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This study analyses the joint effects of the two transmission routes
of cholera on the space-time diffusion dynamics. Statistical models
are developed and presented to investigate the transmission net-
work routes of cholera diffusion. A hierarchical Bayesian modelling
approach is employed for a joint analysis of nonlinear effects of con-
tinuous covariates, spatially structured variation, and unstructured
heterogeneity.Proximity to primary case locations and population den-
sity serve as continuous covariates. Reference to communities is
modelled as a spatial effect. The study applied to the Kumasi area in
Ghana shows that communities proximal to primary case locations are
infected relatively early during the epidemics, with more remote com-
munities infected at later dates. Similarly, more populous communities
are infected relatively early and less populous communities at later
dates. The rate of infection increases almost linearly with population
density. A non systematic relation occurs between the rate of infec-
tion and proximity to primary case locations. It is discussed how these
findings could serve as significant information to help health plan-
ners and policy makers in making effective decisions to limit cholera
epidemics.
Keywords and Phrases: Cholera, Vibrio cholera, Geographic Infor-
mation Systems, spatial statistics, Hierarchical, Bayesian.

1 Introduction

Mapping of disease transmission routes in human population and knowledge of
its spatial and temporal transmission dynamics are essential for epidemiologist to
understand better the population’s interaction with its environment. Understand-
ing the spatial distribution of diseases and transmission dynamics is facilitated by
advancements in Geographic Information Systems (GIS) and spatial statistics. These
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provide opportunities for epidemiologist to analyse disease distribution in space
and interactions with the environment. Most of these approaches, however, ignore
methodological difficulties that arise from the nature of the data, especially when
the population distribution and environment is particularly variable and spatially
structured.

Classical linear regression approaches, where the response variable is assumed to
be Gaussian distributed with the covariates acting linearly on the response, have
been used to model the diffusion dynamics of infectious diseases (Kuo and Fukui,
2007; Trevelyan, Smallman-Raynor and Cliff, 2005). Such diffusion models
assume a strictly linear relationship between the dependent variable and the pre-
dictor variables, thereby ignoring the possible nonlinear and spatial effects of the
predictor variables. Moreover, these diffusion models ignore the possibility and role
of multiple index cases in the diffusion dynamics of the disease.

Cholera is a water-borne disease caused by Vibrio cholera (hereafter V. cholera).
Comprehensive discussions about cholera are presented by Carpenter (1970), Col-
well and Huq (1994), Finkelstein (1996), Prestero, Height and Hwang (2001),
Sack et al. (2004), Huq et al. (2005). The disease has been scrutinized since the
beginning of epidemiology (Snow, Frost and Richardson, 1936), yet it remains an
important public health problem, especially in developing countries. Without
treatment, case-fatality rate or death can be as high as 50% of severe cases (WHO,
1993; Sack et al., 2004). Cholera diffuses rapidly in environments that lack basic
infrastructure with regard to access to safe water and proper sanitation. Provision
of good sanitary conditions, sewage treatment, and provision of clean water have
long been known as important critical measures for prevention and eradication.
These measures have eliminated cholera from industrialized and developed countries.
Chronic poverty in developing countries makes implementation of these measures
almost unfeasible. A better understanding of the dynamics of cholera spread amongst
communities could help to develop alternative and timely public health interventions
to limit or prevent cholera epidemics.

Two routes of cholera transmission have been described. The primary route or
environment-to-human transmission is the exposure of a human being to an aquatic
reservoir of V. cholera. The secondary route or human-to-human transmission is
through faecal-oral contacts induced by a previously infected person (Miller,
Feachem and Drasar, 1985; Glass et al., 1991). Primary transmission is respon-
sible for sparking initial outbreaks. Primary cases are therefore hypothesized to be
scattered is space and time, occurring almost simultaneously in distant areas with
no apparent connection. In contrast, once the outbreak has reached a threshold
level, faecal-oral transmissions dominate and the disease becomes highly contagious.
Consequently, geographic factors such as proximity to a primary case location and
population density should spatially dominate the disease propagation. To examine
these hypotheses, this study analyses the joint effects of primary and secondary trans-
mission in the space-time diffusion dynamics of cholera. Specifically, the study seeks
to (i) define and map the transmission routes of cholera diffusion from possible
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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multiple primary cases and (ii) model the joint effects of population density and
proximity to primary cases on the space-time dynamics of cholera diffusion.

This paper is organized as follows. First, a variogram model is used to char-
acterize the spatial auto-covariance structure of incidence rates to determine the
threshold/extent of contagiousness of cholera. Thus, the variogram model is used
to characterize the dominant scale at which cholera transmission occurs. Secondly,
the threshold value and the times of cholera entrance in communities are applied to
define the transmission routes and all probable primary cases. Third, a hierarchical
Bayesian model is built, where the time ordered sequence of cholera entrance in each
community is modelled as nonlinear functions of proximity to respective primary
cases and the urban level. In such a modelling approach, the unknown parameters
are treated as random variables arranged in a hierarchy such that the distributions
at each level are determined by the random variables in the previous levels. Next,
we present the results and conclude the paper with discussion on the results.

2 Methods and data

2.1 Study area and data

The area studied is the Kumasi Metropolis, an urban and the most populous city
in Ashanti Region, at approximately 250 km (by road) northwest of Accra. It is
centred at the intersection of latitude 6.04◦N and longitude 1.28◦W, covering an
area of about 220 km2 (See Figure 1). Kumasi has a population of approximately
1.2 million which accounts for just under a third (i.e. 32.4%) of the region’s pop-
ulation. After cholera introduction in Ghana in the 1970s, the country has experi-
enced a series of epidemic outbreaks. Surveillance and reporting of the disease before
2005 has been ineffective, and hence the existing data before 2005 have little or no

Fig. 1. District map of Ghana (left), and Kumasi (right). Dots indicate the centroids of communities.
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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spatial and temporal information. With intensified surveillance and reporting sys-
tems during an outbreak in 2005, disease cases in Kumasi are being recorded daily at
community level spatial units. Kumasi is therefore suitable for studying the dynamics
of cholera in space and time.

The topographic map of the metropolis and the n=68 communities where cholera
records are available was digitized. Cholera data for each community was extracted
from case records obtained from the Kumasi Metropolitan Disease Control Unit
(DCU). This data contains information about the index case records for each com-
munity, thus the time of cholera onset for each community. Residential addresses
were not recorded during the period of diagnoses; therefore, the centroids of the
communities were used as the spatial references of the case locations. Also, index
case records for each community were extracted and assigned with unique identifi-
cation codes. These were cross-linked to the communities by unique identification
codes to facilitate easy geo-referencing and further analysis.

2.2 Defining the extent of contagiousness: variogram modelling

Let the n communities belonging to a domain D be given by the spatial locations S =
(s1, . . ., sn), CholC(s�) denote the number of cholera cases, and n(s�) denote the size
of the population at risk. Then the incidence rate at s� is expressed as CholR(s�)=
CholC(s�)/n(s�). To make a statistical inference, CholC(s�) is interpreted as the real-
ization of a random variable that follows a one parameter Poisson distribution with
intensity n(s�) ·CholR̂(s�). That is:

CholC(s�) |CholR̂(s�)∼P(n(s�) ·CholR̂(s�)), �=1, . . ., n. (1)

Such modelling is based on the assumption that the spatial correlation among chol-
era cases is caused by spatial trends in either the population sizes or in the local indi-
vidual risks given the risk value CholR̂(s�). Therefore, the count variables CholC(s�)
are assumed to be conditionally independent. The risk variable CholR̂(s�) is mod-
elled as a stationary random field with mean m, variance �2

CholR̂
, and covariance

function CCholR̂ (h)=Cov[CholR̂(s�), CholR̂(s�)] which depends only on the distance
h between observation pairs s� and s�. Following Matheron’s (1963, 1965) intrin-
sic hypothesis on expected mean differences and variances, the equivalent traditional
variogram is:

�CholR̂ (h)= 1
2N(h)

N(h)∑
i =1

[(CholR̂(s�)−CholR̂(s�))2]Id��∼h, ∀CholR≥0, (2)

where Id��∼h is the indicator function for observations pairs (s�, s�) separated by the
distance h and N(h) is the number of observation pairs separated by h. Strictly
speaking, the above model is a semi-variogram but the prefix ‘semi’ shall be omit-
ted and this convention is followed in our subsequent references to it. The above
variogram model, however, is not suited for the analysis of disease incidences since
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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it does not account for the heterogeneous population distributions. Following the
approach developed by Monestiez et al. (2005, 2006), the experimental variogram
is estimated as:

�̂CholR̂
(h)= 1

2N(h)

×
N(h)∑

�,�=1

(
n(s�) ·n(s�)

n(s�)+n(s�)
[CholR(s�)−CholR(s�)]2−m*

)
Id��∼h,

(3)

where now N(h)=∑�,�
n(s�)·n(s�)

n(s�)+n(s�) Id��∼h is a normalizing constant and is an estimate
of the mean of CholR̂(s�) expressed as the population weighted mean of the rates.
Thus:

m* =

N∑
�=1

n(s�) ·CholR(s�)

N∑
�=1

n(s�)
. (4)

In Equation (3) the different pairs [CholR(s�)−CholR(s�)] are weighted by the
corresponding population sizes n(s�)·n(s�)

n(s�)+n(s�) to homogenize their variance terms by divi-

ding them by a weight proportional to the standard deviation
√

m n(s�)+n(s�)
n(s�)·n(s�) . Mones-

tiez et al. (2005, 2006) developed the above variogram to account for the spatially
heterogeneous observation efforts and sparse animal sightings for mapping the
relative abundance of species (Balenoptera physalus). In their approach, the hetero-
geneous distribution of the observation efforts was modelled as Poisson distribution.
Simulation studies indicated that this approach outperforms simple population-
weighted approaches and Bayesian smoothers (Goovaerts, 2005). Generalization
of this approach for disease mapping can be seen in Goovaerts (2005). The
approach, however, is similar to Oliver et al. (1998), except that Poisson distribu-
tion in Monestiez et al. approach replaces the Binomial distribution. In this study,
the approach developed by Monestiez et al. is employed to model the spatial
autocovariance structure of cholera variability in Kumasi. Next, a permissible vario-
gram model by means of least squares �CholR̂ (h) is fitted to the experimental
variogram. From the fitted model, the maximum distance at which no spatial auto-
correlation occurs (i.e. the range) is noted as dTh.

2.3 Defining transmission network routes of cholera diffusion

Let T = (t1, . . ., tn) be a vector of serially ordered observed times of cholera onset
at each community and dsij be the distance between pairs of communities si and
sj . The elements in the vector T are ordered such that ti ≤ tj∀i < j. Using the date
of index case in each community, a pairwise n× n directional transmission matrix
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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←
V= (

←
v i,j) is constructed based on neighbourhood with previously infected commu-

nity. The elements in the matrix
←
V= (

←
v ij) represent the probability of transmission

from spatial unit sj to si with respect to time and distance.
First, a binary neighbourhood weight matrix �= (�i,j) is defined, with elements

representing the probability of transmission between pairs of communities with re-
spect to distance from each other or threshold distance at which cholera is consid-
ered contagious, thus �i,j ∈ [0, 1]. Formally:

�i,j =
{

1 if dsi,j ≤ dTh ∀i /= j
0 otherwise

. (5)

Since no knowledge of the extent of contagiousness of cholera exists in the study
area, the threshold distance dTh is used as the threshold distance at which cholera
is considered contagious.

Next, a directional matrix
←
Z = (

←
z i,j) is defined, with elements representing the prob-

ability of a transmission from sj to si with respect to time. More precisely, the ele-
ments in the matrix represent the probability that a spatial unit si with time of onset
ti≥2 can be infected by another spatial unit sj with time of onset t; such that:

←
z i,j =

{
1 iff ti > tj ∀ti≥2 & i /= j
0 otherwise

. (6)

Here the assumption is that ti =1,

n∑
j =1

←
Zi,j =0 that for the index case, i.e. for t =1.

The final transmission matrix
←
V= (

←
v i,j) is defined based on an element-wise mul-

tiplication of the spatial neighbourhood matrix �= (�i,j) and the directional matrix
←
Z = (

←
z i,j). Thus, V=W 	

←
Z . Formally:

vi,j =
{

1 iff
{

zi,j =1,∀i /= j
�i,j =1,∀i /= j

0 otherwise
. (7)

The matrix
←
V= (

←
v i,j) is made up of several transmission trees with 1−1 (transmis-

sion from one community to one community), M−1 (transmission from many com-
munities to one community) and 1−M (transmission from one community to many
communities) relationships. Theoretically, however, only 1−M and 1−1 transmis-
sions are feasible; therefore, nearest neighbor approach based on direct distance is
chosen to extract all 1−1 and 1−M transmissions. These are subsequently mapped
with GIS to identify the various possible index cases and their locations.

2.4 Time-ordered diffusion modelling

This study hypothesizes that the time-ordered sequence of appearance of cholera
patterns has a dynamic relationship with the urban level and proximity to the
primary cases location of the diffusion system. As such, the urban population
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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Fig. 2. The diffusion network patterns showing 1–M and 1–1 transmissions network routes.

represents the hierarchical component in the spread process, whereas the geographic
distance from a respective index case represents the contagious component in the
diffusion. The term respective index case is used because there are multiple index
cases and each infected community corresponds to a particular index case. Here,
the study adopts a nonlinear non-parametric Bayesian modelling approach for the
effect of population and proximity on the diffusion of cholera.

Consider the observations (yi , xi), i =1, . . ., n, with response yi = ln(ti), and ti the
time of cholera onset in communities si ∈ 1, . . ., S. The time of cholera onset ti is
relative to a respective index case. The vector xi = (d(si), n(si))′ contains two met-
rical covariates; the population size n(si), and the direct distance from an infected
community to a respective index case location d(si) (See Figure 2).

The study assumes that the response variable follows Gaussian distribution, i.e.
yi |�i , �2∼N(�i , �2/ci), with unknown mean �i of a nonparametric geo-additive model
of the form:

�i = fn(n(si))+ fd (d(si))+ fstr(si)+ funstr(si). (8)

Here, fn(n(s)) and fd (d(s)) are nonlinear smooth functions of the metrical covariates
n(s), d(s), respectively and fstr(s) and funstr(s) are the structured and unstructured spa-
tial effects of the spatial covariates si ∈{1, . . ., S}.

To explore the dependence of the rate of cholera infection r on d(s) and n(s), we
used the higher order moments of the frequency distribution of cholera infection
against time (Cliff, Haggett and Ord 1986). Thus, the response variable y = ln(t)
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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is replaced with y = r =m2
3/m3

2, where mi is the ith central moment about the mean
(average) time to infection t̄. For each community, t̄ is defined as:

t̄ = 1
n

tn∑
t =1

tCholt,

where Cholt is the number of cholera cases at time t, tn is the number of days
of cholera existence, and n=∑Cholt for all t. The ith central moment about t̄ is
expressed as:

mi = 1
n

tn∑
t =1

(t− t̄)iCholt.

The rate of infection r was evaluated for all communities, excluding communities
for which cases where recorded in only one day of the epidemic period. The model
in equation (8) was fitted for the set of communities for which r was available.

2.4.1 Prior assumptions

The unknown model parameters are estimated by a fully Bayesian approach. Prior
assumptions for the smooth functions fn(n(s)) and fd (d(s)) are specified. First,
second order random walk prior is imposed on the function evolutions fn(n(s)) and
fd (d(s)). Following Lang and Brezger (2004), we suppose that x(1) < · · ·< x(t) < · · ·
< x(m) are m ordered distinct values with equally spaced observations xi ,i =1, . . ., m
with m≤n that are observed for the covariates x and define �t = fj(x(t)). Then fj(x)
can be written as fj(x)= 	′�, where 	 is a 0/1 incidence vector taking the value of
one if x =x(t) and zero otherwise, and �= (�1, . . ., �m)′ is a vector of regression coeffi-
cients. The first order random walk prior for non-equidistance observations of adja-
cent values is defined as:

�t =�t−1 +ut, t =2, . . ., m (9)

with Gaussian distributed error terms u(t)∼N(0, 
t�2), where the variance depends
on 
t =x(t)−x(t−1). Random walks of the second order are defined by:

�t =
(

1+ 
t


t−1

)
�t−1− 
t


t−1
�t−2 +ut. (10)

Here, ut∼N(0, wt�2), where the weights wt define the variances of the random walks.
In this study we chose the simplest approach, where wt =
t.

A first order random walk penalizes abrupt jumps �t − �t−1 between successive
states while a second order random walk penalizes deviations from the linear trend
2�t−1− �t−2. The joint distribution of the regression parameters �j = (�1, . . ., �m)′ is
computed as the product of conditional densities defined by Equation (11). Dif-
fuse priors �1∝ const, or �1 and �2∝ const, are chosen as initial values respectively.
These specifications act as smoothness priors that penalize too rough functions. The
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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general form of the prior for �j is a multivariate Gaussian distribution with density

p(�j | �2
j )∝ exp

(
−�′jK�j

2�2
j

)
. (11)

The penalty matrix of order k is of the form K =D′kDk where Dk is a first or
second order difference matrix for k = 1 or 2 respectively. Since the penalty matrix
K is often not a full rank, it follows that �j | �2

j is improper Gaussian prior, �j | �2
j ∝

N(0; �2
j K−), where K− is a generalized inverse of K. The tradeoff between flexibility

and smoothness is controlled by the variance parameter �2
j . Thus, a small (large)

value of �2
j correspond to an increase (decrease) of the penalty or shrinkage. Here,

a weakly informative inverse Gamma prior IG(a; b) with hyper-parameters for �2
j is

used.
For the structured spatial effects, the neighbourhood matrix �= (�i,j) is modelled

as a Gaussian random filed prior (Besag,York and Mollie, 1991; Rue and Held,
2005). This prior is defined by the conditional distribution of �= (�i,j). Spatial units
near the edges of the study area are likely to have fewer neighbours than those in
the centre of the study area. Estimates of spatial units near the edges are less reliable
than estimates of spatial units in the centre of the study area as fewer neighbours
may distort any estimates for spatial units near the edges, the so called edge effects.
To reduce edge effects, the conditional mean of fstr(si) is chosen to be a weighted
average of the function evaluations of neighbouring spatial units, with weighting
scheme based on the proportion of the number of observed neighbour. Thus:

fstr(si) | fstr(sj), sj /= si , �2∼N

⎛
⎝∑

sj∈∂si

wij∑
sj∈∂si

wij
fstr(si),

�2∑
sj∈∂si

wij

⎞
⎠, (12)

where sj ∈∂si denotes that spatial unit sj is a neighbour of spatial unit si . Here, the
weights wij = |∂si |

Ns
, where |∂si | is the number of neighbours of spatial unit si and

Ns is the total number of spatial units. The design matrix � of the spatial effects is
0/1 incidence matrix where the number of columns is equal to the number of spatial
units. The variance parameter �2 controls the amount of smoothing of the spatial
covariates and the degree of similarity.

For the unstructured effects, the parameters funstr(s) are assumed to be i.i.d.
Gaussian. Thus:

funstr(si) | �2
unstr∼N(0; �2

unstr). (13)

In a fully Bayesian approach, the variance parameters �2
j , j =n, d , str, unstr are also

considered as unknown and estimated simultaneously with the corresponding un-
known functions fn(n(s)), fd (d(s)), fstr(s), funstr(s). Highly dispersed inverse gamma
distribution IG(a; b), with hyper-parameters are assigned to them in a second stage
of the hierarchy.
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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2.4.2 Posterior estimation

Fully Bayesian inference is based on the posterior distribution of the unknown
parameters. In this approach, samples are drawn from the full conditionals of the
unknown parameters given the data through MCMC simulations. Let � represent
the vector of all unknown functions to be evaluated and spatial effects (i.e., �=
(fn(n(s)); fd (d(s)); fstr(s); funstr(s)) and � represent a vector of all variance components;
the posterior distribution then equals

p(�, � |y)∝p (y |�) p (� | �)p(�), (14)

where p(y |�) is the likelihood function of the data given the parameters and p(·) rep-
resents the probability density function. Full conditionals for the unknown functions
fn(n(s)), fd (d(s)), fstr(s), funstr(s) are multivariate Gaussian and, as a consequence, a
Gibbs sampler for MCMC simulation is employed. Cholesky decompositions for
band matrices have been used to efficiently draw random samples from the full con-
ditional (Rue and Held, 2005; Rue, 2000). The model has been implemented in
public domain software for Bayesian analysis, BayesX ver 2.0 (Brezger, Kneib and
Lang, 2005; Belitz et al., 2009). We used a total number of 40,000 MCMC
iterations and 10,000 number of burn-in samples. Since, in general, these random
numbers are correlated, only every 20th sampled parameter of the Markov chain
were stored.

3 Results

The population distribution in the study area is highly variable ranging from 587
to 56,417 people and standard deviation of approximately 13,506. Such spatially
varying populations induced heteroscedasticity in the disease rates as well as non-
stationarity in the variances. Consequently, the experimental variogram computed
with the raw disease rates is uneven and exhibits less continuous patterns, depict-
ing little or no spatial correlation and/or structure among communities (Figure 3b).
This, however, necessitated an alternative to the Matheron’s variogram estimator
to characterize the spatial variability of the disease rates. Monestiez et al. vario-
gram model can reveal structures that might be blurred by the random variability of
extreme population values.

Experimental variograms were computed for the 68 community-level incidence
rates using the traditional variogram (Equation 2) and the Monestiez et al. vario-
gram models (Equation 3). The spatial variability is considered isotropic since no
systematic differences are observed between the directional variograms; hence, only
the omni-directional variograms are displayed in Figure 3. The traditional vario-
gram model for cholera rates is exponential with a practical range of 1.36 km
(Figure 3b); while the Monestiez et al. variogram model is spherical with a prac-
tical range of 2.3 km (Figure 3a). The relatively larger range of autocorrelation
for the Monestiez et al. variogram model indicates a better spatial structure for
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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Fig. 3. Experimental variograms computed for the 68 community-level cholera incidence rates. (left)
Monestiez et al. variogram model and (right) traditional variogram model.

cholera rates after heterogeneity in population distribution is accounted for. There-
fore dTh =2.3 km is used for the subsequent analysis.

Figure 2 shows the transmission networks routes of cholera diffusion in Kumasi.
The red spots show the location of primary cases and starting points of different
diffusion systems. The primary case locations are shown to be scattered, occurring
simultaneously at distant locations. Twelve main primary cases are indentified, each
corresponding to a different diffusion system. The largest diffusion system involves
19 communities and recorded approximately 37% of cholera cases during the out-
break period. From the transmission network routes, five isolated communities are
observed. These are not included in any of the diffusion systems (Figure 2). The
geographic locations of the primary cases are used for modelling the effect of d(s)
on ln(t) and r.

The nonlinear effects of the metrical covariates n(s) and d(s) on ln(t) and r are
shown in Figure 4. The effect of n(s) on ln(t) is nonlinear with decreasing poster-
ior mean (Figure 4a). For d(s), the posterior mean increases with increasing ln(t)
(Figure 4b). The effect of n(s) on r is almost linear with increasing posterior mean
(Figure 4c). No systematic relationship is observed between r and d(s) at d(s)≤2.4
km (Figure 4d). Thus, at d(s)≤2.4 km, the relationship between r and d(s) is fixed
with neither decreasing nor increasing effect. At d(s) > 2.4 km, however, a decreasing
relationship is observed between r and d(s).

Similar spatial patterns is observed for both ln(t) and r, hence only the patterns
exhibited by r is shown. Figure 5 shows the estimated total spatial effects (left)
and the corresponding 80% (credible interval) posterior probability map (right) of
r. Areas shaded black show strictly negative credible intervals, whereas white
areas depict strictly positive credible intervals, and grey indicate areas of non-
significant spatial effects. There is a considerable spatial variation in the rate of chol-
era infection. Major spatial effects are observed at central part of the study area.
The structured and unstructured spatial effects are given by the caterpillar plots in
Figure 6. The wider variations in the caterpillar plots of Figure 6a compared with
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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a b

c d

Fig. 4. The estimated nonlinear effects of the metrical covariates (a) n(s) on ln(t), (b) d(s) on ln(t),
(c) n(s) on r, (d) d(s) on r. The posterior mean together with the 80% and 90% credible
intervals are also shown.

Fig. 5. Spatial distribution of the posterior means of the total spatial effects of modeling the effects
n(s) and d(s) on ln(t) (left), and posterior probabilities at nominal level of 80% (right). (left)
Black denotes areas with strictly negative credible intervals; white denotes areas with strictly
positive credible intervals, whereas grey shows areas of no significant difference.

Figure 6b show that the spatially structured effects are dominant over the unstruc-
tured effects.

4 Discussion

This study utilizes statistical methods to explore the space-time diffusion dynamics
of cholera incidences in Kumasi-Ghana. Variogram models are used to characterize
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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a

b

Fig. 6. Caterpillar plots of the posterior means of the structured (a) and unstructured (b) spatial
effects in Figure 5, with 90% error bars.

the threshold of contagiousness of cholera. This threshold is subsequently used
with the times of cholera entrance in each community to characterize all probable
primary cases and diffusion systems during the outbreak. Finally, a hierarchical
Bayesian modelling approach is used to explore the space-time diffusion dynamics
of cholera in Kumasi.

Several primary cases have been identified, each corresponding to a different diffu-
sion system. This is an indication that the transmission of cholera during epidemic
situations can start from several sources. This confirms the fact that primary trans-
mission of cholera is responsible for sparking initial outbreaks. The primary case
locations have been shown to be scattered, occurring almost simultaneously in dis-
tant areas with no apparent connection. This may be explained by the fact that V.
cholera concentration in the environment is dominated by environmental drivers and
the stochastic nature of these processes (Pascual, Koelle and Dobson, 2006).

The findings also imply that communities proximal to primary case locations are
infected relatively early during the epidemics, with more distant communities in-
fected at increasing later dates. Similarly, more populous communities are infected
relatively early, with less populous communities infected at increasingly later
dates. The plausibility of these implications could be explained by: (i) the existing
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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hypothesis about the propagation of cholera and (ii) the mode of cholera spread
in a population and the demographic structure of the study area. Firstly, cholera
diffuses contagiously between surrounding communities following order of social
interactions and/or geographic proximity (Pyle, 1969; Smallman-Raynor & Cliff,
1998a, b; Trevelyan et al., 2005; Stock, 1976). Thus, it is likely for the disease to
propagate from its origin to proximal communities earlier than communities which
are farther away.

Secondly, cholera is a disease of deficient sanitation (Ackers et al., 1998) which
is primarily driven by environmental (Huq et al., 2005) and demographic factors
(Borroto and Martinez-Piedra, 2000; Osei and Duker, 2008). High population
density puts pressure on existing sanitation systems, thus increasing the risk of early
cholera infection in populous communities than less populous communities during
an epidemic period.

When the response variable y = ln(t) is replaced by y = r, an expected observa-
tion is that r increases with n(s), with an almost linear relationship. Thus, the ef-
fect of n(s) on r is almost fixed. Such a relationship is plausible because in highly
populous communities, many people live close together which results in shorter dis-
ease transmission paths; and therefore, higher rate of cholera infection. The pas-
sage of V. cholerae through the human host transiently increases the infectivity of
V. cholera. Therefore, the existence of short-lived hyper-infective stage of V. chole-
rae could provide a mechanism for exhibiting a strong feedback between the past
and present levels of infection (Merrell et al., 2002; Hartley, Morris and Smith,
2005), especially in a population where faecal contamination of water sources is
high. The rate of exposure to short-lived hyper-infective V. cholerae could also be
dominated by spatial interactions among infected communities, population density
and/or urban level (Pyle, 1969; Smallman-Raynor and Cliff, 1998a, b; Stock,
1976). Codeço (2001) reports that in an epidemic situation the initial reproduction
rate of secondary cases is positively affected by the degree of contamination of wa-
ter supply as well as the frequency of contacts with these waters, which is in turn
influenced by demographic factors such as population density. The non systematic
relation between r and d(s) at approximately d(s)≤2.4 km may be explained by the
contagious nature of cholera. Cholera is communicable which spreads contagiously
amongst inhabitants from one community to another. Since proximal communities
tend to exhibit similar socioeconomic and environmental characteristics, similar rate
of cholera infection may be observed. Thus, for d(s)≤ 2.4 km, no systematic rela-
tionship is observed between rand d(s). The negative relationship, however, between
r and d(s) amongst distant communities, i.e. d(s) > 2.4 km m, is seemingly grounds
for questioning the acceptance of this hypothesis.

This study cannot conclude that only the covariates d(s) and n(s) influence ln(t)
and r due to the possibility of other unobserved influential covariates. Therefore,
the inclusion of fstr(s) and funstr(s) in the model is meant to mimic the nature of
unobserved influential covariates on ln(t) and r. From Figure 5, there is evidence of
significant increased rate of cholera infection at the central part, and a significant
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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reduced rate of infection at the south-eastern part (the periphery) of Kumasi. The
plausibility of these patterns may be explained by the fact that communities at
the central part are highly populated with lots of slum settlers, while communities at
the peripheries are moderately populated. As a consequence, shorter disease trans-
mission path (higher rate of infection) is expected at the central part and longer
disease transmission path is expected at the peripheries (lower rate of infection).
These patterns also indicate the existence of possible unobserved covariates, some of
which may be individual or household level, giving leads for further epidemiological
research using purpose collected data.

Although several of these findings confirm existing hypothesis of cholera, this
study resolves the methodological deficiencies of exploring the space-time diffusion
patterns of infectious diseases. For instance in Trevelyan et al. (2005), a strictly
linear model is imposed on the relationship between the period of observation of
poliomyelitis and the joint effects population and distance from the epidemic
centre. Also, in Kuo and Fukui (2007) the time-ordered cholera diffusion sequence
is modelled as a linear logarithmic regression model, which is the functional rela-
tionship between the residents of infected counties and distances from epidemic ori-
gins. The strictly linear effects imposed in such models can obscure important
nonlinear effects. Moreover, such models also underestimate important effects of
spatial interactions amongst communities on the space-time diffusion patterns of
infectious diseases.

5 Conclusion

This study applies statistical methods to explore the space-time diffusion patterns
of cholera in Kumasi. We use hierarchical Bayesian modelling approaches which
allow joint analysis of the nonlinear effects of population hierarchy and geographic
proximity on cholera infection. Our study reveals that the time-ordered sequence of
appearance of cholera in a community has a dynamic relationship with the popula-
tion hierarchy and proximity to primary case locations. Likewise, the rate of chol-
era infection increases with high population density. The geographic proximity to
a primary case location, however, does not influence the rate of cholera infection.
These findings provide significant information to help health planners and policy
makers about the dynamics of cholera spread amongst communities.
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