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Abstract 

This paper describes an information system (STEPS) designed to support the identification of ill- 

defined systems, and subsequent use for prediction of their behaviour. Ill-definedness is brought 

about by unavoidable inadequacies in model structure, usually in conjunction with sparse and 

unreliable empirical data. The uncertainty modelling used in STEPS is based on set-theoretic 

concepts, i.e. the uncertainties are expressed in terms of bounds, and not in terms of statistical 

parameters. The set-theoretic framework is outlined briefly. To assist the identification STEPS also 

contains recursive parameter estimation tools based on the stochastic concept rather than the set- 

theoretic concept. STEPS also provides support tools for data management, for model structure 

improvement and for the construction of predictions with the model. The information system is 

demonstrated by applying it to the identification of a simple dissolved oxygen model for a lake. 
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1 .  INTRODUCTION During the modell ing process of i l l -def ined  systems it f requently appears 

that  the presumed model s t ructure of aggregated processes is not completely 

In modell ing i l l -def ined  systems it appears that the set- theoret ic  way of correct. This si tuation of so-called unstructured uncertainty can be handled 

uncertainty model l ing is a more appropriate  choice than the stochastic way according to two approaches. 

(Keesman and Van Straten [1]-[4]). In the latter case, several assumptions First,  on the basis of prior system knowledge a complex model, 

mast  be made, while  in the former case the only assumptions are that  the represent ing all kind of expected effects,  can be set up with many unknown 

uncertainties are bounded (unknown-bu t -bounded  model). Then the parameters. In this way unstructured uncertainty is, at least patially,  

observation uncertainty,  representing measurement  and sampl ing converted into so-cal led s tructured uncertainty.  The problem, then, is how 

uncer ta inty  but also anident i f iable  model error, belongs to a set. As a result  to est imate the large number  of parameters properly. Recently,  Walter et al. 

each of the observations is specif ied as unknown-bu t -bounded .  The [5] have proposed a method to est imate non-uniquely  identif iable 

observations with the associated uncertainty bounds span the so-cal led parameters  from observations with bounded noise. Some years before Fedra 

behaviour  space. Consequently,  est imation of  the model parameters results et al. [6] proposed an ident i f icat ion method within the set- theoret ic  context 

not in a single 'opt imal '  parameter  estimate, but in a set of equally based on Monte Carlo simulat ions (see also [1], [2]). This method yields a 

acceptable parameter  vectors. This set of parameter  vectors spans the so- number  of realizations of behav ioar -g iv ing  parameter  vectors out of a 

called behaviour -g iv ing  parameter  space. The set of behaviour -g iv ing  predefined parameter  space on the basis of individual  parameter  intervals. 

parameter  vectors (see Fig. 1) is consistent with the predef ined parameter  In this way the presence of structural  model error (unstructured 

ranges (expressing the a nriori  parametr ic  uncertainty),  the model s t ructure uncertainty)  is compensated for by the set of behaviour-giving parameter  

and the specif ied observation uncertainty hounds, vectors (structured uncertainty).  It appears, however,  that this compensation 

is not always complete. Within the set- theoret ic  context Keesman and Van 

Straten [3] have found an est imate of the uncompensated model error. 

/ / ~ ~ "" ~\u.,, ( f )  - - ~  / ~ -- "" " ~ ( f )  The second approach to handle the presence of  unstructured uncertainty 

I I Depending on the results equations are added to the model to represent the 

/ ~ ~ ~  ! omit ted effects. Within this context of induct ive modell ing Beck and Young 

/ \ - ~ y  [7] have stressed the close relationship between model ident if icat ion and 
\ / x / 

" - ~  ..--- ,-. ~ _ .,. parameter  est imation by applying an extended Kalman fi l ter  (EKF) as a 

structural  ident i f icat ion procedure (see also [8]-[10]). It must be noted then 

that this tool, which is essentially based on stochastic concepts, is applied 

Fig. 1. Venn-diagram o[ the relation between parameter and observation for lack of a recursive ident i f icat ion algori thm for non l inear - in - the -  

space. D ( f  ), R ( f  ) : global parameter and observation space: / :  parameters models within a set- theoret ic  setting. 

vector .function; f~p: parameter space: l)y: observation space; f~x: Fore-ment ioned  ideas form the basis of the proposed methodology of 

model response sl~ace, ident i f icat ion of i l l -def ined  systems. Together  with data management  and 
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data analyses tools a computer-aided set-theoretic/stochastic identification 2.1 Parameter identification 

framework for applications to ill-defined systems has been developed. In 

this paper we like to emphasize the organization of different procedures The aim of this module is to identify a set of behaviour-giving parameter 

within this framework and not the algorithms itself. The paper further vectors and to obtain information about the model validity. The inputs and 

describes and illustrates the resulting information system (STEPS = Set- outputs are presented in Fig. 4. The key tools are the bchaviour definition 

Theoretic Estimation in Poorly-defined Systems) by application to a simple procedure, space scanning, space identification, rain-max estimation and 

water quality model, model/data discrimination. It must be noted that the processes indicated 

within this framework can be handled less rigidly than the static 

representation of the scheme suggests. Different alternatives to the solution 

2 .  ARCHITECTURE OF THE INFORMATION BYflTEM of the parameter identification problem will be emphasized, but first each 

of the presented processes are described in short. 

For reasons of flexibility the information system (STEPS) consists of a 

preprocessor and a master program, containing different modules. The 

preprocessor has two main functions, i.e. formulation of a state-space 

model in a predefined code and selection of modules to be used in the INPUT PROCESS OUTPUT 

master program. In Fig. 2 a  window from STEPS is presented containing [-~fSEHAVIOm, .__ DEFIN. SPACE] 

the available modules with a short description of the modules. 1. BEItAVlOJR ]---~i IN~T " 

I D" I .,o,.3°, [ 
1 Syste~ Utilities & Data management 

specification and INITIAL PAPA- ~" 2. SPACE !->'. I BE~vI~RI p~TEtm~sT~ SPA~ METER RANGES V SCANNING ' SPACE data file manipulation 

2 ~ t a  ~'k:~L~oes PARAMETRIC ADJUSTED In fonv ,  a'Lion abou t  da ta  
RELATIONSHIPS - l ~  <_[ 

3 sinxxlation ' ' 3. SPACE IDENT-[ 
Model initialization and simulation MODEL - -  1 L_- IFICATIOM ] >' PRELIMIMART 

> ~ E ~  i "  NIN-NAX ESTIMATE 4 Parameter Identification • 

parameterSearch fOrvectorsSets of behavicur-giving i'll! [[MIN-MAxOPT nMLEsTIMATE MAX. RESIDUALS 

5 Model S t r u c t u r e  I d e n t i f i c a t i o n  SET IE~VI~e- GIVING VECTORS Search for model modifications LEAST MAXIMAL 
RESIDUALS 

6 Model Application 5. NOOEL/DATA TRESPASSES Prediction and verification of the ~--e~e! OISCRt.INA- 
TION 

l 

Fig,. 2. Available modules in master program. L__> 
[ VALID N~EL 

Apart from a menu-driven application of the program, it is possible to load 
INVALID I(1)IE L 

each of the modules separately. Each of the modules can then be included 

in a programmer's code. The first three modules are supporting tools for 

the remaining modules, which form the body of the framework. An Input- Fig. 4. IPO-scheme o/parameter identification module. 

Process-Output (IPO) scheme of these main modules is presented in Fig. 3. 

INPUT PROCESS OUTPUT 
1. behaviour definition 

[P~TER VECTON$ ] This procedure offers the possibility of specifying interactively a 

behaviour space by means of the observed output variables and 

i LP~TER VECTmS associated fuzzy set-membership function ([1]). This membership 

function expresses the (decreasing) possibility of occurrence of the noise 

L...__> MOOEL STRUCTURE -------------~ [ ] free observation with respect to the actual observation. The fuzzy set- 
IDENTIFICATIG~ gODIFIED V~OEL membership function is characterized by the predefined observation 

error bounds and the shape of the function (for instance a rectangle, 
[ ONMODIFIED ~OEL ] trapezium or triangle). 

Unlike the initial behaviour-space, representing both measurement and 

structural model uncertainty, the behaviour definition space is only 

~RNI,OS ] model. Therefore the behaviour definition space is specified under the 

hypothesis that the model is correct, which means that the bounds are 

Fig. 3. IPO-scheme of  main body. chosen on the basis of measurement uncertainty alone. 

E n v i r o n m e n t a l  S o f t w a r e ,  1989 Voi.  4, No .  1 2 9  



S o f t w a r e  fo r  I d e n t i f i c a t i o n  o f  I l l - d e f i n e d  S y s t e m s :  K .  K e e s r n a n  

2. space scanning It must be emphasized that supporting (most of the time graphical) 

information is provided and certainly it is not a final decision. That is, 

Space scanning (see [1 ]), on the basis of randomly within the predefined observations are indicated as outliers if a high percentage of trespasses 

parameter space selected parameter vectors, is performed to indicate occurs at the boundaries of the behaviour space at those observations. 

inconsistencies between the initial behaviour space and predefined From the min-max estimation the most critical observation, assaciated 

parameter space. For the sake of efficiency of the subsequent space with the maximal residual, indicates an outlier if the boundaries of the 

identification procedure it is important to indicate and remove outliers behaviour definition space, representing only the measurement and 

from the behaviour space in order to avoid an empty parameter set. An sampling error, are trespassed. If this observation appears to be 

outlier is defined as an observation causing the behaviour-giving unreliable, than it is considered as an outlier. Otherwise most likely the 

parameter space to be void under the assumption that the model is valid, model structure is invalid. Analysis of the model response space with 

The frequency of trespasses of the model responses with respect to the respect to the observations reveals the presence of uncompensated 

initial behaviour space at the various observation time instants provides structural model error ([3]). 

information about the presence of outliers. Moreover, the efficiency is 

also improved by a preliminary indication where to find the behaviour- To emphasize the flexibility of the presented scheme (Fig. 4) some 

giving parameter space. This information is presented by so-called Box- alternative approaches are discussed now. 

and-Whisker plots ([11]), representing quartiles and limits associated Note that, due to wrong assumptions about the initial parameter space or 

with a certain behaviour-giving interval for each of the individual behaviour space, it is quite possible that the resulting set of behaviour- 

parameters, giving parameter vectors is void. It is evident that a void set yields no 

Within this procedure the criterion for an acceptable parameter vector information at all about where to find the behaviour-giving parameter 

is specified in terms of a maximum number of allowable trespasses for vectors. To detect this situation the space-scanning experiment is 

each simulation, performed. If this situation arises due to outliers in the observations Fourier 

filtering can be applied, as an alternative to the space scanning experiment, 

3. space identification to remove these outliers. Of course it is also possible that one starts with 

large uncertainty bounds, which are adjusted iteratively using fuzzy set- 

On the basis of the adjusted behaviour and parameter space an algorithm theoretic information of parametric subspaces associated with smaller 

can be run which will supply now a non-void set of behaviour-giving behaviour spaces. During these iterations information about outliers will 

parameter vectors consistent with the behaviour and parameter space come to light. 

and the specified model. Algorithms suitable for solving the set- Another point to emphasize concerns the validity of the model. It was 

theoretic parameter estimation problem are the so-called polytope- recognized ([1]) that, in spite of the invalidity of the model, the model 

bounding algorithms. However, these algorithms are only applicable for could still be accepted from a practical point of view for an enlarged 

models which are linear-in-the-parameters (see Walter and Piet- behaviour space. The associated behaviour-giving parameter space as well 

Lahanier [12] for an overview). From the standpoint of robustness we as the prediction uncertainty will reflect this concession. 

chose an iterative random scanning procedure to solve the problem. This 

random scanning procedure is performed in conjunction with 

intermittent parameter space translations and rotations in order to 2.2 Model structure identi/ication 

improve the computational efficiency. The parameter space adjustment 

algorithm, which can be applied to nonlinear-in-the-parameters models, The aim of this module is to provide supporting information for model 

has been described in detail by Keesman and Van Straten [2]. This adjustments. The key tools within this module are the regionalized 

algorithm can be run automatically. The interpretations of the results to sensitivity analysis (RSA), the recursive parameter estimation, and the 

obtain information about parameter subspaces (see [4] for an correlation analysis. The inputs and outputs to the processes are presented 

interpretation of the results in terms of dominant directions), however, in Fig. 5. 

must be done interactively. 

I NPUT PROCESS OUTPUT 
4. min-max estimation 

Min-max estimation which results in a parameter estimate that SeT OF DENAVIOOe- I [ 
GIVING PAR. VECTORS f 1 NON-DONINANT 

minimizes the maximum deviation between model response and , , / 1. REGIOMALIZED PARN4ETERS 
I 1 - - > /  SENSITIVITY ANALYSIS [ • 

observation is performed for diagnostic purpases only (El ], [3]) using the SET 0e NON-BE~VIaJRJ I , 

'pattern search' technique of Hooke and Jeeves [13]. The rain-max IGIVING PAR. VECTORS [ - 'aOmNANT' 
PARN4ETERS 

estimation reveals 'hard' information about the minimal observation 1 uncertainty bound to be specified to prevent a void behaviour-giving 

parameter space. From this point of view it can be interesting to - - •  2. eecms lw  PAN~ETERI--> 
DATA i._ 1 ESTINATION I TINE-VARI ANT 

perform rain-max estimation prior to space identification (see [3]). ~INANT PARN4ETERS 

/ PARAHETER 5. model/data discrimination [ NODEL TRAJECTORIES 
i 

~ ' >  :3. CORRELATION • 
On the basis of results from preceding procedures analyses of: (i) critical JACOeI,~ ANALYSIS 

"[ I data points, (ii) the min-max estimation and (iii) the model response AUTO-/CROSS CORRELATIONS 

space associated with behaviour-giving parameter vectors are performed 

to obtain information about the reliability of model and data. Fig. 5. IPO-scheme o /mode l  structure identi/ication module. 
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I. regionalized sensitivity analysis 

I NPtlT PROCESS OJTPtff 

The sets of behaviour- and non-behaviour-giving parameter vectors are 

obtained from plain Monte Carlo simulation analysis on the basis of [ ~OEL 

predefined parameter distributions. Of both sets, statistical analysis 

reveals dominant parameters and/or dominant parameter combinations G S 

at a certain confidence level ([14]). 

2. recursive parameter estimation ~ 

The 'dominant' parameters resulting from RSA are input to the recursive 
I I 

parameter estimation tool (see [15]). As a recursive estimation tool the cs~ev~ SYSTEMS' - -> [2 .  MODEL VERIFICATION I---------------~ 
• EHAVI CUR ACCEPTED 

Extended Kalman Filter (EKF) is chosen, which can handle nonlinear PREDICTIONS 

model structures and state-parameter estimation. It must be noted that 
NON-ACCEPTED 

for application of the EKF additional linearized equations are required, PREDICTIONS 

which means that Jacobians o f  model and measurement vector functions 

must be supplied for an analytical treatment of the linearization. The 

EKF results in a number of time-variant dominant parameters with Fig. 6. IPO-scheme model application module. 

associated parameter trajectories. It is worth noting that, as an 

alternative to the EKF, also stochastic observers and stochastic 

approximation methods, requiring less detailed statistical information, 3 .  A WATER QUALITY MODELLING EXigHPLE 

could have been applied. 

3. correlation analysis 3.1 System description 

The ultimate cross-correlations between time-variant parameter To illustrate STEPS a simple dissolved oxygen modelling example ischosen, 

trajectories and system in- and outputs provide information about which describes the DO-concentrations in a well-mixed lake. Hourly 

correlated effects (for instance [16]). The resulting auto-/cross- observed DO-concentrations are available from Lake De Poel and 't Zwet 

correlations, which are presented graphically, can sometimes be (The Netherlands) during a period of eight days (see Fig. 7). The changes 

interpreted in terms of causal effects. It is worth noting that human in DO-concentrations are determined by reaeration exchange with the 

intervention is indispensible in this stage of the identification, atmosphere, photosynthetic production from algae and water plants, and 

Supplementary data and additional theoretical information about the consumption due to respiration, biodegradation and sediment processes. 

processes must then be employed to improve the model structure. The model equation is, 

2.3 Model application c(t) = Kr (Cs(t) - c(t)) + a I(t) - R (1) 

where c (.) = dissolved oxygen concentration (g/m 3) 
As yet the emphasis of the framework is on modelling for prediction or 
projection and not control. Projection refers to the situation where the Cs(.) = saturation concentration (g/m 3) 

internal description of the system dynamics must be changed according to I (.) = radiation (W/m 2) 
Kr = reaeration coefficient ( l /d) future structural changes in the environmental system ([ 17]). Thomann [ 18] 

has stressed the importance of subsequent examination and verification of a = photosynthetic rate coefficient (g/mdW) 

model predictive performance using the actual information of the systems' R = sink term (g/m3d), 

state. Therefore, STEPS contains, in addition to a model prediction tool, 
also a model verification tool (see Fig. 6). Note that the terms in the right hand side of (I) represent lumped 

processes. That is, by lack of detailed knowledge about the processes 

1. model prediction determining the rate of change of DO-concentrations, we are urged to 

aggregate processes, which intrinsically means that we incorporate some 

structural model uncertainty. In addition, the observed DO-concentrations On the basis of the specified model structure, the set of behaviour- 
will contain systematic error due to spatial concentration gradients in the giving parameter vectors and the future inputs, bounded (as a result of 

the set-theoretic approach) predictions or projections are provided at lake, yielding non-representative samples, and fouling of the sensors. In 
such situations a set-theoretic approach to model fore-mentioned desired time instants. There is also an option to obtain additional 
uncertainties is an appropriate choice. It must be noted that the system 

information at these time instants from frequency distributions. 
inputs, i.e. saturation concentration, as a function of the water temperature, 

2. model verification and radiation (Fig. 8), are treated as deterministic variables, i.e. system 
input noise is lumped in an 'output" error. 

The predictions are used to verify the model by looking at the trespasses 

when new observations are available. These observations are presented 

graphically in a plot of the prediction uncertainty bounds. 

i 
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Dissolved oxygen (g/m3) 3.3 Recursive parameter estimation 
1 5 -  

"'" .-". .-. i In this example no sensitivity analysis (see Fig. 5) has been done in order 

..._.........:::-_ ..... ., ,, ... to reduce the number of parameters to be estimated. So, all three 

lO- ' : '~'" " parameters (Kr, a and R) and the state variable (c) are estimated 

"---: simultaneously (see Eqn. 1). In a general feedback form for a single-output 

system the EKF-algorithm can be presented as, 

5 , 

110 t~2 114 116 11s t20 x ( k / k )  = x ( k / k - l )  + K ( k / k - 1 )  {y(k) - h [ x ( k / k - l ) ] }  (2) 
Time (days) 

Fig. 7. Observed DO-concentrations in Lake De Poel and 't Zwet (The where the first term on the right hand side is the predicted 'state' (usual 

Netherlands) from 21-30 April 1983. state vector augmented with the unknown parameters) and the second term 

Saturation cone. (g/rn3) Radiation (0 t-W/m2 is a correction factor. The correction of the predicted state depends on the 30  ~ 30  

25- ~ 25 weighing matrix K(.) and the prediction error presented as the difference 

I between the observation y(.) and the model output. To fit the DO-model 
20- ~ 2o 

I (Eqn. 1, supplied by the user in a predefined code) to a continuous-discrete 
ts- ~ is version of EKF the following state-space notation is used, i.e. 
10 -  - 10  

5 - s x(t) = f[x, - ,  t] + w(t) (3a) 

°11o 112 114 116 118 1200 y (k )  = h [x ,  u ,  k] + v(k)  (3b)  
Time (days) 

Fig. 8. System inputs to DO-model of Lake De Poel and 't Zwet. where x = state/parameter vector [c, Kr, a, R] T 

u = deterministic input vector [Cs, I] r 

w = system noise vector 
3.2 Parameter space identification y = observation (Cross) 

v = observation noise 
On the basis of the complete data set a behaviour space is defined (see Fig. f ,h = vector functions 

4) in terms of the observed DO-concentrations plus/minus 1.5 g /m 3. 

Subsequently, a space scanning and a parameter space identification is The vector functions f[.] and h[.] have been chosen to take the following 

performed. In previous papers ([1], [2]) different results with respect to forms for the DO-model, 

this DO-model and data are presented. So, here we shall restrict ourselves 

to a graphical presentation (screen dump) of the set of  behaviour-giving ] parameter vectors (Fig. 9). In this figure, each of the parameter vectors, Kr (Cs(t)-c(t)) + a l(t) - R 

containing the parameters Kr, a and R, is projected onto the faces of a 0 

three-dimensional box, that is spanned by the three predefined parameter f['] = 0 (4a) 0 
intervals. 

P h S ~ n  a ~ i ~ i n ~ t  K R e a ~  h[ .]  = [  c ] k  (4b)  
7 . 8 0 _ j  

* O l e l _ ~  • = ~ ' ~  = , 7  * 
== =ih=P = 

== = ~'= = =d~= Subst i tut ion o f  (4a) in (3a) reveals that the parameter variat ions are 

== • = ~'= = modelled as essentially constant but wi th  random f luctuat ions (random 
11 

3.  OO1 walk model). So the white noise vector w is composed of a component 
0 . 5 0  ' .t 80  representing the uncertainty in model structure and inputs, and three S i n k  a ~ a i n s  t K R e a r  

3 " 5 0 1  : = ? : , = = = =  [ components representing the uncertainty in the constant parameter model 

= =,= structure. A first parameter tracking, assuming a constant parameter model, 

,,=~ = = ~ i.e. E(w i }=0  and var{wi}=0; i=2,...,4, reveals the presence of possible 

outliers in the observed DO-concentration causing a jump in the parameter 

0 . 9 ~ / 5 0 .  ' 1 . 8 0  trajectories without demonstrable jumps in inputs at time instants 114.666, 
S i n k  & ~ a i n s t  PhStJn 

3 " 5 0 1  ~g='~==='~ '== = ' ~  '=] l15.666and 118.875 (see Fig. 10). 
=~=' ,==,== Removal of these outliers, using one of the procedures in the data 

management tool, results in a smoother course o f  the parameter estimates. 

= = To explore the time-variability of the parameter trajectories more fully, the 

O. 930/. 00  . . . . .  ~ .  OJ. ? .  1~  parameter models are modified using a nonzero additive white noise term 

in (3a), i.e. E(WkWj} = Q6kj. The diagonals of the covariance matrix Q are 
Fig. 9. Set of 45 behaviour-giving parameter vectors, chosen to be proportional to final variances of  the associated parameter 

estimation errors of the preceding estimation run. The results of this time- 
If there is knowledge about the bounds on the measurement uncertainty variant parameter estimation can be seen in Fig. I 1, where the initial values 

(behaviour definition space, see Fig. 4), then this knowledge can be for parameters and parametric uncertainty also result from the preceding 
explored in a model/data discrimination procedure (see Ill). run. 
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](Rea~ a s a i n s  t : T i me From our example it appears that the recursive estimate of the sink term 
. R is significantly correlated with the temperature (r,,-0.3). Therefore 

÷,* possible improvement of the model performance can be obtained by 

incorporation of a temperature function in the dissolved oxygen 

g a  I ~ - -  - - .  consumption process. It is worth noting that the form of the final model 
g 

• O adjustment is still a question to be answered. Knowledge about the 

processes, to be obtained from ecologists, biologists etc., is then 

indispensible. We have tried to improve the model by multiplying the sink 

l = term R with the temperature function 0 T'20, where 0<1 as a result of the 
~1~ ~ __ ~oPhStln a ~ a i n s t  : Time ! 

a , ~ , ~ w , , ~ "  - -  -*- " ~-" -.~ negative correlation. However, analyses of this extended model reveal that 

,, our adjustment does not significantly improve the model performance. 
+ 

+ 

3.5 Model application 

Even if we have to conclude that the model is invalid, we can still utilize Sink _a~a ins t  : Time "~ 
. s it for predictions as all structural model uncertainty is represented by the 

identified parametric uncertainty. Alternatively, an explicit model error 
1 

*~ ~ term can be added to the predictions (see [3]). 

O 8 • ~ - ,  1 ~ . O  
8 

4. CONCLUDING REMARKS 
Fig. 10. Recursive estimates of  the parameters Kr, a and R. 

The information system STEPS supports the identification of ill-defined 

K R e a r  a s a i n s  t : Time systems for predictive purposes. Within the framework presented structural 

5.0. 80010~I , , ~ , = , ~ , ~ , . , ~ ~ , . / ~ |  models, which are possibly nonlinear-in-the-parameters, can be handled 
easily using an algorithm based on Monte Carlo simulation, and set- 

theoretic (unknown-but-bounded) uncertainty models. Besidesset-theoretic 

uncertainty models also stochastic uncertainty models (in for instance 

8 I~8 stochastic observers, stochastic approximation methods or the implemented 

Extended Kalman Filter) are used to obtain additional information from 

the data to improve the model. Predictions are based then on the (extended) 

PhS~n a ~ a i n s t  : Time model and the associated set of behaviour-giving parameter vectors 1.88j 
~ ~ ' ~ * ~  resulting in prediction uncertainty bounds. 

0 " 8 ~ 1 8  '" I~0 5. SYSTEM REQUIREMENTS 

STEPS has the following hardware and software requirements: 

Sink a~a ins t  : Time 
5 .88~  1 " ~ ~ ~ l  - IBM PC, XT, AT or compatible computers 

- minimum memory of 512 kB 
- graphics display card: CGA, Hercules, EGA or VEGA 

- 8087, 80287 or 80387 Math Coprocessor 
8 .  O~llO-- I~-8- - MS-DOS version 2.0 or more recent 

- at least two 360 kB drives 

Fig. 11. Recursive estimates of  the time-variant parameters Kr. a and R. - Epson printer 

- Turbo Pascal 3.0 or 4.0 compiler 

3.4 Correlation analysis Optional, 

- MATHPAK 87 version 2.0 or 3.0 for Turbo Pascal. 

In previous papers ([1], [3]) we have noticed that the model is most likely 

invalid in view of set-theoretic criteria. This notion is confirmed by the 

nonstationary course of the parameter trajectories in Fig. 11 (see [7]). It is ACKNOWLEDGEMENTB 
useful then to try to improve the model. Supporting information from the 

recursive estimates, representing the changes of the parameter values in I am grateful to Gerrit van Straten for his comments and helpful 

time due to perturbations of the system, can be obtained by correlating suggestions. This research is supported by the Netherlands Technology 

these trajectories to observed system information. Foundation (STW). 

i 
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