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1. Introduction 

A number of different approaches exist for a direct numerical solution 
of the Schr6dinger equation in one dimension. Most algorithms are hybrid 
in the sense that eigenfunctions and eigenvalues are determined separately 
and with different numerical approaches. Specially adapted (Numerov) 
schemes [1] exist for the eigenfunctions which require the eigenvalues to be 
known. Complementary (shooting) schemes using scaled Priifer variables [2] 
find eigenvalues independent of the corresponding eigenfunctions. The 
combination of both approaches is needed for the full solution to the 
eigenproblem. Differentiability of the potential is generally an essential 
requirement. Techniques based on expansion of the eigenfunctions in a 
(plane wave) basis have also been employed [3, 4]. For applications with a 
(moderately) complex geometry a large number of basis functions must be 
included to cover the (wide) spread in length scales in such cases. Moreover, 
an error analysis for the eigenfunctions is virtually impossible. For complex 
geometries with possibly discontinuous potentials a more specialised treat- 
ment is required. Adopting a central space finite difference scheme as e.g. in 
ref. [5] or a finite element scheme [6] yields eigenfunctions and eigenvalues 
simultaneously but also implies a large number of mesh points in order to 
obtain high accuracy. Such approaches are also not well suited for discon- 
tinuous potentials. Since in many applications the potential entering the 
Schr6dinger equation is to be determined selfconsistently, both high accu- 
racy as well as a limited number of mesh points form essential requirements. 
In this paper we derive an adapted second order accurate finite difference 
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scheme for the Schr6dinger equation based on analytic solutions to local 
linearisations. The resulting scheme is exact for piecewise constant potentials 
and masses. Both the normalised eigenfunctions as well as the corresponding 
eigenvalues are obtained simultaneously. The approximations made in the 
linearisations can be controlled directly and mesh-refinement can be em- 
ployed iteratively. A consequence of the simultaneous determination of 
eigenvalues and (normalised) eigenfunctions is that the numerical problem to 
be solved is nonlinear whereas the Schr6dinger equation itself is linear. Using 
a damped Newton iteration and continuation in the potential, results in a 
robust and flexible algorithm which applies to a great variety of problems. 

Semiconducting heterostructures composed of a sequence of layers with 
different and finely tuned material properties have received considerable 
theoretical and experimental attention over the last years. With Molecular 
Beam Epitaxy (MBE) and other techniques, a detailed control over the 
heterostructure composition has become available and exciting new phe- 
nomena have been discovered and studied (e.g. the review by Ando et al. 
[7]). Most work has been concentrated on electron and hole gasses that are 
confined in one direction near one or more of the interfaces in the 
heterostructure [8]. Theoretically these problems have been studied mostly 
within the envelope function formalism. The simplest approximation in this 
class is formed by the Ben Daniel-Duke Hamiltonians. Both a position 
dependent piecewise constant effective mass as well as a discontinuous 
potential arise in these models. The direct numerical treatment of such 
Hamiltonians involves a scheme that takes these complications into account 
explicitly, in particular for cases in which a (large) number of widely 
different layers are incorporated in the structure. 

In Section 2 we formulate the Ben Daniel-Duke Hamiltonians and 
prepare the derivation of the finite difference scheme given in Section 3. We 
also describe the full algorithm and show simulation results obtained for 
some simple model potentials. Section 4 is devoted to the Hartree approxi- 
mation to the full many body problem and Si/Six Gel_  x heterojunctions will 
be studied numerically. 

2. Sturm-Liouville form of the one dimensional Schr6dinger equation 

We introduce the Ben Daniel-Duke Hamiltonians in three dimensions 
and obtain the related one dimensional model problem for the eigenfunc- 
tions and eigenvalues in the growth direction of the heterostructure. Then 
we reformulate this Sturm-Liouville problem and obtain a system of first 
order equations governing the eigenfunctions, their normalisation as well as 
the corresponding eigenvalues. Some general properties of the eigenfunc- 
tions and eigenvalues will be discussed for use in the final algorithm. 
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A quantum mechanical description of properties of heterostructures is 
based on the Schr6dinger equation. Rather than adopting a detailed 'crystal 
formulation' we use the envelope function formalism [9]. Specifically we 
consider Hamiltonians of the Ben Daniel-Duke type [10] an d a potential 
depending on only one of the coordinates: 

2m(z----) [~3:'x + C?yy] - -~ ~= - ~  c3= + U(z) U?(z, y, z) = EW(x ,  y, z) 

(2.1) 

in which h is Planck's constant divided by 2re, m(z) the position dependent 
effective mass, ~ the wave function, E the energy and U the potential. For 
convenience we scale all variables, i.e. x ~ x /2  etc. in which 2 is a reference 
length scale. Furthermore, we introduce 

_ m 0  . h 2 
p(z) m ( z ) '  g - 2lmol2 ----------~ (2.2) 

in which m0 is a reference mass which may be positive (in case we consider 
electrons) or negative (in case we consider holes). Moreover, p(z) > 0 for all 
z and g is the energy scale. The problem as stated in eqn. (2.1) describes 
'free' particles in the (x, y)-directions with a z-dependent effective mass and 
a nontrivial problem in the z-direction sensing the potential U. With the 
frequently used Ansatz 

W(x, y, z) ,'~ e i(kx x + ky Y)U(z) (2 .3 )  

we obtain a solution to (2.1) i f f  satisfies 

{ - c l , (p(z)~)  + sign(mo)U(z) }f(z) = {sign(mo)E - p(z)k 2 }f(z) (2.4) 

in which k~_ = k~ + k~ and we incorporated the energy scale g into the 
definition of U and E. Thus the eigenproblem for f is coupled to the state 
in the (x, y)-directions, specified by k 2. At k 2 given, this problem is fully 
specified and an eigenvalue spectrum {El(k~)}; / - -  0, 1 , , . . .  , c an  be deter- 
mined together with the corresponding eigenfunctions. In most cases this 
coupling is quite small [11] and the relevant values for k .  are contained in 
a small neighborhood around k• f which may be assumed equal to zero 
without loss of generality. The eigenvalue spectrum can then quite accu- 
rately be approximated by E~(k~) = E~(O) + sign(mo)plk 2, i.e. a parabolic 
band centered on El(0). Various levels of approximation exist for {Pt} [8], 
but we will restrict ourselves to the simplest case pl = 1 for all l. The full 
problem is then determined by the eigenproblem at k• = 0 which has the 
form 

{ -4 (p (z )d~)  + W(z) } f ( z )  = Vzf(Z) (2.5) 
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in which we put W(z)=sign(mo)U(z)-W_~_ > 0 for all z and v_ = 
s i g n ( m 0 ) E ( 0 ) - W _  where W_ =min:sign(mo)U(z). Notice that at 
any given k• the resulting problem (2.4) also has this structure, with 
slight redefinitions of the potential. We require the eigenfunctions to be 
normalised, i.e. ][fl] = 1 and consider the total system to be put in a 
large box with infinite walls yielding f(L~ -~) = f ( L ~  +~) = 0  where L~_ -+~ 
denotes the z-positions of the boundaries. Thus we arrive at a standard 
Sturm-Liouville problem. The eigenfunctions and eigenvalues have a 
number of important  properties, of which we will mention two for 
later use in the numerical algorithm. First, the eigenvalues are non- 
degenerate and positive; 0_< V~,o<V:.l < v _ - 2 < ' " .  Second, the eigen- 
functions have a number of distinct real roots as a function of z; 
in particular the eigenfunction f~ has exactly l distinct roots between L ~- 
and L~- +). 

In order to formulate an algorithm which determines the normalised 
eigenfunctions and the corresponding eigenvalues simultaneously, we intro- 
duce 

u l = f ;  u 2 = p d ~ f ;  u 3 = v z ;  u4 = . f 2 d z  

with which the full problem can be written as 

(2.6) 

1 
dzUl(Z) = - - ~ u 2 ( z )  

4u2(z) = [ w ( z )  - u3(z)]u, (z) 

d~ U 3 (Z) = 0 

(2.7) 

d__u4(z) = U2(2) 

and the corresponding boundary conditions are 

U I (L~  - ) )  = U l(L(z +)) = . 4 ( L ~  - ) )  = u 4 ( L  (+)) - -  1 = O. ( 2 . 8 )  

Furthermore, one may readily show that all solution components uj are at 
least continuous for all z, even in case W and/or p show discontinuities. 
Notice that the above problem is nonlinear. In spite of the fact that the 
Schr6dinger equation is linear in ud, the simultaneous determination of the 
eigenfunctions and the eigenvalues as well as the normalisation of the 
eigenfunctions renders the total problem nonlinear. Thus an iterative ap- 
proach is required in solving this problem with which all quantities of 
interest can be obtained in a single consistent scheme. The numerical 
formulation will be subject of the next section. 
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3. Derivation of  the finite difference scheme 

The Sturm-Liouville problem formulated in the previous section will be 
discretised on a mesh. Local problems obtained by approximat ing the 
potential  as constant  in between two mesh points will be introduced and 
treated analytically. The corresponding solutions will be used to derive a 
finite difference scheme which is exact for these solutions. Thus exponential  
and oscillatory behavior in the solution components  is incorporated explic- 
itly. The treatment of  discontinuities in the potential  and the effective mass 
will be discussed in detail and the full a lgori thm is described. Finally, some 
simulation results based on this algori thm are shown and the performance 
of the full scheme investigated. 

Let {zs} denote a mesh on [L~ -), L~ +>] and put  ui,s = ui(zs) etc. The most  
general two point  scheme consistent with (2.7) for intervals in which p and 
W are cont inuous can be written as 

Ul,j -- Ul,j-  I -- (Cl,jU2,j + dl,jU2,j_ 1) = 0 

U2,j  - -  b l2 , j - -  1 - -  ( C 2 , j U l , j  -t- d 2 , j U l ,  j _  l )  = 0 
(3.1) 

H3,j - -  H3,j I = 0 

U4,j - -  U 4 , j -  1 - -  (C4,jU21,j + d4,ju~,j_ l + e 4 , ? l j U l j _  ,) = 0 

in which consistency demands  that  the 'mesh constants '  satisfy: Ps- 1/2(CI ,J  -~ 
dl,s) and c<j + & j  + e4,j are asymptotically equal to z j -  zj_ 1 as well as 
c 2 j + d 2 j ~ ( W - u 3 ) ( z j - z s _ l  ) in the limit zj-+Zj_l  in which we put  
p j _ l / 2 = ( p ( z s )  +p(z j  1))/2. We consider the first two equations in (2.7) 
separately and introduce ~(z )=  ( W ( z ) -  u3(z))/p(z) assuming u3 to be 
known for the moment .  Approximat ing  ~(z) by ~j_ 1/2 = ("j + c9-1)/2 which 
is second order accurate in between z s i and zj we can readily solve for ul 
and u2 on this interval. We obtain 

bl 1 ( Z )  = a I e ~ - j - l , ' 2 z  -~ a 2 e - ' / ~  -1/2z; ~s- 1/2 > 0 

=alcos(Ix/-( -j_j_,/ lz)+a sin(I,,If -j_j_j_lalz); < o (3.2) 

and similarly for u2 

u2(z) = p j_  l / 2 ~ j -  li,al e ~'/Vf-s ,!2-" _ p j_  1i240~j_ 1i2a2 e - ~ i i  ll2Z; o~j_ 1/2 > 0 

= -pj-i<2  1/ lal sin(~ I/2iZ) 

+Pj-l/21x/-~-j-j-1/2la, cos( ]x/-~-j-j-1/,lz); ~j-1/2 < 0 .  (3.3) 

We require the discretisation (3.1) to be exact for these solutions. Insertion 
into the first two equations in (3.1) yields cl,j = d l j  and c2j = d2.s implying 
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second order accuracy. Moreover,  after some algebra we find explicitly 

1 
= C,,j P j - - 1 / 2 ~  tanh(Aj/2); ej-, /2 > 0 

1 
= tan(Aj/2); ~j_,/2 < 0 (3.4) 

p, ,j2?l j-, 21 
in which we put k j = V @ / _ , / 2 ] ( z j - z i _ ~ ) .  For the second equation we 
obtain in a similar way c2j = p y _ , / 2 a j _ , / 2 c , , j .  The last equation in (3.1) is 
somewhat more complicated. One may use (3.2) to integrate u4 over the 
interval [zj_ 1, zj], recalling the definitions in (2.6). Collecting like terms, i.e. 
those proportional to a~, a2 2 and a, a2, we find c4j = daj and in full detail 

1 sinh(2Aj) - 2zXj. 

C4'j  - -  2 X ~  J" ' /2  c~ - 1 ' 

1 sin(2Aj) - 2Aj. 

2,]1=j-,/21 c o s ( 2 A j ) -  1 ' 

and 

a j_,/2 > 0 

7j-,/2 < 0 (3.5) 

1 
egj - cosh(Aj) (zj - zj_l - 2c4j) (3.6) 

for ~j_ 1/2 > 0. A similar expression with cosh replaced by cos is found in 
case ~j-,/2 < 0. As can be gathered from the expressions in (3.4-6)  the 
values of  Aj are restricted in case ~j ,/2 < 0. In particular, Aj < (~/2) in 
order to avoid singularities in the mesh-constants appearing in (3.1). In case 
~j 1/2 > 0 there is no such restriction. Thus, oscillatory behavior in the 
solutions locally, requires a certain minimal resolution, related to mesh 
spacing as well as the value of the eigenvalues relative to the potential, 
within this scheme. 

We next consider the corresponding expressions in case A j ~ 0  and 
establish consistency of  the above scheme as well as the connection of both 
the ~j_ l/2 > 0 and < 0  regions. One readily derives using small argument 
expansions of the relevant functions [12] 

[ < __ 1 (Zj --Zj_,) 1 + 1 + 10]_] C,,j 2pj_ ,/2 

where ej ,/2 > 0 corresponds to ( - )  and , j_  ,/2 < 0 to ( + ) .  For the mesh- 
constants in the last equation in (3.1) we find 

1 1 _+ (A2/5)  
c4v = ~ (zj -- zj_ ,) 1 + (A~/3) (3.8) 

where now ( + )  corresponds to c 9 1/2 > 0 and ( - )  to c9_,/2 < 0. Thus, in 
the extreme limit c,,j ~ (zj - z j_  , ) /2p j  ,/2, c2,j ~ p j_  ,/2~(j_ 1/2(Zj -- Zj_ 1 )/2 
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and c4.j = e4,j "~ ( z j - - z j  ~)/3 which directly shows the consistency of the 
scheme. It is also obvious that the regions in which c~j_ 1/2 changes sign are 
smoothly connected through these expansions. For Aj not approaching this 
continuum limit the scheme represents finite mesh corrections in accordance 
with the analytic solution for constant potential. We hence obtain a second 
order accurate, consistent discretisation scheme which is exact for regions in 
which the potential and the effective mass are constant. In most problems 
this is certainly not the case. Then, we may construct (iteratively) a mesh 
such that the 'constant potential' approximation is locally valid and useful, 
automatically increasing the resolution in case the local variations in the 
potential are large. We return to this momentarily and consider the exact 
treatment of discontinuities in W and/or p next. 

If W and/or p are discontinuous, the above derivation is no longer valid. 
However, if a discontinuity arises at some z*, one may integrate the 
equations (2.7) locally around z* and obtain 'jump-conditions' for the 
solution components. It is readily shown that for all solution components 
us(z*_) = u s ( z *  ) where z* denotes the limit from above (below) to z*. The 
numerical implementation which represents this property exactly can be 
obtained by introducing a double mesh point at the position z* and likewise 
a double set of unknowns, i.e. ui. + . The 'left' unknowns (us~)) are coupled to 

b / +  us,j_ ~ and likewise the 'right' unknowns (s , j )  are coupled to u;j+~ through 
the 'normal'  scheme (3.1). There is no ambiguity as to the value of ej_+ 1/2 to 
be used in these intervals. The coupling between the 'left' and 'right' 
unknowns at z* is given by the continuity requirement of all solution 
components. In this way some extra 'bookkeeping' is introduced into the 
scheme and the positions of the discontinuities need to be known explicitly 
in the definition of a particular problem. 

The total discretisation implies a system of coupled, nonlinear algebraic 
equations for the unknowns {us,j} on a mesh {zj}. This can be solved 
with a damped Newton algorithm. In fact, by introducing q / =  
[/41,0,  b/4,0, U2 ,0 ,  /A3,0, - - - , U l , j ,  bl2, j ,  U3 , j ,  bl4, j ,  " " " , U 2 , N ,  U 3 , N ,  b l l , N ,  / I4 ,N] ,  where N 
denotes the total number of mesh intervals, the total system of equations 
can be expressed as ~-(q/) = 0 with a suitable ~,~ representing the discretisa- 
tion (3.1) and the boundary conditions (2.6). With q/(k) denoting the k-th 
iterand in the Newton scheme, the damped Newton iteration can be written 
a s  

(3.9) 

in which ~,u~, ~ is the Jacobian matrix, ~(~) the 'pure' Newton update for the 
solution and ~ the damping and restriction operator. If no damping or 
restriction would be applied we would have q/(k+ l)= ~//(k)_ ~(k). However, 
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the domain of convergence for this iteration scheme can be extended by 
including simple damping and restriction on the updates ~(k). In fact 
0 -< u4 -< 1 so any update taking u4 outside this region is restricted. Likewise, 
since the eigenvalues are distinct and ordered, we may have a good estimate 
for an interval containing u3 and updates are restricted to this interval. 
Damping is also included in a simple way. Updates larger than some values, 
relative to a characteristic scale of the particular solution component,  are 
limited to some maximum. In this way the convergence behavior of the 
Newton scheme is enhanced considerably. 

The Newton update equations (3.9) have a particularly simple 'band' 
structure since we formulated a two-point discretisation rule. In fact 

~ o z , ~  = 

I 
S1,0 0 

S j j _  1 
. , .  

SN, N -  I 

(3.1o) 

where I denotes a 2 x 2 unit matrix and S/,/_ 1 a 4 x 8 matrix, given by the 
Jacobian of the left hand side of (3.1). The matrices $1,o and SN, N - ~  are 
obtained from the general form of S),g_ ~ through a permutation of some 
columns, consistent with ~# which shows different definitions for the first 
and last mesh points compared to the other mesh points. Derivatives of the 
mesh-constants with respect to the unknowns {ui,/} are required in setting 
up the S/,/_ ~ which involves some extra calculation. No essential difficulties 
are encountered and hence these expressions will not be given. The simple 
structure of ~,~u~- implies that a direct solution method can be formulated, 
thus enhancing the accuracy and speed. The full iteration typically con- 
verges in less than 10 steps, with damping and restriction included. 

Continuation in the potential W is required in some cases. Since the 
eigenproblem has many different eigensolutions, and the full problem is 
nonlinear, it may happen that some of the different estimated eigenfunctions 
in an initial guess converge to one and the same eigenfunction for the 
problem with potential W. Whether such an event occurred can easily be 
checked by determining the number of roots of the solutions generated. This 
can be resolved by approaching the eigenproblem with potential W through 
a sequence of intermediate problems with potentials 

Wa = (1 - a)Wre~+ a W  (3.11) 

in which the continuation parameter a is increased from 0 to 1 and Wref is 
a reference potential for which the full solution is known. For example, if W 
is a fixed potential we may take Wref = 0 and as an initial guess the analytic 
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solution for a particle in a box. A step in a may be rejected if convergence 
fails or if the converged solutions do not have the proper number of  roots. 
Also if Aj > (n/2) a smaller step in a is required. The number of  steps in a 
may vary considerably. If the initial guess is adequate, a single step is 
needed but if the guess corresponding to Wrof is widely different from the 
solution at potential W many more steps (up to ~20) may be needed. 
Typically, if the length scales in Wrcr differ significantly from W a larger 
number of intermediate a-values is needed. The sequence of a-values is 
generated as follows. We start with a -- 1 and on rejection divide a by a 2. 
This is repeated until a step at some ~ is accepted and we proceed with 
doubling the increments in a whenever possible. A sequence of rejection and 
acceptance of  intermediate solutions follows, gradually taking a ~ 1 .  Usu- 
ally, the last few steps in the sequence are all accepted consecutively and the 
total number of intermediate potentials is mostly limited. 

The full algorithm can now be summarised as follows. Given a solution 
at potential Wref, set up the Newton update equations and perform itera- 
tions until convergence at potential W. If  convergence fails or the number 
of roots in the solutions is not adequate, take a smaller step in a, i.e. solve 
an intermediate problem 'closer' to Wrer. On proper convergence, check if 
the mesh spacings are adequate. So check if A /<  e,.(n/2) in the relevant 
region (c 9_ 1/2 < 0), and if the relative mesh variation of  the potential is 
within some tolerance. Here e~ denotes the 'mesh-safety' parameter  intro- 
duced to prevent Aj > (re/2). Typically e, was taken equal to 1/2. If the mesh 
is found too coarse locally we insert new points Z/-~/2 = (ZJ + ZJ-1)/2 and 
repeat the calculation at a fixed a. This can be done for each of  the 
eigensolutions separately; each eigenproblem may be put on its own mesh. 
The above is repeated until a = 1 in which case we have obtained the desired 
solutions and automatically refined the mesh depending on the actual 
solution. Thus the linearisation errors can be controlled directly. 

We next describe the operation of  this algorithm using some simple test 
problems. We restrict ourselves to piecewise constant potentials and effec- 
tive masses in order to obtain some insight in the physics of  'bare' 
heterostructures, i.e. cases in which we disregard many body effects. The 
latter will be incorporated in the next section, using the Hartree approxima- 
tion. First we consider effects related to discontinuities in the effective mass. 
Then we show eigenfunctions for some potential well problems. 

In Fig. 1 we plotted the ground state eigenfunction at zero potential, 
showing discontinuities in the derivative at the positions where m is discon- 
tinuous. We consider electrons (i.e. sign(m0) = 1) for the moment.  In this 
example we divided the total structure into two different regions. For  [z] 
smaller than some value (in the Figure 250 A) we used a mass ml and put 
the mass equal to m2 elsewhere. For  the eigenfunctions only the ratio ml/m2 
is relevant. The derivative shows a definite discontinuity; dzf(z* )= 
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G r o u n d  s ta te  e igenfunc t ion ,  s h o w i n g  the  inf luence 
o f  d i scon t inu i t i e s  in the  effective mass  a t  zero  0.1o 
po ten t ia l .  W e  used a s t ruc tu re  wi th  a to ta l  l eng th  
o f  1000 ,~ a n d  s h o w  results  fo r  a s y m m e t r i c  effec- 
tive mass  d i s t r ibu t ion .  F o r  Izl < 250 ~ the  m a s s  is o.o5' 
the  s ame  as in the  ou te r  r eg ion  (full  curve) ,  or  it is 
0.1 t imes t h a t  m a s s  ( d o t t e d  curve)  o r  t a k e n  10 
t imes t ha t  m a s s  ( d a s h e d  curve) .  W e  used  o.o0 

-600 
m 0 = 0.1m~ the e lec t ron  rest  mass ,  a n d  a n  ene rgy  
scale # = 0.1 eV. 
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z (4) 

re(z*  ) d , f ( z * _ ) / m ( z * ) ,  which is easily recognised in the Figure. If rnl/rn 2 > 1 
the electrons get concentrated more in the inner region, whereas ml/rn2 < 1 
implies a flatter and lower eigenfunction in this region. If mt > rn2 the 
'kinetic' energy is lower for the inner region, thus favoring electrons to 
move to the corresponding high mass segment of the system. The scheme 
represents these effects exactly; at the discontinuities the unknowns are 
doubly defined. 

Figure 2 shows the first two eigenfunctions for a symmetric well, as well 
as the mesh-points used in the calculation. As initial mesh-points we used all 
discontinuity points of the potential plus all midway points. Remeshing was 
performed and the final mesh is consistent with Aj < ~(n/2)  in which e, was 
put equal to 1/2. Notice that with this setting, roughly 5 points are needed 

Figure  2 
G r o u n d  s ta te  a n d  first exci ted s ta te  for  a symmet -  
ric well o f  w i d t h  400 A a n d  0.15 eV d e p t h  in a 
s t ruc tu re  o f  to ta l  l eng th  1000/~ ,  wi th  the s ame  
scale p a r a m e t e r s  as in Fig.  1. The  mesh  po in t s  
used  in the ca l cu l a t i on  are  s h o w n  b y  ' c rosses ' ,  
us ing  a mesh- sa fe ty  p a r a m e t e r  o f  0.5. R e c o n s t r u c -  
t ion  o f  the e igen func t ions  was  appl ied  for  the 
F igure .  
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per 'oscillation' in the eigenfunctions. In the regions where e:_ 1/2 > 0 only 3 
points are needed in this case. After completion of the calculation the 
solution was reconstructed by matching (3.2-3)  to the numerical solution 
obtained on the coarse mesh. This reconstruction was used for plotting. We 
also studied linearly and quadratically varying potentials and obtained high 
accuracy results with a very limited number of mesh points. Typically up to 
50 points are required for (_9(10 -8) accuracy in the eigenvalues, for the first 
few eigenfunctions. The computational effort is reduced considerably com- 
pared to other numerical approaches. Figure 3 displays the first three 
eigenfunctions for a more complicated well structure. Notice that higher 
excited states have longer tails into barrier type material. Such structures 
can be analysed using the new scheme with great ease and accuracy; some 
seconds are required in order to obtain fully converged results on a common 
workstation. Moreover, potentials which are not piecewise constant but 
vary smoothly yield similar results; a limited number of mesh points gives 
very accurate numerical predictions. The refinement of a given mesh, based 
on a direct control of the relative variation of the potential per mesh 
interval, automatically increases the numerical resolution in regions of rapid 
variation, maintaining relatively wide intervals in regions where the poten- 
tial varies slowly and e > 0. The asymmetry in the mesh-intervals due to 
such refinements does not lead to numerical problems. 

4. Selfconsistent Hartree calculations for a SiGe heterojunction 

We formulate the Hartree equations governing the eigenproblem in 
Six Gel _ x heterojunctions. The potential in this case is determined partly by 

0.6 

~> 0,4 

0.2 . .  

0 .0 

- 0 . 2  

Figure  3 - o . 4  
A m o r e  compl ica ted  well structure showing  the 
first three e igenfunct ions ,  with  the same scale 
parameters  as in F i g .  1. The  potent ia l  in eV  is -0 .6  , , 
s h o w n  as a full curve,  the groundstate  as a -4oo 
dotted curve,  first excited state as a dashed curve  
and second excited state as a chain-dot ted  curve.  
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the electrostatic potential which is governed by Poisson's equation. In turn 
the electrostatic potential is fixed if the charge distribution is given. The 
latter quantity is related to the eigenfunctions and eigenvalues through 
Fermi-Dirac statistics. The full problem requires an iterative approach to 
obtain the selfconsistent solution. 

In the Hartree approximation the many body problem governing the 
behavior of the electrons/holes in the structure is treated by the incorpora- 
tion of the electrostatic potential with which the particles interact [8]. The 
potential entering the Schr6dinger equation can be written as 

U(z) = Ub(z) - G(z)  (4. I) 

in which Uh denotes a background potential defined by the (fiat) conduction 
(valence) band in case we consider electrons (holes); Ub is treated as a 
piecewise constant function. The other term in (4.1) represents the electro- 
static potential energy; G = (]e]O)/d ~ where [el is the elementary charge and 

the electrostatic potential. One readily shows that G is governed by 

el: (s(z)d= G (z)) = - 7g(z) (4,2) 

in which s(z) denotes the z-dependent relative permittivity of the structure 
measured in some typical scale for this quantity gr and 

2jm~176 (4.3) 
"y = 8 0 g r h 2  

where ~/F0 denotes a reference particle density and eo the permittivity of the 
vacuum. Moreover, g denotes the charge distribution in units JT~o in the 
structure. Including doping by donors and acceptors, this charge distribu- 
tion can be written as 

g(z)  = n d (z) - n ;  (z) - sign(mo)ns (z) (4 .4)  

where nd and n~- are the scaled ionised donor and acceptor concentrations 
respectively. The charge distribution related to the Schr6dinger solution (ns )  
obeys Fermi-Dirac statistics. After an elementary calculation one may show 
that 

ns ( z )  = (rcf123X0)-' ~ ln(1 + ~/)[f/(z)l  2 (4.5) 
t=0 

in which fl = g / ( k 8  T )  with k8 Boltzmann's constant and T the temperature. 
The eigenvalue spectrum is incorporated into this expression through 

~ = exp[fi( s ign(mo)#  - vz,z)]. (4.6) 

So {~} depend on the eigenvalues as well as on the chemical potential #. 
For the ionised donor and acceptor concentrations we adopt a simple model 



666 Bernard J. Geurts Z A M P  

(see e.g. Sze [13]) valid for 'bulk'-like situations. Thus 

n+(z) = n d ( z ) [ 1 - { 1  + ~ exp(td(z))}-~l 

and 

(4.7) 

n~(z) = na(z)[ 1 + 4 exp(ta(z))]-1 (4.8) 

where nd and n~ denote the 'chemical' donor and acceptor concentrations, 
put into the heterostructure in a controlled way during fabrication. The 
effect of degeneracy in the donor and acceptor levels has been included, 
viz. the factors 1/2 and 4 appearing here. Strain in the Si/SiGe layers may 
remove this degeneracy. Finally, 

{ 1 } 
ta(z) =/? U(z) - Ea(z) - # - ~ (sign(m0) - 1)Eg(z) (4.9) 

ta(z) =/? U(~z) + Ea(z) - # - ~ (sign(m0) + 1)Eg(z) (4.10) 

in which Ed (Ea) denotes the donor (acceptor) binding energy measured 
relative to the conduction (valence) band edge and Eg denotes the energy 
gap between conduction and valence bands. In the calculations these 
functions are piecewise constant. At low temperatures, i.e. high /?-values, 
the ionised doping concentrations vary rapidly in regions where ta,d has a 
root. In the limit T---, 0 the ionised profiles tend to step functions, i.e. full 
or no ionisation depending on the sign of ta,d. 

In order to complete the model, we briefly discuss the constraints 
and boundary conditions to be used in the calculation. The reference point 
for the potential energy is taken at z = L(~ -) and hence G(L(~ -)) =0.  
Furthermore, the total charge distribution is required neutral, that is 
the integral of g over the structure is zero. In particular this implies 
the following condition from which the chemical potential # can be 
determined: 

ln(1 +~ , )  sign(mo)n/?23j~'o I L~+~ = dz(n+(z) - n~-(z)) (4.11) 
~=o ,)L~ 

where use is made of the normalisation of the eigenfunctions. Further- 
more, we require the electric field, or more precisely dzG(L(, +)) to be zero. 
Thus, the value of G at z = L(z +) is determined iteratively such that the 
derivative of G is zero. Obviously, these equilibrium conditions can only be 
analysed if a full solution of the Schr6dinger equation is available, which 
on the other hand itself is determined by the solution G. The coupled 
system of equations can only be treated iteratively in order to obtain the 
selfconsistent solution. 
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The numerical procedure adopted for solving the Schr6dinger-Poisson 
problem can be summarised as follows. With U = U~, the solution to the 
Schr6dinger equation is determined. With the corresponding eigenfunctions, 
eigenvalues and potential the chemical potential # is found from (4.11) and 
g specified. Solving the Poisson equation generates a solution G which is 
used to set up the new potential U with which the iteration proceeds. This 
process is repeated until two subsequent iterands for the potential differ less 
than some tolerance (typically (9( 10 .6 ) relative error was found adequate). 
At high doping concentrations and/or low temperatures mixing of iterands 
to the final potential must be applied in order to damp the charge-oscilla- 
tions. In such cases a small change in the potential may cause a large shift 
in the position(s) at which t~,j has a root, i.e. the position of the 'tail' in the 
ionised doping profiles depends sensitively on small variations in the poten- 
tial-iterands. Typically the potential used in the next step in the iteration 
was built up of ~ 10-25 percent of the potential corresponding to the new 
G plus ~ 7 5 - 9 0  percent of the old potential used in the previous iteration. 
A large number of iterations is required in order to obtain full selfconsis- 
tency in the solution (typically ~ 100 steps are required starting with the 
background potential as initial guess). In the initial stages of this iteration 
process continuation between the old and new potentials is required. Closer 
to convergence only one continuation step is needed. A full calculation 
takes up several minutes in a typical situation. 

Before turning to a discussion of some simulation results based on the 
Hartree equation we sketch the numerical treatment of Poisson's equation 
(4.2) for piecewise constant s(z). Introducing vl = G and v2 = s~G we may 
write 

~vl =v2/s; ~v2 = --Tg (4.12) 

On the interval [Z/- 1, zj] we approximate g linearly, matching on gj_ 1 and 
gj. The resulting system of equations approximating (4.12) on [zj_ 1, ZJ] can 
be solved easily and a similar analysis as given in Section 3 for the 
Schr6dinger equation yields for intervals on which s and g are continuous 

1 
 l,j- + } 

( Z j  - -  Z i _  1)(g/ -~ g / -  1) U 2 , j  - -  U 2 , j  I ~ - -  2 . . . .  

7 (z: ,)2(gj g/_,)  
= ~ i S j  . - -  Z j  . - -  

(413) 

which is second order accurate and exact for linearly varying charge 
distributions. The boundary conditions imply vl,o = 0 and Vl,N = G+ in 
which G+ must be adjusted such that %o = 0. In regions where s and/or g 
are discontinuous we may again define the unknowns doubly and apply 
continuity of both vl and v2. The mesh used contains all different points 
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used in the Schr6dinger equation plus some additional points at discontinu- 
ities in g. In addition, remeshing is applied such that regions in which the 
derivative of g varies rapidly are treated with increased resolution. In 
particular regions close to the tail in the ionised doping profiles and near the 
interfaces at which the electron/hole gasses are found are treated with 
greater precision. 

With this formulation, we can calculate various properties directly, as a 
function of temperature and material parameters. We apply this model to a 
simple p-Si/SixGe1_x heterojunction as shown in Fig. 4. This structure 
consists of a highly doped p-Si layer (acceptor dopant Boron), a 'spacer' 
layer of intrinsic Silicon with a width d and an intrinsic layer of SixGel-x 
with x denoting the fraction of Si in the Ge-matrix. We also sketched the 
potential in order to make the connection with the ionised doping profile 
and introduced the valence band offset at z = 0 denoted by A. The intersec- 
tion point of the chemical potential and the potential shifted by an amount 
Ea corresponds to the 'tail' in the ionised doping concentration. A detailed 
account of such devices can be found e.g. in ref. [14]. One easily recognizes 
the potential 'well' in which the 2DHG (two-dimensional hole gas) is 
bound; since the effective mass is negative the holes are bound in a region 
where the potential is maximal, rather than in a minimum as is the case for 
electrons. In order to obtain a general impression of the potential and the 
eigenfunctions we plotted the first two eigenfunctions and the potential for 
a typical case in Fig. 5. The ground state (dotted curve) is sharply bound 
and the distance over which the 2DHG spreads is ~250/~ for this case 
since the weight of the first excited state in the contribution to the total 
charge density is negligible here. Notice that the first excited state is 
unbound, roughly speaking. Typically at low temperatures the ground state 
generates the dominant contribution, higher excited states contribute signifi- 
cantly only at higher temperatures. 

Figure 4 
Model Si/Six Ge I _ .~ structure used in the Hartree calcula- 
tions. The ionised acceptor profile and the 'two dimen- 
sional' hole gas (shaded curve) are drawn. Below a sketch 
of the potential is given. 
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U+Ea ~ ~  
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0 . 4 0  

0.30  > 
Figure 5 - ~  
Plot of  the first two eigenfunctions (ground state 
dotted, first excited state dashed) and the poten- "" 0.20 
tial (full curve) for a sample SiGe heterojunc- "~  
tion. We set the temperature T = 10 K, used a ~.~ 
structure of  total length 1000,~, m o = 0 . 3 2 m  e o.lo 
and g = 0.1 eV. The reference particle density 
~4~ 0 = 1 X 1023 m - 3  and the valence band offset 
at the interface A = 0 . 1 4 8 e V .  Only acceptor 
doping was taken into account; the doping is o0o  
uniform for z < 0 and equal to ~Aro. The accep- 
tor binding energy used is E ,  = 0.03 eV. The 
spacer width d = 0 and the weighing of old and -o.1 o 
new potentials was 10 percent. Finally, the scale -400 
for the relative permittivity g, = 12.5. These 
parameters correspond roughly to x = 0.2. 
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The temperature dependence of the 2DHG and the ionised acceptors is 
presented in Fig. 6. As the temperature is increased the ionised acceptor 
profile extends further into the p-Si layer and becomes smoother. At high 
temperatures the tail in the profile extends to the left hand side numerical 
boundary. The corresponding 2DHG profiles also become more extended 
and the area under these curves, corresponding to the sheet concentration 
increases rapidly as temperature increases. One observes that the first 
excited state becomes gradually more important as T increases and contri- 
butions of this state can easily be recognised as extra structure in the tail of 
the 2DHG in the high temperature results. The selfconsistent potential 
corresponding to these temperature results is shown in Fig. 7. Since more 

Figure 6 
The ionised acceptor and hole density profile 
scaled with ~ o  as a function of  temperature at 
the same parameters as in Fig. 5. For clarity the 
acceptor profile is drawn negative. Results are 
shown at T = 1 0 K  (full curves); T =  5 0 K  (dot- 
ted curve); T =  100K (dashed curves) and 
T = 250 K (chain dotted curves). In these calcu- 
lation only the first two eigenfunctions were 
included. 
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Figure 7 
The selfconsistent potential as a function of  tem- 
perature for the same cases as in Fig. 6 and 
similar curve labelling. 
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acceptors are ionised in the p-Si layer, the minimum shifts to lower values 
as temperature increases. The valence band offset A is however fixed and 
hence there is a maximum value for the temperature above which no 2DHG 
can be supported. One observes that the maximum in the potential de- 
creases and at some T-value it becomes zero. At that point the model breaks 
down and a spurious potential well at the left hand boundary comes into 
existence. At higher doping concentrations the limiting temperature de- 
creases quite rapidly. 

An important property of the 2DHG is the sheet concentration which 
can be measured directly. This sheet concentration is defined as 

N, =(~c/~22) ' f ln(1 +c~z) (4.14) 
/=0 

i.e. denotes the equivalent areal concentration of holes contained in the 
2DHG profile. This quantity varies quite rapidly with temperature and also 
depends quite strongly on the value for the acceptor binding energy E, used. 
In Fig. 8 we show N~ at two doping concentrations showing the temperature 
dependence as well as the influence of variations in the binding energy. An 
increase in the doping concentration results in an increase in the sheet 
concentration; at high doping concentrations a saturation comes into play, 
i.e. the increase in %. is smaller than the increase in the doping concentra- 
tion. Furthermore, increasing the binding energy implies a decrease in the 
sheet concentration. We also studied the effects related to the spacer layer. 
An increase in the width of the spacer corresponds to a sharp decrease in 
the sheet concentration. Typically a spacer is introduced to enhance mobil- 
ity of holes in the (x, y)-directions, at the expense, however, of having a 
lower concentration of charge carriers. 
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Figure 8 
The sheet concentration as a function of temperature showing the influence of variations in the acceptor 
binding energy at two different acceptor-doping concentrations. Case a corresponds to a maximal doping 
of 1 x 1023 m -3 and case b to 1 x 1024m 3. The full curves denote E~ = 0.03 eV, the dotted curves 
correspond with E~ = 0.04 eV and the dashed curves represent E a = 0.02 eV. 

The new integration algorithm for the Schr6dinger equation has proven 
to result in a flexible and robust tool with which various properties of a 
wide class of heterostructures can be analysed with minimal computational 
effort. A direct connection of these predictions with experimental results will 
be considered elsewhere and inclusion into a device simulation code is being 
investigated presently. Moreover, the influence of applied electric and 
magnetic fields can also be incorporated into the scheme in a rigorous, 
locally exact manner. These field effects and the inclusion of  exchange and 
correlation into the potential are studied in delta-doped structures and more 
complicated MBE-grown well structures. C-V measurements and transport 
properties will be investigated in relation to the various levels of approxima- 
tion. Preliminary results indicate a fair agreement of simulation results and 
experimental data. 
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Abstract 

We present a new discretisation scheme for the Schr6dinger equation based on analytic solutions 
to local linearisations. The scheme generates the normalised eigenfunctions and eigenvalues simulta- 
neously and is exact for piecewise constant potentials and effective masses. Highly accurate results can 
be obtained with a small number of mesh points and a robust and flexible algorithm using continuation 
techniques is derived. An application to the Hartree approximation for SiGe heterojunctions is discussed 
in which we solve the coupled Schr6dinger-Poisson model problem selfconsistently. 
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