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Abstract

This paper describes three aspects of uncertainty in geographical information

systems (GIS) and remote sensing. First, the positional uncertainty of an area

object in a GIS is discussed as a function of positional uncertainties of line

segments and boundary line features. Second, the thematic uncertainty of a

classified remote sensing image is described using the probability vectors from a

maximum likelihood classification. Third, the ``S-band'' model is used to quantify

uncertainties after combining GIS and remote sensing data.

1 Introduction

Remote sensing has been used to obtain information about the Earth while GIS reflects

the need to combine land attribute information with its geometric representation in

order to carry out spatial analyses. These two disciplines were developed separately in

the past but, in fact, they are complementary. Remote sensing data can be used for GIS-
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based spatial analysis and data from a GIS can guide the analysis of remotely sensed

images. Therefore, integration of these techniques for data acquisition and analysis has

become more and more important. A number of researchers have investigated their

integration in the last few years (e.g. Ehlers et al 1989, Mace 1991, Star 1991, Dobson

1993, Shi 1994, Shi and Tempfli 1994).

In 1990, the error analysis research group of the National Center for Geo-

graphic Information and Analysis (NCGIA) Initiative 12 identified six problems for

research on uncertainty in the integration of remote sensing and GIS (Lunetta et al

1991). Of the six problems, three are directly related to the spatial distribution of

uncertainty originating from a combination of positional and thematic errors. This

uncertainty, specifically in the integration of remote sensing and GIS, is the focus

of this research. Three critical issues need to be addressed: (1) the spatial structure

of positional uncertainty in GIS originating from independent random error of

points; (2) the spatial distribution of thematic uncertainties in classified remotely

sensed images originating from the classification procedure; and (3) the com-

bination of positional and thematic uncertainties in the integration of remote

sensing and GIS.

The error distribution of points has been well investigated in disciplines such as

geodesy and surveying (e.g. Mikhail and Ackermann 1976). The methods for

analysing the uncertainties of line segments and area objects have been investigated by

several researchers. For example, Perkal developed the epsilon band model for

positional errors of a line (Perkal 1956, 1966) that was later utilized by Chrisman

(1982) and Blakemore (1984). The epsilon band is constructed as a simple buffer of

constant width (epsilon) on either side of a measured line, and the true location of the

line is assumed to be contained within the epsilon band. However, there is no

provision to describe the distribution of a measured line segment around its true

location. Zhang and Tulip (1990) and Caspary and Scheuring (1992) derived the

variances in the X and Y directions for an arbitrary point on the line segment based

on the law of error propagation. Dutton (1992) and Caspary and Scheuring (1992)

used Monte Carlo simulation methods to model the distribution of line segments and

other geometric features. The simulation approach, however, cannot describe the

results in the form of formulae and thus cannot directly be used in a GIS. Leung

(1997) described the distribution of area objects in GIS based on the probability

theory.

A prerequisite to combining positional and thematic uncertainties is statistical

derivation of the spatial structures and the error distribution for geometric features (Shi

and Tempfli 1994). There is no well-developed model available that can be readily

applied to combine positional and thematic classification uncertainties. Haemers (1990)

investigated the accuracy assessment problems that arise from the integration of GIS

and remote sensing; however, the spatial structure of uncertainties following

integration is still an open question.

In this paper, we present a rigorous statistical approach for describing the

characteristics of the positional uncertainty of the geometric features in GIS. These

include line segments, line features, boundary lines and area objects. The properties of

the latter features are determined by the constituent former ones. For example, the

uncertainty properties of a polygon are determined by those of the component

boundary lines.
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2 Modelling Uncertainties

2.1 Positional and Thematic Uncertainties

The analysis of uncertainties is an important practical problem encountered in many

GIS applications. For instance, one wants to create an inventory of the land cover areas

over a certain region or set of regions, e.g. within a county. The boundary of this area

has been digitized in point mode from a map and is available in GIS format. The land

cover types are obtained from a classified remote sensing image using a maximum

likelihood (ML) classifier (Figure 1). A typical question is: What is the area of each land

cover class in this county? A complete answer would not only include the respective

size of the areas (e.g. in km2 or number of pixels) but also their respective spatial

uncertainties (e.g. the spatial distribution of a certainty parameter).

In this example, two types of spatial data are involved: original GIS data and

classified remote sensing data brought into GIS. We assume that the original GIS data

only have positional uncertainties while the classified remote sensing data only exhibit

thematic uncertainties, and the thematic uncertainty originates from the classification

process. We will not discuss possible thematic uncertainties of the GIS data nor include

positional uncertainties of remote sensing data when registered to a GIS data layer.

Geometric procedures for the rectification and registration of remote sensing imagery

are well developed and have been discussed elsewhere (e.g. Ehlers 1997).

2.2 Problem Formulation

On a digitized map in GIS (see Figure 1), we know P�Zp�X� 2 Oj�, i.e. the probability
that point Zp belongs to a certain area Oj (e.g. a county). Here we assume that Zp has

Figure 1 Land resources inventory using remote sensing and GIS techniques. ZT is a pixel

in the classified image, ZP is a GIS point which is close to a boundary. ZPAT is a point in the

combined layer with the same location as ZP and ZT.
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no thematic error and we refer to this probability as the positional uncertainty

indicator. X is a vector in a two-dimensional Euclidean space, normally X = (X, Y)T,

which determines the geometric location of point Zp.

Typically, a remote sensing image is classified using an ML classification. For a

given pixel ZT(X) which is geometrically located at X, its thematic characteristics are

determined by its position in an n-dimensional feature space, where n is the number of

spectral bands of the remotely sensed image. Using ML classification techniques, the

probability that this pixel belongs to a specific class Ci (i.e. P�ZT�X� 2 Ci�� can be

calculated (Richards 1986). Ci is one class type of the whole class category set. This set

is usually pre-defined in a supervised ML classification procedure. The probability

value per class can be used as a thematic uncertainty (or certainty) indicator.

Using this notation, we can now define our problem as follows: After combining

the classified remotely sensed image and the GIS boundary layer, what is the

probability that a point which is located at X belongs to Ci and Oj, i.e.

P��ZT�X� 2 Ci� ^ �Zp�X� 2 Oj�� � ?

To solve this problem, three aspects have to be investigated: (1) the positional

uncertainty of an area object, (2) the thematic uncertainty of a classified remote sensing

image, and (3) the combination of positional and thematic (PAT) uncertainties.

2.3 PAT Uncertainty, Fuzzy Boundary and Interior Regions

A PAT uncertainty indicator is defined as an uncertainty indicator which models the

integrated positional and thematic uncertainties. In order to describe the uncertainty of

a two-dimensional object (e.g. area feature) in a vector-based GIS, we need to

distinguish two regions: (1) the fuzzy boundary region, and (2) the interior region

(Figure 2).

The difference between interior and boundary regions is based on positional

uncertainty. An object in a vector-based GIS is built of line segments. The error of the

Figure 2 Fuzzy boundary and interior regions. The positional uncertainties of boundary

points affect the fuzzy boundary region and have no effect on the interior region.
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endpoints of these line segments (or vertices of the area object) directly affect the

positional uncertainty of the object boundary. The region which is affected by

boundary errors is called the fuzzy boundary region. The interior region is the one

where the effect of the positional uncertainties of its vertices is smaller than a certain

threshold (e.g. larger than 3� standard deviation for a normal distribution) and can be

ignored. The interior region is influenced mainly by thematic uncertainties which

originate from errors in the classification process. Therefore, the distribution of spatial

uncertainty can be derived by probability methods commonly used in remote sensing

classification. In the fuzzy boundary region, however, both positional and thematic

uncertainty factors contribute to the overall uncertainty. Consequently, we will focus

on the uncertainty in the fuzzy boundary region.

3 Modelling Positional Uncertainties in GIS

To model the PAT uncertainty of an object, its positional uncertainty must be

addressed first. The basic geometric element of a vector-based GIS object is the point.

Two connected endpoints form a line segment. A line feature is composed of two or

more line segments. An area object is defined by three or more boundary line features.

Thus, we have a hierarchical procedure to build an area object: points, line segments,

line features, boundary line features, and area objects.

To describe the nature of the line segment uncertainties, two problems need to be

solved. One is concerned with the width of the fuzzy boundary region of a line segment

and its shape, and another is the probability distribution of line segments.

3.1 Positional Uncertainty of Points

A point is geometrically defined by a pair of coordinates, e.g. Z(X,Y) in a two-

dimensional space. Coordinate errors constitute one of the positional uncertainties in a

GIS. The second component is caused by sampling and approximation of a curved line

feature by a sequence of straight line segments. This error is directly associated with the

curvature of the line and the sampling spacing used. The first component is the focus of

this paper.

The coordinates of a point in GIS are usually the result of various measurement

and processing steps. Each operation involved adds to the overall error, through

blunders, systematic errors and/or random errors. As existing techniques can largely

detect systematic errors and blunders, we will only deal here with random errors. If we

can express the final coordinates as a function of the original measurements, we can

quantitatively determine the error characteristics of a GIS point by applying the laws of

error propagation (i.e. propagation of expectations and variances-covariances). We

assume that the coordinate errors follow a normal distribution and the errors of any

two points are not correlated. Although theoretically manageable, for reasons of

simplicity we will investigate the general case of independent error, based on the

assumption that the error of points which are digitized in point mode is independent.

We denote two given points that define a line segment by Z1 � �X1; Y1�
T
and

Z2 � �X2; Y2�
T
. They represent a stochastic vector, following a bi-normal distribution

(N2):
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where �1; �2; �1; �2; �XX; �YY; �XY and �YX are parameters of the two endpoints.

Further, we assume equal covariances at the two endpoints of a segment ��XY � �YX�. The
expectation values or true values of the points Z1 and Z2 are �1 � ��1; �1� and

�2 � ��2; �2�, respectively. In the case where we have more than one meassurement for

each point, these parameters can be estimated from the measurements. However, if we

(typically) only have one measurement for each point, these parameters have to be estimated

from test data ± points we believe to have the same nature and magnitude of error.

3.2 Positional Uncertainty of Line Segments

3.2.1 Definition of a Line Segment

A line segment is defined by two endpoints Z1 and Z2. By introducing

r � lr=l�r 2 �0; 1�� we can describe an arbitrary point Zr on the straight line between

Z1 and Z2 (Figure 3):

Zr � �1ÿ r�Z1 � rZ2 for 0 � r � 1 �3�

Zr is a linear function of Z1 and Z2 and also has a bi-normal distribution with the

following properties:

Figure 3 Definition of a line segment of length l. A line segment Z1Z2 is defined by two

endpoints Z1 and Z2. Zr is an arbitrary point on the line segment with a distance lr from Z1.
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Zr � N2
�1ÿ r��1 � r�2

�1ÿ r��1 � r�2

� �

; ��1ÿ r�2 � r2�
�XX �XY

�XY �YY

� �� �

�4�

3.2.2 Perpendicular Distribution

The probability density function of a point in an arbitrary direction can be derived

from the marginal probability density of a bivariate probability density function. Since

we are interested in the probability distribution in the direction perpendicular to the

line segment, we first rotate the original O-XY coordinate system to the O-X
0
Y

0
such

that the X
0
axis is parallel to the line segment �1�2 (see Figure 4). Z

0

r, the transformed

random vector of Zr, is again normally distributed. The marginal probability density of

Z
0

r in the Y
0
direction is used to describe the perpendicular distribution (Shi 1994)

f
0

Y�y
0

� �

Z 1

ÿ1

f
0

�x
0

; y
0

�dx
0

�
1

�2��1=2��0

yy�
1=2

exp�ÿ�y
0

ÿ �
0

r�
2=2�

0

yy� �5�

where

v
0

r � ÿsin�����1ÿ r��1 � r�2� � cos�����1ÿ r�v1 � rv2�

�
0

yy � �A�ÿsin���� � B�cos�������1ÿ r�2 � r2�

A � cos����XY ÿ sin����XX

B � cos����YY ÿ sin����XY

� is the rotation angle from the Oÿ XY to the Oÿ X
0
Y

0
coordinate system.

Figure 4 Perpendicular distribution of an arbitrary point on the line segment.
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3.2.3 Probability Distribution of Line Segments

The distribution of the line segment Z1Z2 can be characterized by three density

functions: the perpendicular density (see Equation 5) for any r 2 �0; 1� and the densities

at the two endpoints Z
0

1 and Z
0

2. The probability density function of Z
0

t (t = 1 or 2) can

be written as:

f
0

t�x
0

; y
0

� �
1

�2��j�0

tj
1=2

exp�ÿ
1

2
�Z

0

ÿ E�Z
0

t��
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0

t�
ÿ1�Z

0

ÿ E�Z
0

t��� �6�
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Z
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The density surface of line segment Z1Z2 is determined by Equations 5 and 6 and is

presented in Figure 5. The probability distribution of a line segment describes how an

actual segment Z1Z2, which is composed of four random variables, normally deviates

from the true location �1�2.
Based on a simplified model (equations 5 and 6), the probability distribution of a

line segment is illustrated in Figure 6. The width of the distribution regions is enlarged

by 400% for demonstration purposes. For reasons of faster computer calculations, a

Figure 5 Probability distribution around the true location �1�2.
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triangular density function instead of a Gaussian one was used. In the diagram, the

darker densities represent higher probabilities that a measured line segment is actually

located in that zone. The white dots are the ``true'' locations of the points. Variances of

points in (a) and (b) are 2.0 and 3.0, respectively.

3.2.4 Confidence Region of a Line Segment

We can now define a region around the measured segment Z1Z2 so that the true

location of this line segment is included with a predefined confidence level. The

derivation of the confidence region is based on the distribution of an arbitrary point on

the line segment. We construct Jr so that it contains �r with a predefined confidence

level , while all other � of the line segment is contained in their respective confidence

regions. This involves an upper bound condition, leading to the inequality:

P��r 2 Jr; r 2 �0; 1�� > : �7�

The confidence region J of a line segment is the union of the sets Jr for all r 2 �0; 1�.
One region Jr is a set of points (x, y)T satisfying:

Xr ÿ c � x � Xr � c

Yr ÿ d � y � Yr � d; �8�

where

c � k1=2���1ÿ r�2 � r2��XX�
1=2

d � k1=2���1ÿ r�2 � r2��YY�
1=2 �9�

The parameter k depends on the selected confidence level  and can be obtained

from a chi-square table, k � �2
2;�1��=2. For example, for  � 0:90, �1� �=2 � 0:95,

k � 5:99. A detailed derivation can be found in Shi (1994).

It is easy to verify that the maximum value of ��1ÿ r�2 � r2�1=2 in Equation 9

occurs if r = 0 or 1, whereas the minimum value is at r = 0.5. This means that the

Figure 6 The probability distribution region of a line segment varies with the variances of

the two endpoints and the segment error indicators that are used.
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confidence region is smallest at the centre of the line segment and largest at the

endpoints (Figure 7). We can state, therefore, that for a given statistical confidence level

the true line segment lies somewhere inside the confidence region. Hence, the

confidence region determines the fuzzy boundary region. The area covered by the

confidence region depends on the variance-covariance matrices of the two endpoints

and the pre-defined confidence level.

3.3 Positional Uncertainty of Line Features and Boundary Line Features

A line feature is usually composed of several line segments. In describing positional

uncertainties of boundary line features, two problems need to be solved: the confidence

region of boundary line features and their probability distribution. The confidence

region of a line feature can be constructed by the union of the confidence regions of the

constituent line segments. It provides an uncertainty zone of the spatial extension of a

line feature.

One of the major problems in describing positional error distributions of line

features is to understand the nature of the uncertainty in the region where two line

segments join (see Figure 8). Within this region, the probabilities that a given point Q

belongs to an object A are made up of two parts, the uncertainty distribution of line

segment L1 and L2. They are denoted by P1�Q 2 A� and P2�Q 2 A� respectively. To

obtain the overall probability, we need the combined uncertainty distribution

P1^2�Q 2 A� of the line feature L12 which is composed of L1 and L2 (Figure 8).

Fuzzy set theory is used to resolve this problem. To apply fuzzy set theory, we need

to treat the probability values as corresponding membership values. For example, the

probability that Q belongs to object A is treated as the membership value that element

Q belongs to a fuzzy set A. The reason that we can follow this approach is that the

subjective interpretation of probability considers probability as a measure of belief.

Thus, we can state:

Figure 7 Confidence region of a line segment.
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P1^2�Q 2 A� � min�P1�Q 2 A�; P2�QinA�� �10�

which means we can use the minimum operation between the probabilities for

segments L1 and L2 within the joint region of two line segments. Accordingly, we can

generate the uncertainty value for the composed line feature (Figure 9).

Figure 8 The uncertainty of a line feature L12 is determined by the uncertainties of line

segments L1 and L2 and by considering the uncertainty of points in the joint region (e.g.

point Q). The line feature L12 is part of the boundary of polygon A.

Figure 9 Uncertainty distribution of lines that are composed of two line segments. For all

cases, the probability distribution region is chosen as 95% of the total region;

�xy � �yx � 0 and �xx � �yy � �3:0�1=2 for both endpoints. The white dots are vertices

of the lines. The grey values represent the probabilities for the location of a measured line

feature. The darker the grey values, the higher the probability values.
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3.4 Positional Uncertainty of Area Objects

An area object is defined as an area enclosed by a boundary line feature. The positional

uncertainty of an area object is determined by that of the boundary. As shown above,

the positional uncertainty affects mainly the fuzzy boundary region. The positional

uncertainty of an area object is described by the probability that a point (x, y) belongs

to the area object (O), i.e. P��x; y� 2 O� 2 �0; 1�. When a point ``moves'' from the

outside to the interior region of the area object, the probability changes from 0 to 1.

The probability value of a point in the boundary region is dependent on the probability

distribution of the boundary line feature and is determined by the cumulative

probability function perpendicular to the boundary. Figure 10a is an example for the

uncertainty of an area object. The grey values represent the probability that a point at

this location belongs to the object. Darker values indicate higher probabilities. The

white dots are vertices of the lines.

3.4.1 Comparison with Epsilon Band-based `̀ Point-in-polygon'' Description

Blakemore (1984) used the epsilon band model to describe the `̀ point-in-polygon''

problem, i.e. the uncertainty of an area object enclosed by a polygon. He distinguished

five relationships between a point and the area object (Figure 10b). These are:

`definitely in' (point 5), `definitely out' (point 1), `possibly in' (point 4), `possibly out'

(point 2) and `ambiguous' (point 3). Using the epsilon band, only five different

qualitative relationships between an area object and a point can be provided.

Using the probability distribution of line segments proposed in this paper, we can

describe the relationships between a point and an area object by probability values

varying continuously within [0, 1] (Figure 10a). This approach provides a quantitative

indicator of uncertainty and, moreover, facilitates the combination with thematic

uncertainty indicators. We can also characterize the positional uncertainty of the area

object by computing a probability frequency distribution. For example, with 10

probability interval classes (i.e. 0±10%, >10±20%, . . ., >90±100%), we can calculate

the result of Table 1 for the area object in Figure 10a, which is a catchment of the study

area. Of a total of 1638 pixels, 649 (i.e. about 40% of the area) have a probability of

less than 90% that they belong to the area object. The rate (40%) is dependent on the

Figure 10 `̀ Point-in-polygon'' description of uncertainty for an area object. For this

developed uncertainty model (a), the uncertainty values vary continuously within [0,1]; for

the epsilon band model (b), uncertainty is distinguished only in five qualitative levels.
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error of the vertices and the size of the area object. If the error of the vertices is

relatively small compared to the size of the area object, the rate will be significantly

lower than 40%.

4 Modelling Thematic Uncertainties of a Classified Image

Thematic uncertainty, in this paper, refers to the thematic uncertainty inherent in a

classification derived from a remote sensing image. We will make use of the probability

vectors in the well developedML classification technique as a basic thematic uncertainty

indicator. The parameters used for classification in this technique are estimated from

training samples, and then a probability vector is calculated for each pixel in the image

defining the likelihood of specific class membership. The pixel is then assigned to the

class with the maximum probability (Richards 1986). For example in an image with four

classes (urban, water, forest grass), a pixel with the probability vector:

�P�ZP�X� 2 urban� � 0:33; P�ZP�X� 2 forest� � 0:31;

P�ZP�X� 2 grass� � 0:31; P�ZP�X� 2 water� � 0:05�

will be assigned to the class ``urban''. The other probability values are usually ignored.

In the above case, however, there is only very weak evidence that this pixel actually

belongs to the class urban (the probability is only 33%). If the maximum probability

value for each pixel is retained, the certainty of the classification result can be

described. If we attach the probability value P�ZP�X� 2 urban) = 0.33 to the classifi-

cation result, it is easy to see that this classification is very uncertain. If the whole

probability vector could be attached, a user may further learn that the pixel may just as

well be forest or grass (both with probabilities of 31%).

To demonstrate the effects of thematic uncertainties based on ML classification

techniques, we will use a test image of Mongolia with four derived classes as described

above. We have classified a subset of a Landsat TM scene based on ground truth

evidence that was available for this data set using ML. Figure 11a shows the maximum

probability value of each pixel as a shade of grey. Darker grey values indicate higher

probabilities. Figure 11b shows the classified image based on the maximum probability

value for each pixel. The four grey levels (from dark to light) indicate four classes:

urban, grass, water and forest. To compute the frequency distribution of probability

values, we use ten intervals (0±10%, >10±20%, . . ., >90±100%). The quantitative

results are listed in Table 2.

Table 1 Frequency distribution of probability values of Figure 10a. In this table, the row

`̀ Prob.'' shows the intervals of probability values in percent; `̀ Num.'' is the number of pixels

located within a certain interval (e.g. 20 pixels have a probability value between 40 and

50%); `̀ Sum'' is the total number of pixels in the study area. From this table, one can see

the positional uncertainty of the area object indicated by the numbers of pixels located

within each probability interval.

Prob. 0±10 >10±20 >20±30 >30±40 >40±50 >50±60 >60±70 >70±80 >80±90 >90±100 Sum

Num 0 0 0 0 20 107 154 170 198 989 1638
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Using the visualization technique demonstrated in Figure 11a and the statistical

results summarized in Table 2, the user of the classified data not only knows the total

area and spatial distribution for each class, but also the certainty (or uncertainty) of

this classification. For example, 56 of the total of 117 pixels that are classified as urban

have a probability of less than 30%. Thus, we can see the classification result of

``urban'' is rather uncertain. On the other hand, 138 out of a total of 222 pixels

classified as `̀ grassland'' have a probability that is higher than 90%, making this result

much more certain.

Based on the techniques discussed above, we can now combine positional and

thematic uncertainty assessments in the integration of GIS and remote sensing

data.

5 Modelling the Combined Positional and Thematic Uncertainties

The `̀ S-band'' model was developed to combine positional and thematic uncertainties

(Shi 1994, Shi and Ehlers 1993). There are two alternatives within the `̀ S-band'' model:

one is based on the product rule, the other is based on a certainty factor model with

probabilistic interpretation. If two data layers are from two different data sources, for

example one is from GIS and another is from remote sensing data, they are independent

to each other. The product-rule-based approach can thus be used to combine positional

and thematic uncertainties. The uncertainty values are within the range [0,1]. For the

general case with non-zero correlation between the data layers, we developed a model

based on a certainty factor model with probabilistic interpretation. This model is also

used in expert system design for uncertainty-based reasoning. With this model, the

range of uncertainty expressions is extended from [0, 1] to [ÿ1, 1]. This is particularly

important for a reasoning which includes uncertainty indicators covering both positive

and negative ranges.

The problem defined in Section 2.2 is about integrating GIS and remote sensing

data, and we know that the uncertainties of the two layers' data are independent to

each other. We can therefore directly apply the product rule model to calculate the

combined positional and thematic (PAT) uncertainty (Figure 12):

P��ZT�X� 2 Ci� ^ �ZP�X� 2 Oj�� � P�Zt�X� 2 Ci�P�ZP�X� 2 Oj� �11�

Table 2 Maximum likelihood classification and thematic uncertainty expressed as

frequency distribution of maximum probability values. In this table, the column `̀ Sum''

shows the total area in pixels that were classified as `urban', `grass', etc. The table also

shows the distribution of each class within the probability intervals, thus describing the

uncertainty of the classification.

Prob. 0±10 >10±20 >20±30 >30±40 >40±50 >50±60 >60±70 >70±80 >80±90 >90±100 Sum

Urban 0 0 56 13 3 9 7 5 11 13 117

Grass 0 0 18 17 4 15 7 11 12 138 222

Water 0 0 12 0 0 0 0 0 0 7 19

Forest 0 0 394 57 65 48 65 73 126 452 1280

Total: 1638
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Figure 11 (a) Maximum probability values. The darker the grey values, the higher are the

probability values. (b) Classification result based on the maximum probability values

(maximum likelihood classification). The four different grey values (from dark to light)

represent four classified land cover classes: `water', `urban', `forest' and `grass'.
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where P�ZT�X� 2 Ci� is the probability that ZT�X� belongs to class Ci and

P�Zp�X� 2 Oj� is the probability that point ZP�X� belongs to area object Oj.

Given a boundary layer with positional uncertainty indicators and a classified

remote sensing image with thematic uncertainty indicators, an overlay operation in GIS

can be used to solve the uncertainty combination problem based on Equation 11. The

combined uncertainty for the area indicated in Figure 10a is summarized in Table 3.

Table 3 combines information about the size of each land cover class within the area and

the uncertainty that is associated with this class. For example, the size of the land cover

type `forest' within the test area is 1280 pixels of which 80 pixels have a certainty between

10 and 20%, 344 pixels between 20 and 30%, . . ., and 240 pixels between 90 and 100%.

One result that is evident from a comparison of Tables 2 and 3 is that after the

PAT combination more pixels have lower probability values. For example, within the

Figure 12 Diagram of modelling PAT uncertainty of objects using the `̀ S-band'' model.

Table 3 The statistics of a classified image with PAT uncertainty indicators. In this table,

the column `̀ Sum'' is the total area in pixels that were classified as a certain land cover

class. The table also describes the PAT uncertainty of each land cover class by providing

the number of pixels within each probability interval.

Prob. 0±10 >10±20 >20±30 >30±40 >40±50 >50±60 >60±70 >70±80 >80±90 >90±100 Sum

Urban 0 24 42 7 7 15 12 4 2 4 117

Grass 0 9 19 13 18 26 25 29 29 57 222

Water 0 4 8 0 2 4 1 0 0 0 19

Forest 0 80 344 62 95 93 109 133 124 240 1280

Total: 1638
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interval of 90±100%, the number of pixels for the class `urban' is reduced from 13 to 4,

for `grass' 138 to 57, for `water' 7 to 0 and for `forest' from 452 to 240. On the other

hand, the number of pixels with high uncertainty values is increased. For example,

within the interval 10±20%, the number of pixels for `urban' is increased from 0 to 24;

for `grass' 0 to 9; for `water' 0 to 4 and for `forest' from 0 to 80. With the PAT

uncertainty, we can get a quantitative description of the extent to which the overall

uncertainty is increased by the combination of positional and thematic uncertainties.

6 Conclusions

In this paper, an analytical approach was presented for handling uncertainties in the

integration of GIS and remote sensing. Within the five aspects of uncertainty ±

positional, thematic, temporal, topological and completeness ± this paper addressed the

first two types of uncertainty in the context of GIS and remote sensing integration.

The ``S-band'' model to combine positional and thematic uncertainties within the

framework of probability theory and certainty factor modelling was described. A

procedure for modelling positional uncertainties of area objects in GIS was outlined

based on the cumulative uncertainties of defining line segments, line features, boundary

line features, and finally area objects. Within this procedure, modelling the uncer-

tainties of line segments was the most fundamental aspect. Two models were developed

for line segments based on the confidence regions and probability distributions of line

segments. The ML probability vector was then used to describe thematic uncertainties

of classified remote sensing data.

In modelling uncertainties concerned with the integration of GIS and remote

sensing, there are a number issues that can be studied further. Modelling temporal and

topological uncertainties is the most essential. The `̀ S-band'' model can be further

extended to include these uncertainty components.
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