
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 6, 109-1 16 (1976)

A PASCAL Compiler for PDP 11 Minicomputers
C. BRON AND W. DE VRIES

Department of Electrical Engineering, Twente University of Technology,
P.O. Box 21 7 , Enschede, Netherlands

SUiWMARY

In this paper the development of a cross-compiler running on the central computing facility
is described. The compiler transforms PASCAL source code into object code for the PDP 11
family. The arguments for higher level languages on minicomputers and the choice made
for PASCAL are discussed. It is shown that only a minor effort in terms of manpower is
required if such a development is based on an existing compiler that is suited to the purpose
of adaptation. Even without large amounts of optimization the code produced is both compact
and efficient. Some attention is paid to requirements that should be fulfilled in portable
compilers. The paper ends with a discussion of some strong points and weak points of the
PDP 11 architecture.

KEY WORDS PASCAL Cross-compiler PDP 11 Portable compiler Code generation Machine architecture

INTRODUCTION

It has been argued112 that programming in machine code or assembly language should
become obsolete as knowledge of compiler construction and implementation by means of
bootstrapping procedures increases. For users of minicomputers, equipped with a moderate
amount of core store, and quite often without a random access backing store, higher level
programming facilities are usually not available, or at best some small FORTRAN or
BASIC subset (if these languages can be described at all by the term ‘higher l e~e l ’~) .

The reasons are self explanatory: small systems are not able to support the compilers
necessary to translate higher level languages of any sophistication into acceptable machine
code. However, if one decides to perform compilations for minicomputers off-line on a
large computer, such restrictions suddenly vanish.

At Twente University of Technology (Netherlands) at present seven PDP 11’s are
installed, ranging from 11/10 via 20 and 40 to 11/45. A DEC 10 as a central computing
facility is due to arrive by summer 1975.

In the following the development of a PASCAL compiler for the PDP 11 series run-
ning on the DEC 10 is described.

PHILOSOPHY

When providing an implementation of a programming language in an environment with
existing experience in assembly language programming it is a prime requirement that the
higher level language should perform in such a manner that potential users are not
confronted with the choice between the ease of the high level language and the speed of the
hand coded program.

Received 27 January 1975
Revised 1 July 1975

109
@ 1976 by John Wiley & Sons, Ltd.

110 C. BRON AND W. DE VRIES

Whereas the speed of the generated code is of extreme importance, the compilation speed
is almost irrelevant, since programs to be compiled will be of moderate size, and the size of
the compiler is not critical if it can be run on an external configuration.

A second requirement for the implementation is that the generated code should be
compact, in order to fit into small memory sizes. These two requirements together express
that the generated code should be like the code that would be written by a responsible,
reliable assembly languages programmer (if such programmers exist at all !).

Thirdly, the implementation should not adopt a paternalistic attitude towards the
programmer. He will be allowed to make mistakes that are not detected by the imple-
mentation, and some of these may be fatal ones.

No automatic dynamic checks are built into the code where the assembly language
programmer would not build in these checks himself. However, any help that the compiler
may provide in signalling errors should be most welcome!

Fourthly, the language should be available on the central computer, thus enabling
programmers to verify their products in an environment more suitable than the real-time
environment for which they are intended to be applied.

Finally, the language should cater for products of high quality. (It is particularly in the
latter respect that, for example, FORTRAN fails miserably.)

CHOICE O F LANGUAGE

When selecting a language for a purpose as sketched above a number of conflicting interests
may be involved. We will not try to weigh the languages considered (FORTRAN, a subset
of ALGOL 60, CORAL 66,4 ALGOL W, PASCAL), but solely list some of the arguments
in favour of PASCAL,626 in this particular instance, realizing that no language is perfect.’

(1) I t provides for a form of data structuring (vix. records and pointers) that both

(2) I t is a simple (although non-orthogonal) language.
(3) I t is sufficiently close to ALGOL (and even to FORTRAN, if you wish) in order

to allow users to switch, without providing extensive language (re)training.
(4) Previous experiencess-10 have shown PASCAL to be readily implemented for a

variety of machines.
(5) A PASCAL compiler, generating code for a hypothetical stack computer, and a

description of that computer are available. This compiler itself was described in
PASCALll (P-compiler).

opening the possibility of constructing
a compiler by doing a minimal amount of rewriting of the compiler mentioned
under (5).

(7) The language PASCAL is designed in such a way as to cater for a straightforward
implementation on most present day computers, without introducing appreciable
overheads.

(8) The register and addressing structure of the PDP 11 would lend itself most readily
to the implementation of a language which is described in terms of a stack machine.

(9) The availability of a compiler, developed ‘in house’, seems a good starting point,
from which requirements from individual users may be built in.

FORTRAN and ALGOL 60 are lacking.

(6) PASCAL is already available on the DEC

A PASCAL COMPILER FOR PDP 11 MINICOMPUTERS 111

(10) (3) and (4) together illustrate that when the choice for PASCAL is made the porta-
bility issue is not great. Inward portability is ensured by the ease of recoding from
(for instance) FORTRAN into PASCAL. Outward portability will be increasing
along with a rapidly increasing number of PASCAL implementations.

IMPLEMENTATION ASPECTS

It has been decided to base a compiler for PDP 11 code on the compiler written for the
hypothetical stack machine (P-machine). It appeared impractical to transform the code
for the P-machine directly into PDP 11 code for the following reason. In the P-machine all
elementary data types ranging from ‘boolean’ to ‘real’ and ‘powerset’ are mapped onto one
unit of storage. If addresses occurring in the P-machine’s code are to be transformed into
addresses for the target machine, then this can only be done if all elementary data types
occupy an equal number (not necessarily 1) of storage units. On the PDP 11 with its small
word size of 16 bits clearly the choice of a sufficient standard data size would have defeated
our main objectives : compactness and efficiency of data representation.

A similar argument may be applied to the mapping of the P-machine’s code, but here the
problems could have been circumvented by the creation of a (lengthy) address corre-
spondence table. So we decided to adapt the compiler itself, selecting for each data
structure of the language the most attractive mapping in the target machine, and making
for the code to be generated an optimal choice between in line code and subroutine calls.

An additional benefit in adapting the compiler was the possibility of code optimization
(in essence this means an extension of the instruction set of the P-machine) and imple-
menting certain features that were not present in the original version of the compiler.
(In essence this means the liberty to extend the language so as to suit private needs.)

Examples of the first kind are: the elimination of runtime lower bound correction in
array subscription, and optimization of the for-loop code, making use of the PDP 11
instructions that increment or decrement specified operands by 1.

Examples of the second kind : the implementation of formal procedure/function para-
meters by requiring full parameter specifications and an extension of the result type of
functions to any type.

The latter extension allows the user to construct (prefix-)expressions out of any data
type (e.g. complex, double length integer, three-dimensional point, etc.).

Execution efficiency has mainly been obtained by selecting data mappings in close
accordance with the structure of the target machine.

The block structure does not affect the speed of reference to local objects, objects declared
in the outer block or objects passed as parameters.

The sole overhead on the addressing mechanism (small as it is) is placed on the accessing
of objects on intermediate block levels.

Compactness of code has been accomplished by making use, wherever possible, of
auto-increment or auto-decrement addressing.

The speed of procedure call/return is demonstrated by the following summary :
Apart from the PDP 11 subroutine call and return instruction we find :
(1) In the calling sequence : 1 word.
(2) In the procedure body: 3 words at the entrance and 3 words at the exit.
(3) Counting instruction times and memory cycles, the total cost of procedure call

plus return is estimated at 15 p e c , a figure that compares very favourably with known
implementations of block structured languages.12

112 C. BRON AND W. DE VRIES

Thanks to the static structure of PASCAL the parameter organization could be kept
simple, parameter checking being performed at compile time.

A runtime package of approximately 1,000 words provides for code compaction where
this will not lead to loss of execution efficiency.

Due to the subroutine structure of the target machine code sequences of more than
4-5 words may well be replaced by subroutine calls. A further role for the subroutine’s
package is to hide the differences in an instruction set within the PDP 11 range from
10-20-40-45. The code generated for each of these configurations will be approximately
the same, but the subroutine package (fed as input to the compiler) will be adapted to
the configuration.

Of the runtime package only those routines that are actually required by the code are
‘generated’ along with the compiled code. The decision to separate the ‘return-address
stack’ from the data stack allows subroutines to operate on ‘the top of’ the data stack.

The user interface is deliberately kept simple. The generated code is relocatable, entirely
independent of assumptions about resident software, and requires a contiguous memory
area of sufficient size. This size will only be a few K words for modest programs, such that
even the barest of configurations will be able to support PASCAL object code. The compiler
itself, although not intended to run on the PDP 11, and therefore not ‘compacted’ at
source level, consists of over 4,000 lines of source code and will compile to w28K words
of PDP 11 code. For data allocation any contiguous area will do as well, but no space will be
wasted if code and data area are juxtaposed. In other words, to load a PASCAL program
just one memory area need be specified. The mapping of data structures and parameters
onto PDP 11 memory is such that it should be trivial to interface PASCAL procedures
with data supplied by a real-time environment.

AN APPRAISAL O F PASCAL

In this section we do not discuss the merits of a programming language, but simply make a
few remarks that arose during the project. These remarks suggest possible extensions,
the implementation of which might be undertaken in the future.

In the previous section we have already mentioned formal procedures/functions and a
generalization of the function concept.

The compile-time knowledge of the size of data structures and the restriction of goto
statements within a block do cater for a high degree of runtime efficiency, although the
advantages have not been exploited fully: non-procedure inner blocks could have been
incorporated in the language without any cost at all! Structured values (i.e. values that may
be taken on by records or arrays) have a place in the language, and are already there if one
considers how parameters are built on top of the stack.

It should be possible to pass arrays as parameters for which the structuring is but the
bounds are not fixed at compile time.

It is unclear why arithmetic routines such as ‘sin’ and ‘In’ should be supplied as standard
procedures. In an acceptable implementation they may as well be declared as source code
procedures.

SOME NOTES ON T H E P-COMPILER

The PASCAL compiler for the PDP 11 was developed by adapting the P-compi1er.l’
The total effort spent on the development of the PDP 11 compiler amounts to less than

1 man year, the major part of which was contributed by the second author, who had no

A PASCAL COMPILER FOR PDP 11 MINICOMPUTERS 113

previous experience in compiler construction, and hardly any in dealing with large programs,
Apparently the development of a compiler by modification of a ‘master copy’ is a highly

successful approach. Nevertheless, we would like to make a few remarks that might be useful
to those who would like to undertake similar projects.

(1) The wirtue of the interpreter is the concise description of the instruction set of the
P-machine.

An implementation of the interpreter on a machine other than one already providing
an efficient PASCAL implementation gives rise to unacceptable overheads. (And
then, why bother?) The effort of generating assembler code in the P-compiler and
loading that code in the interpreter does not seem worthwhile. Instead, the code
might have been generated in such a form as to be more amenable to transformation
for machines with different data formats.

(2) The documentation provided with the P-compiler and interpreter was mainly
concerned with remarks on the object machine, the assembly code, the tapes containing
the code and the character sets.

No documentation at all was provided with the compiler itself, as if the latter was to be
considered as a box. This remark is not meant as a criticism of Mr. Amman’s work, who
prepared the compiler within a short period, but it points out one of the prerequisites if the
process of compiler adaptation is to be successful. What we have in mind here is a
document such as Reference 13 in which a clear description is given of an ALGOLW
compiler.

Fortunately there were several aspects that enabled us, even without the suggested
documents, to modify the existing compiler. T o list these:

(a) The compiler is built up out of syntactic subroutines, definitely the most adaptable

(b) The compiler proceeds in one pass, obviating the need to understand an interface

(c) The compiler is well written in a suitable language and therefore reasonably ‘legible’.
Nevertheless, the missing documentation could have augmented the compiler in the

(i) A more extensive description of the data structures and their interdependence than
can be derived from the scant comments in the compiler text.

(ii) A motivation of certain implementation choices to prevent implementors from
starting these considerations all over again.

(iii) An outline of the philosophy for error reporting, such that any modifications may
comply with that philosophy.

(iv) A description of the interfaces of the compiler procedures with their calling environ-
ment, i.e. the separation of responsibilities, in particular the extent to which the
source code will have been scanned by each syntactic subroutine.

(v) The P-compiler, if intended for modification, could have been equipped with
provisions in order to facilitate the generation of code €or machines whose structure
dictated different mapping for the data types.

(vi) On the positive side, let us remark that a master compiler generating code for a
hypothetical machine does take away many of the worries about language mapping
from the implementor, i.e. he does not need to worry about them if he does not want

and transparent structure.

between passes.

following respects:

to.

114 C. BRON AND W. DE VRIES

NOTES O N T H E ARCHITECTURE O F T H E PDP11

(This section is the sole responsibility of the first author.) Although it is not customary in
the literature to discuss the merits of a hardware design in terms of its fitness to software
implementation we feel urged to do so. The main reason being that a sufficient amount of
such discussion may in the long run influence future designs.

First we note that the PDP 11 and PASCAL form a nearly ideal marriage. The remark
is probably neither unique for the PDP 11 nor for PASCAL, but it shows that machines
and languages, designed with an eye for each other, are able to meet each other somewhere
halfway.

We will split our further comments into a section of praise and a section of criticism.

Praise
(1) The subroutine mechanism is a beauty. It is not unlike the one in some other stack-

oriented machines (e.g. K D F 9, EL-X 8, DEC 10) but it should be pointed out
anyway. It does the essential thing, viz. stacking of the return address, but nothing
more.

This absence of further actions is essential, because it makes the subroutine
mechanism cheap, and leaves any particulars of setting up an addressing environ-
ment to the software. We would like to make this remark because in a stack- and
ALGOL-oriented machine like the B 6700 the only subroutine mechanism is the
ALGOL-procedure call, which is much too circumstantial.

(2) The peculiar way in which the top of the return-address-stack (in the PDP 11) may
be implemented as a specified register should not be recommended as a general
vehicle for parameter transmission, but does serve well to pass compile time constants
as parameters to subroutines that emulate instructions of the P-machine. Using this
mechanism an utmost compaction of compiled code can be obtained.

(3) We do not need to comment on the addressing structure in general. It is an excellent
example of how a short ‘address field’ in the instruction format may be employed to
advantage. I n this respect the PDP 8 with its asymmetric treatment of addresses is
an open invitation to unclean programming.

Previously we discussed the advantages of not being pinpointed to one hardware
stack, but having the liberty of implementing several.

(4) Indexing with both positive and negative index displacements is another feature that
should be valued highly. It gives the implementor the freedom to address relative
to a pointer, having come to rest at a natural location, instead of residing at a particular
end of a store area.

This comment should have been superfluous, but, alas, too many of today’s
machines do not allow this freedom of indexing.

Criticism
(1) Whereas the addressing structure of the PDP 11 is quite advanced, the way in which

the conditions arising on account of operations (positive, zero, carry, overflow, etc.)
are handled is as old-fashioned as one can think of.

The only way in which these conditions can be ‘tested’ is by a large variety of
conditional branch instructions. I n no practical way can the condition values be

A PASCAL COMPILER FOR PDP 11 MINICOMPUTERS 115

made available. This may be a minor nuisance in particular applications, but it is a
serious drawback in the general implementation of logical expressions. This aspect
of the machine had to be ‘programmed around’ in an unnatural and unsatisfactory
way.

Suggestion: replace the wealth of conditional branches by the same wealth of
operations that transfer the result of the specified combination of conditions in a
standard form (say: 0 or 1) to a specified destination operand.

In order to allow branching, only 1 (or 2) conditional branches are required (say:
a BRANCH FALSE and a BRANCH TRUE).

(2) We note an inconsistency in the treatment of the operand in the instructions JUMP
and JUMP T O SUBROUTINE. This inconsistency is found in many present-day
machines. The notion of jumping to makes the operand appear as a destination,
whereas it actually is a source-operand in the assignment :

program counter := source.

Viewing the operand in this way the specification of an operand in register mode is
quite natural.

Register deferred mode then adds a level of indirection. We have now been forced
to use an auto-increment deferred mode to call procedure parameters because this
mode has a higher degree of indirection.

(3) We found hardly any use for indexed deferred mode (in spite of its potential for
parameter access) and lacked frequently the possibility of obtaining the address
which is calculated in the course of indexed mode. For address calculation we had
to resort to ADD instructions more than we liked. We wonder if other implementors
would suggest, as we do, to decrease the level of indirection for indexed mode
operands ?

(4) Byte-addressing is of limited usefulness when word boundaries pervade the use of
the store so strongly.

CONCLUDING REMARKS

As work on the compiler described in this paper was in progress, another PASCAL project
for the PDP 11 was brought to our attention.14 Although at this time it is impossible to
compare the two implementations, each appears to have merits of its own. Whereas
Feiereisen’s implementation is of use for stand-alone systems that are sufficiently equipped,
our approach is directed to application on even the barest 11/10 configurations. The
advantages of a cross-compiler approach, yielding adaptability and accessibility of the
implementation, should not be underestimated.

Our approach has also made clear that the amount of labour involved in the construction
of a compiler for a non-trivial programming language by adaptation of a master compiler
may be considered negligible compared to current investments in ab initio developments.
Prerequisites are that such a master compiler be written in a clear style, in a suitable
language and with future adaptation in mind.

It has also been argued that a suitable choice of language and the absence of strict space
requirements on the compiler itself allow for the generation of both compact and highly
efficient code.

116 C. BRON AND W. DE VRIES

REFERENCES
1 . C. Bron, ‘Machinetaal-dode taal (machine language-extinct language)’, Informatie, 14, 376-382

2. C. A. Lang, ‘Languages for writing system programs’, Univ. Math. Lab., Cambridge (October 1969).
3. E. W. Dijkstra, ‘The humble programmer’ (Turing lecture), Comm. A C M , 15, 859-866 (1972).
4. CORAL 66, Official Definition of, HMSO, London, 1970.
5. N. Wirth, ‘The programming language PASCAL’, Acta Informatica, 1, 35-63 (1971).
6. N. Wirth, ‘The programming language PASCAL (revised Report)’, Berichte der Fachgruppe

7. A. N. Habermann, ‘Critical comments on the programming language PASCAL’, Acta Injormatica,

8. P. Desjardins, ‘A PASCAL compiler for the XEROX Sigma 6 : ACM SIGPLAN’, Notices, 8,
No. 6, 37 (June 1973).

9. G. Friesland, C. 0. Grosse-Lindeman, F. H. Lorenz, H. H. Nagel and P. J. Stirl, ‘A PASCAL-
compiler bootstrapped on a DECSystem lo’, Proc 3. GI-Fachtagung iiber Programmiersprachen,
Kiel, 1974, in Lecture Notes in Computer Science (Ed. B. Schlender and W. Frielinghaus), 7, 101
(1974) (Springer Verlag, Berlin, Heidelberg, New York).

10. J. Welsh and C. Quinn, ‘A PASCAL compiler for ICL 1900 Series computers’, Software-Practice
and Experience, 2, 73-77 (1972).

11 . U. Amman, ‘The method of structured programming applied to the development of a compiler’,
in Proc. ACM International Comp. Symp. Davos, 1973 (Ed. A. Giinther, B. Levrat and H. Lipps),
North Holland Publishing Co., 1974, p. 93.

12. B. A. Wichmann, ALGOL 60 Compilation and Assessment, Academic Press, London-New York,
1973, Table 19.

13. H. Bauer, S. Becker and S. Graham, ‘ALGOL W implementation’, Report CS.98, Computer
Science Department, Stanford University (March 1968).

14. L. Feiereisen, ‘Implementation of PASCAL on the PDP 11/45’, DECUS Conference, Zurich,
September 1974, p. 259.

15. D. A. Bell and B. A. Wichmann, ‘An ALGOL-like assembly language for a small computer’,
Software-Practice and Experience, 1, 61-72 (1971).

16. C. Bron, ‘On complete specification in ALGOL’, Technical Report CB 54b, Twente University of
Technology (1972).

(1972).

Computer Wissenschajten E T H Zurich, 5 (1973).

3, 47-57 (1973).

