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Abstract 

Recently a few papers appeared on throughput scheduling, dealing with the relattonship between batch structure and process 

structure in dtscrete batch productton, while maximizing ttme-constrained throughput. Results have been concentrated on the 

class of homogeneous batch structures, I.e. batch structures with equal batch stzes for each process per cycle. 

In this paper heterogeneous batch structures are consrdered. By numertcal examples, it is shown that heterogeneous batch 

structures can outperform the best result obtained by constdering only homogeneous batch structures. Moreover Integer 

programs are developed, whtch generate such solutions. 

1. Introduction 

At present there is a considerable interest in 
batching and lot streaming in relation to 
scheduling. Different from classical lot sizing 
procedures (balancing inventory holding costs 
against set-up costs) the aim is to maximize 
throughput, while keeping a reasonable due 
date performance. This is a principle dilemma 
met in many industries: large batches yield 
efficient capacity utilization, but in order to 
meet due dates, it makes sense to switch to 
a new operation in time. 

Some references on this subject are Refs. 
[l-3]. Karmakar, Kekre and Kekre Cl] have 
dealt with the relationship between lot sizing 
and job flow times by examining the impact of 
lot sizes on flow times using a simulation 
model and Q-lots. Baker and Pyke [2] present 
a computationally efficient procedure for the 
m-machine, two-sublot problem and discuss 
computational results for heuristic approaches 

Correspondence to: P.J. Weeda, Department of Mechan- 

ical Engineering, University of Twente, P.O. Box 217, 
7500 AE Enschede, The Netherlands. 

to the more than two sublot problem. A 
general framework combining batching and 
lot sizing with scheduling is developed in a 
recent paper by Potts and van Wassenhove 

c31. 
This paper is concerned with the interesting 

question, which kind of batch structure maxi- 
mizes time-constrained throughput in a par- 
ticular process structure. The process structure 
considered is serial and consists of n + 1 pro- 
cesses, where 11 is an arbitrary, but finite natu- 
ral number. It is described as follows. 

A material is successively subjected to n pro- 
cesses on a facility A and one finishing process 
on facility B. In our terminology facility A is 
called a multi-process facility and facility 
B a one-process facility. For each process a 
set-up time and a unit processing time are 
specified. The objective is to maximize time- 
constrained throughput, i.e. the number of 
units of finished product produced within 
a given time allowance T. 

Two additional assumptions are made. The 
transfer batch between the two facilities A and 
B equals one unit of product and material 
stock is sufficient to obtain a maximum 
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through-put during T. Throughout the paper 
the word time-constrained will be omitted for 
convenience. 

In previous papers [4-73, attention has been 
paid to the question which batch structure 
maximizes throughput. Distinction has been 
made between single batch and multiple batch 
structures. In the case of a single batch struc- 
ture there is one common batch size for each 
process. The throughput is equal to this com- 
mon batch size. If for at least one process at 
least two batches are processed then a multiple 
batch structure is used. 

A batch cycle consists of one batch for each 
process. If the sizes of these batches are all 
equal, then the batch cycle is called homogene- 
ous. A homogeneous multiple batch structure 
consists of two or more homogeneous batch 
cycles. In this case the batch sizes are equal per 
batch cycle, but may be different for different 
batch cycles. A heterogeneous multiple batch 
structure permits splitting of the batch size of 
a homogeneous batch cycle in order to achieve 
an additional reduction of idle time on the 
second facility. Note that a multiple batch 
structure as well as a further splitting of batch 
sizes are beneficial due to the assumption of 
the full availability of both facilities during the 
time allowance T. 

Maximum throughput for the class of ho- 
mogeneous batch structures can be obtained 
by integer programming. For each number of 
homogeneous batch cycles m = 1,2,. . . an inte- 
ger program can be formulated for some pro- 
cess structure. Such an integer program has 
nz constraints. Each constraint reflects a criti- 
cal utilization path, i.e. a path of full utilization 
during the time allowance T, cf. Refs. [S. 61. 
Primarily one is interested in whether a single 
or a multiple batch structure is optimal. In Ref. 
[7] an overview of results in this respect is 
given. For certain process structures a single 
batch structure appears to be optimal, mean- 
ing that, by induction on the number of homo- 
geneous batch cycles given by m, the maximum 
throughput is proven to be obtained for m = 1. 
In other structures (among those the one ex- 
plored in this paper) a single batch structure is 
not optimal, because a double batch structure 

is proven to yield better results. However the 
question remains, whether homogeneous 
batch structures are truely optimal. This paper 
provides examples for which heterogeneous 
batch structures outperform the best homo- 
geneous ones. Such examples may be obtained 
by the integer programs developed in this pa- 
per. The dual formulations of these integer 
programs consider minimization of the make- 
span for a given total production quantity Q. 
As such they fit into the general framework 
presented in Ref. [3]. 

2. Homogeneous batch structures 

Primarily some additional notation is intro- 
duced. The process structure in the introduc- 
tion can be represented by (Al, A2,. . . , An, B), 
where Aj denotes process j on facility A for 
j = l( 1)~ The fi ’ h’ rus mg process on facility B is 
simply denoted by B. Set-up times and unit 
processing times are represented by S(.) and 
P(.) respectively. The set-up time for process 
B may be assumed to be zero without much 
loss of generality. The batch size of batch cycle 
i is denoted by Qi, i = l( 1)m. The maximum 
throughput for m batch cycles is denoted by 
MT( tn). 

Starting with n = 2, i.e. process structure 
(Al. A2, B), some previously obtained results 
are summarized (cf. Refs. [S, 61). Distinction is 
necessary between two cases: P(B) < P(A2) 
and P(B) > P(A2). For P(B) d P(A2) a single 
batch structure is optimal. For P(B) > P(A2) 
a multiple batch structure is optimal since it 
can be proven that MT(2) > MT(l) (cf. Ref. 
[6]). The integer programs for MT(l) and 
MT(2) in the case P(B) > P(A2) are respective- 
ly given by 

max MT(l) = Q. 

subject to 

S(A) + QP(A1) + P(A2) + QP(B) d T, 

Q > 0 and integer, 
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and The results for m = l(l)6 are given by 

max MT(2) = Qi + Q2, MT(l) = 23, MT(2) = 28, MT(3) = 30, 

subject to 

2S(A) + Q,P(A) + Q,P(Al) + P(A2) 

+ Q,W) d T, 

S(A) + Q,P(Al) + P(A2) + (Qi + Q,)P(B) d T, 

Qi, Q2 > 0 and integer, 

where P(A) = P(A1) + P(A2) and S(A) = S(A1) 
+ S(A2). Each constraint of these integer pro- 

grams reflects a critical utilization path. 
A critical utilization path is defined as a path 
of full utilization during the time allowance T, 
cf. Refs. [S, 61. For MT(m), nl = 3,4,. . . , integer 
programs can be formulated, which yield the 
maximum throughput for m homogeneous 
batch cycles. The function MT(m) appears to 
attain a maximum for some m. 

The integer programs for process structure 
(Al, A2, B) can be easily extended to n pro- 
cesses on facility A by replacing P(A1) by 
P(A1) + P(A2) + . . . + P(An - 1) and P(A2) 
by P(An) and defining P(A) = P(A1) + . . . 
+ P(An) and S(A) = S(A1) + . . . + S(An). In 
fact the integer programs for an n-process facil- 
ity are equivalent to those for a 2-process facil- 
ity. Hence the proof that MT(2) > MT(l), 
given in Ref. [6] for process structure (Al, A2, 
B) is also valid for process structure (Al, 
A2,. . . , An, B). 

Next a numerical example is given for II = 4. 
The data are: 

P(A1) = P(A2) = P(A3) = P(A4) = 10, 

P(B) = 50, 

S(A1) = S(A2) = 50, S(A3) = S(A4) = 20, 

T = 2000. 

MT(4) = 30, MT(5) = 30, MT(6) = 28. 

In the next section it will be shown that a 
solution with a throughput of 31 exists. This 
solution has a heterogeneous multiple batch 
structure with six batch cycles. 

3. Heterogeneous batch structures 

A heterogeneous multiple batch structure 
permits variation in batch size per cycle. In this 
section heterogeneous batch structures are 
considered, which are constructed by applying 
a batch splitting procedure to a homogeneous 
batch cycle. The common batch size for each 
process Q of a homogeneous batch cycle will 
be called a throughput batch size, since it may 
be considered as a split of the total throughput. 
In turn the throughput batch size is split into 
at least two subcycles. For each subcycle batch 
sizes are specified for each process. If a process 
is not used in a subcycle, the corresponding 
batch size is equal to zero. The batch sizes can 
be arranged in a matrix with processes and 
subcycles as entries. All columns in this matrix 
sum up to the throughput batch size Q. 

In the case of a serial process structure for 
which the ingoing material is successively pro- 
cessed in batches by each process of the pro- 
cess structure, a restriction should be put on 
the subcycles. For process structure (Al, 
A2,. . . , An, B) this restriction states that for 
each process j = 2( 1)n + 1 in the sequence, the 
total number of units produced by the fore- 
going process should be sufficient to produce 
its prescribed batch size. It implies for example 
that the first row of the process-subcycle 
matrix is non-increasing. In general the batch 
size 4iJ of processj in subcycle i should satisfy 

qi] G 1 qk,j-13 
k=l 

for i = l(l)m, j = 2(l)n + 1, (1) 
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and 

2 qij = Q, for j = 1( l)n + 1, (2) 
1= 1 

where m is the number of subcycles. In Fig. 1 
only the batch structures (a) and (b) exhibit 
feasible subcycles. 

One important reason for considering het- 
erogeneous batch structures might be the dis- 
tribution of the set-up times of the processes. 
The numerical example presented in the pre- 
ceding section with S(A1) = S(A2) > S(A3)= 
S(A4) suggests to treat processes Al and A2 
differently from processes A3 and A4. If pro- 
cess-subcycle matrix would be 

( 

q+r q+r 4 4 
0 0 rr > 

(3) 

for a throughput batch size of Q = q + r. Note 
that only the processes A3 and A4 are involved 
in the split of the through-put batch. 

On the other hand it can be demonstrated 
that it makes no sense to consider heterogen- 
eous batch cycles if the number of processes on 
facility A is equal to two (n = 2). The integer 
program for one heterogeneous batch cycle 
with process-subcycle matrix given by 

(4) 

yields two constraints given by 

S(A) + (q + r)P(Al) + P(A2) + (q + r)P(B) d T, 

S(A) + (q + r)P(Al) + P(A2) + S(A2) 

+ qP(A2) + rP(B) < T. 

a) 99444 b) 4 4 4 0 0 
0 0 5 5 5 5 5 5 9 9 

cl 00555 d) 4 4 4 9 9 
9 9 4 4 4 55500 

Fig. 1. 

The first constraint refers to the critical utiliz- 
ation path, where the switch from facility A to 
facility B occurs after the first unit of subbatch 
q and remains on B thereafter. The second 
constraint refers to the second possible critical 
utilization path, where the switch occurs after 
the first unit of subbatch r. In both cases there 
is an initial idle time on facility B which is 
equal to S(A) + (q + r)P(Al) + P(A2). In the 
second case there is an additional idle time on 
facility B between the two subbatches q and r, 

which is equal on facility B between the two 
subbatches q and r, which is equal to S(A2) 
+ qP(A2) - qP(B). If this quantity is non-pos- 

itive then both critical utilization paths co- 
incide, since the latter idle time vanishes. If it is 
positive then the second critical utilization 
path exceeds the first one in time for fixed 
q and r, implying a smaller time-constrained 
throughput. The same reasoning can be ap- 
plied to multiple throughput batches. 

To investigate the numerical example of the 
preceeding section further, integer programs 
are formulated with which splits of the kind 
described above, can be evaluated numerically. 
Primarily an integer program is developed to 
obtain the maximum throughput for a single 
throughput batch with the process-subcycle 
matrix given by (3). In this case there appears 
to be two possible critical utilization paths. 
The difference between them depends on the 
existence of idle time between the two batches 
of size q and r on facility B. If there is no idle 
time between them, the critical utilization path 
is on facility A from time zero until the first 
unit of batch q of process A4 is produced. Then 
it switches to facility B and remains on that 
facility until the end of the time allowance T. If 
there is an idle time between the two batches 
q and r then the second possible critical utiliza- 
tion path switches from facility A to facility 
B after production of the first unit of batch r of 
process A4. The corresponding Gantt chart is 
presented in Fig. 2. 

The corresponding integer program is given 

by 

max MT( 1) = Q = q + r, 
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A 

B (path 1) 
q+r 

. . .._.................... 

B (path 2) 

Fig. 2. 

subject to subject to 

S(A) + (q + r)P(A12) + qP(A3) + P(A4) 
S(A) + (ql + r,)P(A12) + qiP(A3) + P(A4) 

+ (qi + rl + q2 + r2)P(B) d T, 

+ (q + r)P(B) G T, 
S(A) + (ql + ri)P(A12) + qiP(A34) + S(A34) 

S(A) + (q + r)P(A12) + qP(A34) + S(A34) 

+ rP(A3) + P(A4) + rP(B) < T, 

+ r,P(A3) + P(A4) + (rl + q2 + r,)P(B) < T, 

Z’S(A) + (ql + r,)P(A) + S(A34) 

+ (q2 + r2V’(AW 

q, r 3 0 and integer. + qzP(A3) + P(A4) + (q2 + r,)P(B) < T, 

In this program the following additional nota- 
tion is used: 

S(Ajk) = S(AJ’) + S(AJ’ + 1) + . . . + S(Ak) 

2S(A) + (ql + r,)P(A) + 2S(A34) 

+ (q2 + rJP(A12) 

+ q2P(A34) + r2P(A3) + P(A4) 

and 
+ r2P(B) < T, 

ql, rl, q2, r2 > 0 and integer. 

P(Ajk) = P(Aj) + P(AJ’ + 1) + . . . + P(Ak). 

The integer program for two throughput 
batches Q1 = q1 + rl and Q2 = q2 + r2, each 
with a process-subcycle matrix of the type 
given by (3), is formulated by 

max MT(2) = Q1 + Q2 = q1 + rl + q2 + r2, 

Obviously this program reflects four possible 
critical utilization paths, each corresponding 
to one of the four possible switches from facil- 
ity A to facility B after the production of the 
first unit of a batch of process A4. 

The integer program for three throughput 
batches with sizes Qi = q1 + rl, Q2 = q2 + r2 
and Q3 = q3 + r3 respectively, is developed 
along the same lines and will be omitted here. 
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The numerical results obtained by applying 
these three integer programs to our example 
are 

MT(l) = 25, MT(2) = 29, MT(3) = 31. 

By explicit enumeration there appear to be 
three solutions with MT(3) = 31. They are 
given by 

13 13 4 4 13 13 4 4 13 13 4 4 
9 9 9 9 9 9 

11 11 3 3 11 11 3 3 11 11 3 3 
8 8 8 8 8 8 

7 7 4 4 7 7 3 3 7 7 2 2 
3 3 4 4 5 5 

Alternatively three instead of two processes 
can be involved in the splitting. The process- 
subcycle matrix then becomes 

( Y+r 0 4 7-t-r’ 4 4 > (5) 

The integer program for one throughput batch 
becomes 

max MT(l) = Q = q + r, 

subject to 

S(A) + (q + r)P(Al) + qP(A23) + P(A4) 

+ (q + r)P(B) < T, 

S(A) + (q + r)P(A13) + qP(A4) + S(A24) 

+ P(A4) + rP(B) d T. 

q, r > 0 and integer. 

A comparison of this integer program with 
the one presented above for two processes in- 
volved in the split reveals that in the first 
constraint a term rP(A2) is omitted and in the 
second constraint a term S(A2) is added. It can 
also be shown that for two throughput batches 

QI = 41 + rl and Q2 = q2 + r2 in the left 
members of the four constraints respectively 
- r,P(A2), S(A2), - r,P(A2) and S(A2) are 

added. 
A third possibility is to vary the number of 

processes involved in the splitting over the 
throughout batches. For example, if three 
throughput batches are considered, the pro- 
cesses A3 and A4 may be involved in the split- 
ting of the first two throughput batches and 
the processes A2, A3 and A4 in the third 
throughput batch. Numerical results on these 
splitting devices applied to our example, are 
summarized in the next section. 

4. Numerical results 

Splits are denoted by a 3-tuple (a, b, c), a, 
b and c specifying respectively the number of 
processes involved in the split of the first, the 
second and the third throughput batch. A zero 
stands for an unsplitted throughput batch. If 
one process is involved in the split of 
a throughput batch then it will be process A4. 
The involvement of two processes refers to the 
processes A3 and A4. The involvement of three 
processes refers to the processes A2, A3 and 
A4. For example, the 3-tuple (2, 2, 3) indicates 
that the processes A3 and A4 are involved in 
the splits of the first and the second through- 
put batch, while processes A2, A3 and A4 are 
involved in the split of the third throughput 
batch. 

In Table 1, results are given for the max- 
imum throughput obtained for respectively for 

Table 1 

MT(l) MT(2) MT(3) 

(0, 0. 0) 23 28 30 
(1, 1. 1) 23 28 29 
(1. 1, 2) 23 28 30 
(1. 2, 2) 23 29 30 
(2. 2. 2) ‘5 29 31 (3) 
(2. 2. 3) ‘5 29 31 (6) 
(2. 3, 3) 25 30 31 (5) 
(3, 3, 3) 21 30 31 (2) 
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one, two and three throughput batches. In the 
case of one throughput batch the split is in- 
dicated by a. For two throughput batches the 
splits are indicated by a and b respectively. For 
three throughput batches the splits are in- 
dicated by a, b and c respectively. 

The numerical results for one, two and three 
unsplitted throughput batches have already 
been given in Section 2. For comparison they 
are included in Table 1 and denoted by the 
3-tuple (0, 0, 0). 

The number of solutions for the splits with 
maximum throughput of 31 found for this 
example, is given by the number between par- 
entheses. The total number of different solu- 
tions is 16. 

5. Conclusions 

Since only one numerical example is invest- 
igated no general conclusions can be drawn. 
On the basis of this numerical example one 
may conclude: 

(1) Splitting of throughput batches is wor- 
thwhile, although there is only a small increase 
of 1 with respect to the best result on homo- 
geneous batch cycles of 30. Moreover, one 
should recognize that splitting leads to an in- 
crease of administration. 

(2) The solutions with throughput 31 are 
obtained by splits involving 2 or 3 processes on 
facility A. One may conclude that splits involv- 
ing only one process are not worthwhile. 

(3) Regarding the results involving 2 or 
3 processes in the split, (2, 3, 3) and (3, 3, 3) 
have the best overall performance. So the dis- 
tribution of set-up times does not provide 
a clear guidance in deciding which processes 
should be included in the split. 

Also for more complicated process struc- 
tures integer programs for throughput batch 
splits can be developed. For example one may 
increase the number of one-process facilities or 
consider structures with alternating a multi- 
process facility and a number of one process 
facilities. It has been proven by means of 
equivalence of integer programs for these pro- 
cess structures that a single throughput batch 
(or equivalently a single batch structure) is not 
optimal, cf. Ref. [7]. For these process 
structures integer programs can be formulated 
and used in a similar way as is done in this 
paper. 
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