderson et al. (1976) for satisfactory land use maps
Anderson et al., 1976).

.2.3. Variables, data disaggregation and preparation for analysis
Urban growth is a complex process involving spatial–temporal

hanges of socio-economic and physical components at differ-
nt scales (Han et al., 2009). The socio-economic components of
rban growth are related to urban population growth and economic
rowth (Black and Henderson, 1999), while physical components
f urban growth are related to spatial expansion, land cover
hange and land use change (Thapa and Murayama, 2011). In this
tudy, urban growth is defined and expressed using three vari-
bles population growth, spatial expansion and residential land use
xpansion. Transport infrastructure expansion is expressed using
hree variables: highway expansion, main road expansion and sec-
ndary road expansion. Table 1 shows the defined variables with
emporal aggregated data and their unit of measurement.

To fulfill the practical requirements of a spatial statistical analy-
is, the extracted RS data (Fig. 3) was disaggregated to district level,
n urban administrative unit in the study area. Because the tempo-
al population data were collected at the district level, other defined
ariables of urban growth and transportation infrastructure were
isaggregated to the same spatial level. The spatial statistical anal-
sis considered 117 districts that constituted Jeddah’s entire urban
uthority. A GIS-based approach was conducted to disaggregate the
tudy’s defined variables (population growth, spatial expansion, res-
dential land use expansion, highway expansion, main road expansion
nd secondary road expansion).

.3. Spatial statistical analysis

Choosing an appropriate model and analytical technique
epends on the type of variable under investigation and the objec-
ive of the analysis. Accordingly, to achieve the objectives of
his study, we applied spatial autocorrelation analysis and spatial
egression analysis to capture the mutual spatial–temporal effects
f the defined urban growth and transport infrastructure variables.

.3.1. Spatial autocorrelation analysis
To analyze the reciprocal spatial–temporal effects of urban
rowth and transportation, a spatial cluster analysis was  con-
ucted. A spatial autocorrelation indicator, Moran’s Index, was
erformed in GeoDa software to capture the global spatial auto-
orrelation and local spatial clustering of urban growth and

able 1
escription of the defined variables’ characteristics at the aggregated level.

Variables Unit 1980 

Spatial expansion Hectare 32,50
Population growth Person 960,00
Residential land use expansion Hectare 872
Highways expansion Kilometer (length) 11
Main  roads expansion Kilometer (length) 15
Secondary roads expansion Kilometer (length) 16
bservation and Geoinformation 21 (2013) 493–505

transportation infrastructure variables. Spatial autocorrelation
statistics have been widely used to measure the correlation among
neighboring observations in a pattern and the levels of spatial clus-
tering among neighboring districts (Boots and Getis, 1998). Moran’s
Index, in particular, has been used to study urban structure, com-
plex urban growth and the intra-urban spatial distribution of socio-
economic factors (Frank, 2003; Baumont et al., 2004; Orford, 2004;
Yu and Wei, 2008).

To analyze the spatial distribution and capture the global spatial
autocorrelation of urban growth and transportation infrastructure
variables (population growth, spatial expansion, residential land use
expansion, highway expansion, main road expansion and secondary
road expansion),  the Global Moran’s Index IM statistic, which is sim-
ilar to the Pearson correlation coefficient (Moran, 1950; Cliff and
Ord, 1980) and LISA were calculated for the years 1980, 1993, 2002
and 2007. The Moran’s Index test statistic is given by:

IM =

⎛
⎜⎜⎝ n∑

i

∑
j

Wij

⎞
⎟⎟⎠

∑
i

∑
jWij(Y(R)i − Y (R))(Y(R)j − Y (R))∑

i(Y(R)i − Y (R))
2

, (1)

where Wij is the element in the spatial weights matrix corre-
sponding to the district pairs i, j, and Y(R)i and Y(R)j are the different
urban growth and transportation infrastructure variables (e.g., pop-
ulation growth or residential expansion) for districts i and j with the
mean urban growth and transportation variables expansion rate
Y (R). Because the weights are not row-standardized, the scaling fac-
tor n/

∑
i

∑
jWij is applied. Moran’s Index indicates the strength

of the spatial similarity or dissimilarity of neighboring districts.
A positive Moran’s I indicates the presence and degree of spatial
autocorrelation.

The first step in the analysis of spatial autocorrelation is to
construct a spatial weights matrix that contains information on
the neighborhood structure for each location. The (i, j) element of
the matrix W,  denoted Dist ij, quantifies the spatial dependency
between district i and j. Collectively, the Wij defines the neighbor-
ing structure over the entire area. A first-order connectivity weight
matrix was  constructed. This weight matrix was selected hence the
local connectivity of transport infrastructure is defined by a grid
pattern, which is more compatible with the rook weight matrix.
In addition, the spatial configurations of districts in the study area
(Fig. 4) support the rook weight matrix. In this approach, spatial
units (districts) are defined as neighbors if they share a common
boundary. Accordingly:

Wij =
{

1 if districts i and j share common boundary

0 Otherwise
.

Finally, a significance test against the null hypothesis of no
spatial autocorrelation through a permutation procedure of 999
Monte Carlo replications was  used to test for the significance of the
statistic.

1993 2002 2007

0 40,739 49,700 54,175
0 2,046,000 2,560,000 3,247,134
4 14,921 19,318 21,365
2 132 132 132
5 163 163 183
8 217 380 475
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.3.2. Spatial regression analysis
When standard linear regression (i.e., ordinary least square

OLS)) models are estimated for cross-sectional data on neighboring
patial units, the presence of spatial dependency may  cause seri-
us problems with model misspecification. Spatial relationships
an be modeled in a variety of ways. One way  is to hypothesize

hat the value of the dependent variable (e.g. spatial expansion)
bserved at a particular location is partially determined by some
unction of the value of the dependent variable of its neighbors.
he variable measuring these effects is typically formulated as a
emporal changes.

spatially weighted average of the neighboring values of the depend-
ent variable, where the neighbors are specified through the use
of a so-called spatial weights matrix (Anselin, 1988). The method-
ologies for spatial regression consist of examining and testing for
the potential presence of such misspecification and providing more
appropriate modeling that incorporates the spatial dependence

(Anselin et al., 1997; Varga, 1998). Spatial dependency can be incor-
porated into the OLS model in two  distinct ways: as an additional
predictor in the form of a spatially lagged dependent variable (spa-
tial lag model) or in the error structure (spatial error model).
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esults analysis.

Specifically, in matrix notation, the general form of the spatial
ag model is given by:

 = �Wy + X  ̌ + ε, (2)

where y is the dependent variable; W is a spatial weights matrix,
hich specifies the neighbors used in the averaging (resulting in

he spatially lagged dependent variable Wy); � is an autoregressive
oefficient of the lag variable; X is the explanatory variables;  ̌ is a
egression coefficient; and ε is an error term. The model is applied
o measure the level of spatial dependency and to determine the
ffect of different groups of variables.

The other method of incorporating spatial relationships is by
odeling the effects through the spatial dependence that enters

he relationship through the error term. When accounting for spa-
ial dependence through the error term, the model accounts for a
ituation in which the errors associated with any one observation
re spatially weighted (or neighborhood) averages of the errors plus

 random error component. Specifically, the spatial error model in
atrix form is given by:

 = X  ̌ + ε where ε = �W + �, (3)

where ε is a vector of spatially autocorrelated error terms; � is
 vector of errors; and � is a scalar parameter, known as the spatial
utoregressive coefficient.
Spatial dependency was used in this study to investigate the
patial patterns and to determine the factors that contribute to the
patial similarity or dissimilarity for urban growth and transporta-
ion variables. The spatial effect of transportation infrastructure on
bservation and Geoinformation 21 (2013) 493–505

urban growth was  investigated using different explanatory vari-
ables on the dependent variable, as follows:

Population growth

= f (Highway expansion, Main road expansion,

Secondary road expansion) (4)

Spatial expansion

= f (Highway expansion, Main road expansion,

Secondary road expansion) (5)

Residential land use expansion

= f (Highway expansion, Main road expansion,

Secondary road expansion). (6)

Conversely, the spatial influence of urban growth variables on
the different transport infrastructure types was investigated as fol-
lows:

Highway expansion

= f (Population growth, Spatial expansion,

Residential land use expansion) (7)

Main road expansion

= f (Population growth, Spatial expansion,

Residential land use expansion) (8)

Secondary road expansion

= f (Population growth, Spatial expansion,

Residential land use expansion). (9)

Before modeling spatial dependency, the nature of spatial
dependency (in terms of spatial lag or spatial error) was  first deter-
mined in order to choose the most appropriate alternative model
(spatial lag model or spatial error model). To determine this, a
Lagrange Multiplier (LM) test was  conducted (Anselin and Florax,
1995; Anselin et al., 1996).

3. Results

3.1. Spatial autocorrelation analysis

The extent to which neighboring values are correlated was mea-
sured using the Global Moran’s Index. A Moran’s Index analysis
is conducted by generating scatter plots with the log of the dif-
ferent urban growth and transportation infrastructure variables.
In essence, the scatter plots illustrate the Global Moran’s I (e.g.,
Fig. 5), which is a commonly used test statistic for spatial autocorre-
lation. A significance assessment through a permutation procedure
was implemented to determine the significance of the computed

Moran’s Index. Table 2 shows the values of the Global Moran’s I
statistic for all variables. Moran’s Index is positive and statistically
significant (p < 0.05) for all urban growth and transportation infra-
structure variables. This result indicates that nearby districts tend
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Table 3
LISA statistics of district 1.

Variables 1980 1993 2002 2007

Population growth HH** HH** HH** HH**

Spatial expansion HH** HH** HH** HH**

Residential land use HH** HH HH** HH**

Highway expansion HH* Ns HH* HH*

Main roads expansion HH* HH** HH** HH**

Secondary roads expansion HH** HH** HH** HH*

(� 1993 = 0.485, � 2002 = 0.554 and � 2007 = 0.603) and highly
significant. This result indicates the presence of spatial depend-
Fig. 5. Spatial autocorrelation Moran scatter plot (Ln population for 1980).

o have similar attributes. It is noted that the values of the Global
oran’s I change from 1980 to 2007 for all variables. The highest

lustering of nearly all variables occurred in 1980. The decrease
n values of population growth and spatial expansion variables
rom 1980 to 2002 reflects the sprawl pattern of development that
ccurred in Jeddah wherein developments were not very much
oncentrated in space, but took place in several parts of the city at
he same time. In addition, population growth and spatial expan-
ion during this period were more autocorrelated in the city center
rea, whereas for the other parts this was less the case. It is also
oted that the values of the transportation infrastructure variables
re lower than the urban growth variables. This result indicates
hat the values of transportation infrastructure variables are inde-
endently clustered with similar values. Although Moran’s I for the
ransportation infrastructure variables shows low values, the space
mong other factors catalyzed the expansion of these variables.

The results of the LISA identify the local spatial clustering of
rban growth and transportation infrastructure variables at the dis-
rict level. Fig. 6 and Fig. 7 show the temporal LISA for different
rban growth and transportation infrastructure expansion vari-
bles. Districts with a significant LISA are classified by the type
f spatial correlation: bright red for the high–high association,
right blue for low–low, light blue for low–high, and light red for
igh–low. The high–high and low–low locations suggest cluster-

ng of similar values of one variable, whereas the high–low and
ow–high locations indicate spatial outliers of the same variable. By
omparing these figures, it is possible to identify the significant spa-
ial clustering of urban growth and transportation infrastructure

ariables from 1980 to 2007.

In general, this study finds that the spatial clustering of urban
rowth variables coincides with the spatial clustering of trans-
ortation infrastructure expansion variables. It is observed that

able 2
oran’s I statistics.

Variables 1980 1993 2002 2007

Population growth 0.674 0.428 0.571 0.611
Spatial expansion 0.700 0.448 0.759 0.621
Residential land use 0.618 0.619 0.741 0.625
Highway expansion 0.335 0.285 0.249 0.283
Main roads expansion 0.338 0.462 0.683 0.560
Secondary roads expansion 0.730 0.420 0.351 0.203
Ns: not significant.
* Significant at 5%.

** Significant at 1%.

the temporal–spatial clustering of population growth is associ-
ated, to some extent, with the temporal–spatial clustering of
highway expansion. It is also noted that the temporal–spatial
clustering of the spatial expansion variable largely overlaps with
the temporal–spatial clustering of the variable of main road
expansion. Additionally, the temporal–spatial clustering of the res-
idential land-use expansion variable largely coincides with the
temporal–spatial clustering of the secondary road expansion vari-
able.

In addition, Tables 3 and 4 summarize LISA’s results of each vari-
able over time for the case of two districts in study area (Fig. 4).
These tables depict a constant high–high spatial association of
transport infrastructure expansion and urban growth variables
over time. This indicates that spatial influence of transportation
infrastructure expansion on the clustering of population growth,
spatial expansion and residential land-use expansion is significant
and constant over time and vice versa.

3.2. Spatial regression analysis

Table 5 depicts the result of the LM test. Results indicate that
both LM Lag and LM Error tests are significant for all dependent vari-
ables and over time. In contrast, the results also indicate that only
the Robust LM Lag statistic is significant for all dependent variables
and over time, while the Robust LM Error statistic is not. Follow-
ing the spatial regression model selection decision rule (Anselin,
2005) we conclude that the spatial lag model is the proper alter-
native. Accordingly, spatial lag models have been estimated for all
specified dependent variables (Eqs. (4)–(9)).

The estimates of the coefficients produced by the spatial regres-
sion (econometric) models are presented in Tables 6–11. Table 6
shows the effect of different transport infrastructure types on
population growth dependent variable (Eq. (4)). The spatial autore-
gressive coefficient � (the coefficient on the spatial lag of the
dependent variable) is positive (0.732) and is highly significant
at the 5% level for the observations in 1980. Similarly, the coef-
ficient for the observations in 1993, 2002 and 2007 is positive
ence, implying that the interaction between neighbors significantly

Table 4
LISA statistics of district 2.

Variables 1980 1993 2002 2007

Population growth HH** HH** HH** HH**

Spatial expansion HH* HH** HH** HH**

Residential land use HH** HH** HH** HH**

Highway expansion HH* HH** HH* HH*

Main roads expansion Ns HH* HH* HH*

Secondary roads expansion HH** HH** HH* Ns

Ns: not significant.
* Significant at 5%.

** Significant at 1%.
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Fig. 6. LISA cluster map

ffects the growth of Jeddah’s urban population. Furthermore,
he coefficients of the highway, main road, and secondary road
ariables are positive and significant, and the magnitude of the
oefficients increases over time. This means that the expansion of
he transport infrastructure across space contributes to the increase
n the urban population over this period. Thus, the findings reveal
hat the expansion of highways, main roads and secondary roads is

 contributing factor for the spatial clustering of urban population
rowth.

Table 7 depicts the spatial influence of different transport infra-
tructure types on the spatial expansion dependent variable (Eq.
5)). The analysis of the spatial relationship among the differ-
nt urban transport infrastructures reveals that the coefficients
f highways and secondary roads are significantly positive for the
bservations in 1980, 1993, 2002 and 2007, whereas the coefficient

or main roads is only positively significant for the observations
n 2002 and 2007 (Table 7). This result demonstrates that the
patial expansion of highways, main roads and secondary roads
ontributes to the increase in urban spatial expansion over the
rban growth variables.

study period, which, in turn, implies that transport infrastructure
expansion is a contributing factor to the spatial clustering of urban
spatial expansion.

Table 8 presents the spatial influence of different transport
infrastructures on residential land use development dependent
variable (Eq. (6)). Examining the effect of different urban trans-
port infrastructures, the analysis reveals that the coefficients of
highways and main roads for the observations in 1993 are sig-
nificantly positive, whereas the coefficients for secondary roads in
1980 and 2007 are positive and significant at 5% (Table 8). This find-
ing demonstrates that spatial expansion in transport infrastructure
contributes to the increase in urban residential development over
the indicated period, which, in turn, implies that transport infra-
structure expansion is a contributing factor to the spatial clustering
of urban residential development.
Table 9 shows the effect of urban growth variables on highway
expansion dependent variable (Eq. (7)). The coefficient of the res-
idential development variable is negative for 1980 and 2002 and
significant at 5%, and the magnitude of the coefficient increases
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ver time, implying that the spatial expansion of residential
evelopment negatively contributes to the increase in highways
ver this period. In contrast, the coefficient for spatial expansion is
ositive and significant only for the year 2007 (Table 5), indicating
hat the increase in spatial expansion contributes positively to the
ncrease in highways for 2007. Thus, the result reveals that popula-
ion growth contributes positively to the spatial clustering of urban
ighway expansion, whereas residential development expansion
egatively contributes to the spatial clustering in urban highway
xpansion.

The results of the effects of urban growth variables on the main
oad dependent variable (Eq. (8))  and secondary road expansion
ependent variable (Eq. (9))  are given in Tables 10 and 11 below.
he spatial autoregressive coefficient � for both main and sec-
ndary roads is positive and significant at the 5% level for the

bservations in 1980, 1993, 2002 and 2007. This result demon-
trates the existence of spatial dependence, implying a relation
etween urban growth and transportation infrastructure expan-
ion. Moreover, the coefficient of the residential development
ort infrastructure variables.

variable is significantly positive for the year 1993, showing that
the spatial expansion of residential development positively con-
tributes to the increase in the main roads for 1993 (Table 10).
In contrast, the coefficients of spatial expansion for the obser-
vations in 1993, 2002 and 2007 are positive and significant
at 5% and 1% (Table 11), indicating that spatial expansion is
a contributing factor to the spatial increase in secondary roads and
highways for 2007. The analysis further indicates that the coeffi-
cient of the population for the observation in 2007 is significantly
negative, implying that population growth contributes negatively
to the spatial clustering of urban secondary roads (Table 11).

4. Discussion

Spatial autocorrelation analysis results indicate a significant

positive global spatial autocorrelation of all defined variables
between 1980 and 2007. The results of the LISA revealed that the
spatial clustering of urban growth variables coincided with the spa-
tial clustering of transportation infrastructure expansion variables.
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Table  5
LM test results for different dependent variables.

Dependent variable Test 1980 1993 2002 2007

Value p Value p Value p Value p

Ln (population growth) (4) LM (lag) 32.55 0.000 12.21 0.000 25.37 0.000 33.85 0.000
Robust LM (lag) 8.6 0.003 7.77 0.005 7.55 0.005 12.17 0.000
LM  (Error) 24.3 0.000 4.98 0.025 18.1 0.000 21.81 0.000
Robust LM (Error) 0.41 0.521 0.551 0.457 0.283 0.594 0.135 0.712

Ln  (spatial expansion) (5) LM (lag) 70.2 0.000 12.95 0.000 90.87 0.000 49.44 0.000
Robust LM (lag) 9.57 0.001 3.54 0.041 28.63 0.000 27.11 0.000
LM  (Error) 62.7 0.000 9.42 0.002 64.44 0.000 22.44 0.000
Robust LM (Error) 1.9 0.157 0.016 0.899 2.209 0.137 0.126 0.722

Ln  (Residential land use expansion) (6) LM (lag) 24.95 0.000 42.8 0.000 60.06 0.000 50.41 0.000
Robust LM (lag) 14.28 0.000 22.21 0.000 22.24 0.000 13.18 0.000
LM  (Error) 11.92 0.000 20.96 0.000 37.85 0.000 38.11 0.000
Robust LM (Error) 1.26 0.261 0.372 0.541 0.038 0.844 0.878 0.348

Ln  (Highway expansion) (7) LM (lag) 27.4 0.000 17.9 0.000 17.11 0.000 15.96 0.000
Robust LM (lag) 5.27 0.021 1.15 0.028 6.858 0.008 4.93 0.026
LM  (Error) 22.4 0.000 16.9 0.000 11.22 0.000 11.3 0.000
Robust LM (Error) 0.33 0.561 0.162 0.686 0.962 0.326 0.279 0.596

Ln  (Main road expansion) (8) LM (lag) 10.82 0.001 9.84 0.001 41.6 0.000 24.94 0.000
Robust LM (lag) 4.21 0.04 5.96 0.014 7.33 0.006 5.81 0.015
LM  (Error) 7.8 0.005 4.61 0.031 35.32 0.304 19.52 0.000
Robust LM (Error) 1.18 0.275 0.724 0.394 1.05 0.000 0.39 0.530

Ln  (Secondary road expansion) (9) LM (lag) 50 0.000 9.36 0.002 18.63 0.000 8.94 0.001
Robust LM (lag) 12.95 0.000 3.32 0.041 11.64 0.000 4.66 0.030
LM  (Error) 37.76 0.000 6.08 0.013 8.35 0.000 6.42 0.011
Robust LM (Error) 0.708 0.399 0.047 0.827 1.37 0.241 0.425 0.514

Table 6
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln of population.

1980 1993 2002 2007
Lag  Lag Lag Lag

Ln (Highways) 0.089 (1.44) 0.192 (2.13)* 0.248 (2.66)* 0.280 (3.15)*

Ln (Main roads) 0.012 (0.154) 0.210 (1.99)* 0.320 (3.37)* 0.352 (4.07)*

Ln (Secondary roads) 0.329 (4.37)* 0.386 (3.91)* 0.174 (1.77)** 0.035 (0.34)
�  0.732 (13.13)* 0.485 (6.04)* 0.554 (7.52)* 0.603 (8.77)*

Adjusted R2 0.73 0.54 0.65 0.68

Notes: Absolute values of z-statistics in parentheses.
* Significant at 5%.

** Significant at 1%.

Table 7
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln spatial expansion.

1980 1993 2002 2007
Lag Lag Lag Lag

Ln (Highways) 0.199 (1.94)** 0.157 (1.92)** 0.185 (1.80)** 0.196 (2.34)*

Ln (Main roads) −0.007 (0.057) 0.123 (0.760) 0.217 (2.13)* 0.295 (3.72)*

Ln (Secondary roads) 0.211 (1.93)** 0.353 (2.31)* 0.317 (2.89)* 0.283 (2.89)*

� 0.858 (23.89)* 0.552 (6.81)* 0.696 (13.05)* 0.503 (5.62)*

Adjusted R2 0.69 0.38 0.66 0.57

Notes: Absolute values of z-statistics in parentheses.
* Significant at 5%

** Significant at 1%.

Table 8
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln residential development.

1980 1993 2002 2007
Lag  Lag Lag Lag

Ln (Highways) −0.091 (0.091) 0.205 (2.01)* 0.0215 (0.213) 0.119 (1.06)
Ln  (Main roads) −0.069 (0.579) 0.376 (3.16)* 0.129 (1.33) 0.146 (1.41)
Ln  (Secondary roads) 0.458 (4.15)* 0.104 (0.947) 0.261 (2.43) 0.394 (2.97)*

� 0.81 (18.10)* 0.752 (14.72)* 0.839 (22.18)* 0.78 (16.67)*

Adjusted R2 0.70 0.69 0.71 0.60

N
otes: Absolute values of z-statistics in parentheses.
* Significant at 5%.
** Significant at 1%.
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Table  9
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln of highways.

1980 1993 2002 2007
Lag  Lag Lag Lag

Ln (Population) 0.214 (1.92)** 0.084 (0.83) 0.291 (2.71)* 0.112 (1.23)
Ln  (Residential develop.) −0.202 (2.63)* 0.01 (0.13) −0.162 (2.00)* −0.003 (−0.045)
Ln  (Spatial expansion) 0.085 (1.47) 0.002 (0.04) 0.065 (0.99) 0.141 (1.75)**

� 0.722 (11.7)* 0.702 (10.6)* 0.489 (6.25)* 0.515 (5.87)*

Adjusted R2 0.38 0.25 0.42 0.33

Notes: Absolute values of z-statistics in parentheses.
* Significant at 5%.

** Significant at 1%.

Table 10
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln of main roads.

1980 1993 2002 2007
Lag  Lag Lag Lag

Ln (Population) 0.016 (0.17) 0.052 (0.60) 0.108 (1.47) 0.219 (2.83)*

Ln (Residential dev.) 0.008 (0.13) 0.183 (2.72)* −0.072 (−1.30) −0.062 (1.03)
Ln  (Spatial expansion) −0.001 (0.022) 0.002 (0.05) 0.039 (0.87) 0.097 (1.45)
� 0.81  (16.6)* 0.488 (5.61)* 0.938 (49.61)* 0.645 (9.4)*

Adjusted R2 0.33 0.49 0.67 0.53

Notes: Absolute values of z-statistics in parentheses.
* Significant at 5%.
** Significant at 1%.

Table 11
The maximum likelihood estimation result of the spatial lag model: dependent variable—ln of Secondary roads.

1980 1993 2002 2007
Lag Lag Lag Lag

Ln (Population) 0.129 (2.04)* 0.332 (3.48) 0.099 (0.95) −0.151 (1.90)**

Ln (Residential dev. 0.055 (1.26) −0.072 (−1.02)* 0.006 (0.08) 0.157 (2.67)*

Ln (Spatial expansion) −0.022 (0.687) 0.158 (1.82)** 0.121 (1.97)* 0.220 (3.19)*

� 0.845 (22.66)* 0.532 (6.44)* 0.348 (3.66)* 0.152 (1.58)
Adjusted R2 0.80 0.46 0.26 0.29
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otes: Absolute values of z-statistics in parentheses.
* Significant at 5%.

** Significant at 1%.

The results of the spatial statistical analysis reveal reciprocal
patial–temporal effects of urban growth and transport infrastruc-
ure for the city of Jeddah. Interestingly, this study indicates that
he spatial influence of variables related to transportation infra-
tructure expansion (highway expansion, main road expansion and
econdary road expansion) on the clustering of population growth
nd spatial expansion is constant over time. This finding reflects the
ignificant role of the expansion of different types of transportation
nfrastructures on the spatial clustering of population growth and
patial expansion.

In contrast, this study finds that the spatial influence of variables
elated to transportation infrastructure expansion on residential
and use expansion changes over time (Tables 6–8). This find-
ng indicates that different types of transport infrastructures have
ifferent spatial–temporal influences on the spatial clustering of
esidential land use expansion.

It is also observed that the spatial influence of urban growth
ariables (population growth, spatial expansion, and residential
and use expansion) on the clustering of transportation infra-
tructure expansion variables changes over time (Tables 9–11).
his finding indicates that different urban growth variables have
ifferent spatial–temporal influences on the spatial clustering of
ifferent types of transport infrastructures. This study finds that
he spatial clustering of population growth and spatial expansion

timulates the spatial clustering of urban highways expansion.
urthermore, population growth and residential land use expan-
ion contribute to the spatial clustering of main roads, whereas
patial expansion catalyzes the spatial expansion of secondary
roads in Jeddah. Although, population growth amongst other urban
growth variables seems to play stronger effect on the spatial
clustering of transport infrastructure in Jeddah, transportation
infrastructure seems to be influenced by other factors. In essence,
urban transportation systems are complex networks shaped
by various geographical, social, economic, and environmental
factors (Wang et al., 2008).

The results of this study reveal that transport infrastruc-
ture is a constantly strong spatial influencing factor of urban
growth in Jeddah city. The polycentric urban structure of Jed-
dah city and an arterial grid pattern of transport infrastructure
with high connectivity seem to support this finding. In addi-
tion, Jeddah car-oriented transport system characteristics also
seem to support this finding. Other developed monocentric urban
structure cities are expected to show different results. The influ-
ence of transport infrastructure on urban growth is expected be
lower as compared to a polycentric urban structure like Jeddah
city.

This study shows that ESDA and spatial regression analy-
sis are sophisticated tools to study the mutual effects of urban
growth and transportation infrastructure expansion for the case
of a developing, polycentric and fast growing city. These tools
were able to detect the spatial–temporal reciprocal effects of
transport infrastructure and urban growth. This in turn enriches

insight, strengthens the understanding of the relationship between
the complex urban growth phenomenon and transportation, and
extends the knowledge of urban analysis using these tools. In
essence, spatial and temporal analysis of the factors that drive
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rban growth is critical to predict future changes and their poten-
ial environmental effects in order to mitigate the negative aspects
f urban growth (Aguayo et al., 2007).

This study provides urban planners and policy makers
ith a new methodological approach to understand the com-
lex urban growth phenomenon in rapidly growing cities.
his approach facilitates the investigation of the causes and
rivers of urban growth; the complex interaction between the
hysical components of urban growth (spatial expansion and

and use changes) and socio-economic components (popula-
ion growth and economic growth). Enriched understanding
f these issues is essential and crucial to mitigate the neg-
tive consequences of urban growth and to plan for future
ppropriate policies (Longley and Mesev, 2000; Herold et al.,
003).

. Conclusion

This paper has explored the spatial–temporal mutual effects of
ransport infrastructure and urban growth using ESDA and spatial
egression analysis tools for the case of Jeddah city; a developing,
olycentric and fast growing city in Saudi Arabia between 1980 and
007. This paper finds a significant positive global spatial autocor-
elation of all defined variables from 1980 to 2007. The LISA results
lso find a constant significance spatial association of transport
nfrastructure expansion and urban growth variables from 1980
o 2007.

Spatial statistical analysis results find that the spatial influ-
nce of transportation infrastructure expansion variables on the
lustering of population growth and spatial expansion is con-
tant over time and different transport infrastructure types have
ifferent spatial–temporal influences on the spatial clustering of
esidential land use expansion. Conversely, results find that the
patial clustering of population growth and spatial expansion
nfluences the spatial clustering of urban highways expansion.
n addition, population growth and residential land use expan-
ion find to contribute to the spatial clustering of main roads,
hereas spatial expansion finds to catalyze the spatial expansion

f secondary roads. Furthermore, spatial clustering of transport
nfrastructure in Jeddah seems to be influenced by other fac-
ors.

This study reveals that transport infrastructure is a con-
tantly strong spatial influencing factor of urban growth. The
olycentric urban structure and an arterial grid pattern of trans-
ort infrastructure with high connectivity of the study area
eem to support this finding. Overall, this study demonstrates
hat ESDA and spatial regression analysis were able detect
he spatial–temporal mutual effects of transport infrastructure
nd urban growth. This has extended the knowledge of urban
nalysis using these tools. These tools provide urban plan-
ers and policy makers with new methodological approach to
nderstand the complex urban growth phenomenon in rapidly
rowing cities in order to mitigate the negative consequences
f urban growth and to plan the future appropriate poli-
ies.

The results of this study provide several directions for further
esearch. First, given the promising results of this study approach,
urther studies of the mutual relationship between urban growth
nd transport infrastructure using the presented study approach for
he case of other monocentric urban structured cities are necessary.
econd, given the complexity of the urban growth phenomenon,
urther investigation using ESDA and spatial regression analysis of

1) the causes and drivers of urban growth; (2) the complex inter-
ction between the physical components of urban growth (spatial
xpansion and land use changes) and socio-economic components
population growth and economic growth) is encouraged.
bservation and Geoinformation 21 (2013) 493–505
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