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Abstract In this paper, we present feature descriptor eval-
uation and feature regression for multimodal image analysis.
First, we compare the performances of several popular inter-
est point detectors and feature descriptors from multimodal
images with focus on visual and infrared images. The per-
formances of detectors are evaluated mainly by the score of
repeatability and accuracy and the descriptors are assessed
by using the rate of precision and recall. Secondly, we
analyze the relationship between the corresponding descrip-
tors computed from multimodal images. The descriptors
are regressed by means of linear regression as well as
Gaussian process. Then the features on infrared images are
predicted by mapping the descriptors from visual images to
the infrared modality through the regression results. Predic-
tions are assessed in two ways: the statistics of absolute error
between true values and actual values, and the precision score
of matching the predicted descriptors to the original infrared
descriptors. We believe that this evaluating information will
be useful when selecting an appropriate detector and descrip-
tor for multimodal image analysis. Also the experimental
results show that regression methods achieve a well-assessed
relationship between corresponding descriptors from multi-
ple modalities.
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1 Introduction

Recent advances in imaging technique have resulted in an
explosion in the use of multimodal images in a variety of
fields, such as scene reconstruction, pose estimation and
video surveillance. The popular multimodal sensors include
visual RGB and infrared sensors, consumer RGB-D cameras,
and Time-of-Flight sensors. The integration of images from
these multiple sensors can provide complementary informa-
tion and therefore increase the accuracy with an observed
and characterized quantity [28].

Image feature detection and description play key roles in
computer vision. In most applications, such as image match-
ing and scene registration, key points detection or feature
detection is regarded as the basic starting step in the proce-
dure of processing. The behaviour of detectors decides the
performance or even the success of the research largely. In
order to choose the proper detector and descriptor for differ-
ent scenarios, the evaluation is necessary for all the related
work.

In the domain of computer vision, the detected points can
be represented by some descriptors. In this way a point with
its surroundings is described by a vector. Therefore, we repre-
sent an image with a set of vectors, which get rid of the noises
and some unnecessary information. Moreover the computa-
tional costs are also reduced as well as the memory costs,
which shows to be more efficient.

Given multi-modal images, a series of applications are
provided such as matching objects and scene registration. It
is easy to obtain the interest points from the given images
and reform them by some feature descriptors. However, it
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comes to a question if there is some relationship between the
two corresponding feature vectors. Or can we get the feature
descriptor of a point in infrared image by the corresponding
point in visual image. Moreover, with a mapping function, a
descriptor is mapped to an infrared image as a new vector. So
how would this new vector looks like, where might this new
vector locate in the infrared images. In this work, we address
the aforementioned problems using regression methods. To
the best of our knowledge, there is no existed work on analyz-
ing the relationship among descriptors in multimodal images.

In this paper, we analyse the behaviour of detectors and
feature descriptors in multimodal images with focus on visual
and infrared images. In order to get a reliable result, we
construct the datasets with different types of images from
different categories. We present a comprehensive evaluation
of the performance of interest point detectors and feature
descriptors in multimodal images. The performances of inter-
est point detectors are evaluated by the scores of repeatability
and accuracy as well as quantity analysis. And in the case of
feature descriptors, we analyse the rate of precision and recall
to assess their performances.

Moreover we present an idea of feature regression from
visual images to infrared modality, which indicates the exis-
tence of the relations between the descriptors. The regression
is worked in two ways: linear regression and Gaussian
process for regression (GPR). The former has a computa-
tional advantage that it runs faster and costs lower than other
common regression methods. And the latter can obliquely
represent the underlying regression function without claim-
ing, but rigorously. As a result, the descriptors of points
detected in visual images are mapped as the descriptors
from infrared images. We evaluate the performances of linear
regression mainly by the value of coefficient of determination
and the results are evaluated by the mean and variance of error
between the descriptor vectors. In order to assess the perfor-
mance of Gaussian process regression, we apply the regres-
sion result to the application of matching. The results are eval-
uated by the precision of matching. Moreover the regression
error is considered as the criterion as well. From the results,
we can find that, based on specific covariance functions and
inference methods, the regression process performs well that
the predicted descriptors are similar to the actual descriptor
vectors. Example results of GPR are shown in Fig. 1.

The rest of the paper is organized as follows: Section 2
presents the related work of this paper and Sect. 3 details the
evaluation strategy. In Sect. 4, we provide a short review of
related detectors and descriptors and the experimental results
are analysed in Sect. 5. Section 6 presents the other part of
work, namely our two regression methods for multimodal
image analysis: linear regression and Gaussian process for
regression. Section 7 shows the results of two regression
methods for the feature descriptors in multimodal images.
Finally, this work is concluded in Sect. 8.
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Fig. 1 Exampleresults of GPR using SIFT. The left column are original
visual images with detected points, which are also displayed in the
form of star on the right side images. And the squares of the infrared
images on the right column represent the relocated descriptors that are
achieved by Gaussian process regression. The lines here connect the
corresponding points between the multimodal images

2 Related work

On account of the development of sensor fusion technique,
many applications were developed under multiple modality.
Morris et al. [22] explored a statistic research on analyz-
ing the significant characters on infrared images. Compared
to corresponding visual images, the infrared images had
noticeably less texture indoors because of the homogeneous
temperature. Further, the joint wavelet statistics presented
strong correlation between object boundaries in visual and
infrared images, which could be used in vision applications
with the combined statistical model. Moreover an overview
of registering different types of sensors was provided by
Zitova and Flusser [32]. Hrkac et al. [11] studied an approach
to multimodal image registration based on corners and Haus-
dorff distance. The approaches using the mutual information
as the matching criterion are the state-of-the-art technique
in multispectral matching [12,17]. Due to the points and
the contours of infrared images are different enough relative
to visual images of the same scene, this region-based tech-
nique performs relatively well. Han et al. [9] implemented
a line-based global transformation using the edge proper-
ties for the image registration between visual images and
infrared images. Besides, Firmenichy et al. [6] provided a
feature based matching and multimodal RGB to NIR reg-
istration with multispectral interest points. Furthermore an
experiment for multimodal 2D and 3D face recognition was
presented by Chang et al. [4]. Bansal and Daniilidis [1]
pursued on the problem of matching images with disparate
appearance arising from factors such as dramatic illumi-
nation (day vs. night), time period (historic vs. new) and
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rendering style differences. By using the eigen-spectrum of
the joint image graph, the persistent features were detected
and matched into pairs.

Additionally, several researches are focusing on the fea-
tures in some other area of multimodality. For instance Lu et
al. [16] presents a novel binary range-sample feature in depth
for action recognition, which has a great advantage in running
speed and preserves the invariance against scale, viewpoint
and background. It samples the pixel pairs from activity
layer as well as the pairs from background and activity layer
respectively and then generates the two bits feature by t
tests, by which the sign and amplitude of depth difference
between pixel pairs are encoded. Besides, Xia and Aggarwal
[30] presented an algorithm to extract spatio-temporal inter-
est points (STIPs) from depth videos named DSTIP, whose
response function is calculated by combining a 2D Gaussian
smoothing filter on spatial dimensions and a temporal filter.
Meanwhile a novel depth cuboid similarity feature (DCSF) is
proposed, which described the spatio-temporal shape of the
3D cuboid around DSTIP by self-similarity and showed good
performance on action recognition. And Ni et al. [23] intro-
duced two multi-modality feature representations for activity
recognition. One is a Depth-Layered Multi-Channel STIPs
(DLMC-STIPs), which extended the STIPs as a multi-depth
channel histogram representation. And the other is a Three-
Dimensional Motion History Images (3D-MHIs) approach.
Comparing to the original MHI, this fusion scheme used an
additional depth sensor and therefore can contain forward as
well as backward motion histories.

Furthermore, numbers of works studied on the perfor-
mance of detectors and descriptors. In [26], the repeatability
rate and information content of interest points were intro-
duced in evaluating different interest point detectors. Miko-
lajczyk and Schmid [18] presented a comparative evaluation
of affine invariant interest point detectors and Mikolajczyk
et al. [20] evaluated the performance of affine region detec-
tors under varying imaging conditions. Besides Moreels
and Perona [21] explored the performance of a number of
popular feature detectors and descriptors in matching 3D
object features. The relationship between the correspond-
ing descriptors computed from visual and infrared images
has been analyzed in [31]. In [19], a set of local descriptors
such as shape context, steerable filters, PCA-SIFT, SIFT are
evaluated by using criterion recall with respect to precision.
They proposed an extension of SIFT that shows the better
performance comparing to the original method.

Moreover Sedai et al. [27] presented a comparative evalu-
ation of appearance descriptors as Discrete Cosine Transform
and the Histogram of Shape Context, and shape descriptors
such as several variants of the Histogram of Oriented Gradi-
ents (HOG) descriptor for 3D human pose estimation using
the Relevance Vector Machine regression and K-nearest
neighbour regression methods. Specific to visual SLAM, [8]

compared the behaviour of different interest point detectors
and local descriptors. Besides, [7] evaluated the interest point
detectors and feature descriptors for real-time visual track-
ing comprehensively by combinations with detectors and
descriptors. And the method turned out to be appropriate
for relevant factors such as performance measures, testbed,
etc.

3 Evaluation of detectors and descriptors
in multi-modal images

3.1 Evaluation of interest point detectors

Since the performance of computer vision applications
depends on the robustness of detection, the repeatability
score is taken as the evaluation criterion in this paper. It is
defined as the ratio of the number of detected keypoints in
both RGB and infrared images and the amount of the in RGB
image detected points for each image pair, which is formed
as

# € IRNRGB
Repeatability = {l;'{l;ﬂp < RGB) }, (1)

where IR and RGB refer to the sets of detected points in
infrared (or near-infrared) images and corresponding visual
images perspectively.

The feature detectors with a high score of repeatability
present a robust performance between the image pairs: the
keypoints detected in visual images by these detectors can
be likely detected in the corresponding infrared images as
well. In practice, it makes sense in the applications such as
matching in multi modal images. The points detected in both
modal images show the very important information of the
images, especially the similarity and the relationship between
the correspondences.

Another criterion is accuracy of the detectors in the form
of

Accuracy = #{plp € IRN RGB} 2
#{plpe IR}

It represents the proportion of the interest points from
infrared images that can be also detected from visual images.
A detector with high accuracy means that most interest points
detected from infrared images can be found in visual images,
namely there is no many points that appear only in infrared
images.

In a word, a detector with high repeatability and accuracy
can easily catch the commonalities between visual images
and infrared images. Therefore they can be used in multi
modal matching and perform very well theoretically.

@ Springer



978

X. Yong et al.

After the procedure of detection, data are stored with the
location of the points in two sets, IR and RGB. Since the two
images in a pair are in the same position condition, the two
nearly close points indicate an interest point pair. Assuming
the third set, which is the joint of the two sets mentioned
before, the interest point pairs are put into it. Based on the
Egs. 1 and 2, it is easy to get the evaluation results.

3.2 Evaluation of feature descriptors

The criteria of the evaluation on descriptors are precision and
recall, which are expressed as follows:

. #correct_matches_retrieved
Precision = - , 3)
#matches_retrieved

#correct_matches_retrieved
Recall = . 4)
#correct_matches

In the Expression 3, precision expresses capability to
obtain the correct matches. A feature descriptor with low
precision indicates the poor competence to get the potential
important information of the interest points. And recall rep-
resents the ability of finding all the correct matches as in
the Expression 4. The factor #correct_matches_retrieved
represents the number of correct correspondences obtained,
the variable #matches_retrieved is the number of matches
given by the matching methods with a threshold and the vari-
able correct_matches refers to the total number of correct
correspondences.

The criteria for a correct matches depend on the location
of the correspondence. In this paper, the threshold of the
distance different is within 5 pixels in Euclidean Distance.
Namely, if the two components in a correspondence are at a
distance from 5 pixel, then they are considered as a correct
match. While the two images in a pair are in the similar scene,
this judgement is reasonable to draw a conclusion.

Considering SIFT [14] and SURF [2], which are all com-
mon local descriptors in computer vision applications, the
keypoints are detected by DoG and Hessian respectively. And
then the descriptor vectors are computed to represent the
information in the range within the neighbourhoods, espe-
cially the interest points.

Given the feature descriptors in two datasets, the vectors
are matched by the algorithm represented in [15], which
can efficiently reject the matches that are too ambiguous.
A threshold is specified in this method, and a descriptor is
matched to another descriptor only if their distance times the
threshold is not greater than the distance of first descriptor to
any other descriptors. In our experiment, the threshold is set
as 1.5.

Aiming at feature descriptor LBP and HOG, the process
is different. The descriptors are applied to the whole image,
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i.e., we get a LBP and a HOG vector for each image. Then
the matches are obtained by the descriptors describing the
whole images. As above, the criterion approach is to com-
pare the precision and recall of the matches among images.
Obviously, the correct matches should be the image pairs
with the same scene. In this way, LBP and HOG are more
like global descriptors rather than local descriptors.

4 Detectors and descriptors

In this section, several state-of-art detectors and descriptors
are introduced respectively.

4.1 Interest point detectors

Interest point detectors are used for extracting features from
images. And an interest point refers to the point that differs in
properties, such as brightness comparing to its surroundings.
It may be an independent point, a corner or on edges. There
are various of detectors to extract these kinds of features.

In this subsection, five detectors, i.e., Harris corner detec-
tor [10], Difference of Gaussian [14], Harris Laplace detector
[13], Hessian detector and Hessian Laplace detector [ 18], will
be introduced in detail.

4.1.1 Harris corner detector

The algorithm of this detection focuses on each pixel of
images. It calculates the gradient for each pixel and looks
for the pixel with maximal gradient. A matrix with respect
to every pixel (x, y) is needed, which is an approximation to
the local auto-correlation function of image /:

2 I
M= X y ,
2 W [Lcly 2 ]

where I, and I, denote the derivatives of image /, and w,
specifies the window: w, , = exp{—u? + v¥)/20%}. A
region is classified as a corner, if the eigenvalues A, Ay of
M are both large.

4.1.2 Difference of Gaussian (DoG)

DoG [14] was first introduced as a part of SIFT. Given a
single image I, aDoG pyramid is build with several images as
output, each being a unique difference of Gaussian. The input
image is blurred by different scales . And one “Octave” is no
other than the difference between consecutive blur amounts:

DoGyo =G (x,y, ko) =G (x,y,0)

1 e_x2+y2/2(k0)2— 1
27 (ko )? 27 (0)2

2002 2
e X Ty /200)7
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The maximum and minimum are determined as interest
points by comparing each pixel to its twenty-six neighbours
including the 8 neighbours on the same octave and each 9
neighbours in the upper and lower octave.

4.1.3 Harris Laplace detector

In order to create a scale-invariant detector, the traditional 2D
Harris corner detector are combined with a Gaussian scale
space representation, that is the idea of Harris Laplace detec-
tor [13]. Since the points detected by Harris corner detector
are not scale invariant, M = u (x, o7, 0p) is denoted as
the scale adapted second-moment matrix used in the Harris
Laplace detector:

M = p(x,07,0p)
L2 (x,0p)

LyLy(x,0p)
LxLy (x,0p) '

where g (o7) is the Gaussian kernel of scale o7 and x =
(x, y)T. Here is L (x, op) the Gaussian-smoothed image by
Gaussian kernel with scale op. The Laplacian scale selection
procedure is applied to find the characteristic scales at the
locations of interest points detected by Harris corner detector.

4.1.4 Hessian detector

The approach of Hessian detector searches the points in given
image I, which have strong change in gradient along both
orthogonal directions. Hessian Matrix is calculated issued
from Taylor expansion:

o [1” x)

Iy (X)}
Ly (%) '

Iyy (X)

The points are considered as interest points, which are the
maximum by the determinant of H within a 3x3 window.
This method responses mainly on corners and strongly tex-
tured areas.

4.1.5 Hessian Laplace detector

Hessian Laplace detector [18] is a scale invariant detector
used in blob detection. Similar to Harris—Laplace detector,
it uses the Hessian matrix to locate points in space and the
Laplacian function to compute their scales.

4.2 Feature descriptors

Descriptors are used to represent the image structure in spa-
tial neighbourhoods at a set of feature points. There are
various kinds of descriptors, and we can choose an appro-
priate one based on the application. In this subsection, we

will present four descriptors used in this paper, namely SIFT,
SURF, LBP and HOG.

4.2.1 Scale-invariant feature transform (SIFT)

SIFT is based on the interest points detected by Difference of
Gaussian [14]. The descriptor records the direction for each
interest point, thus it has good scale and rotational invariance.
A key point is characterized with location, scale and direc-
tion. The orientations of 16 x 16 neighbors of each keypoint
are calculated and then projected into one of eight directions
with 4 x 4 region. Subsequently, a histogram is built with 8
bins, which indicate 8 directions. As a result, the descriptor
is in the form of vector with 128 dimensions. With the help
of this descriptor, we can match key points between images.

4.2.2 Speeded up robust feature (SURF)

SUREF is an improvement of SIFT, which is first presented
by [2]. It is claimed that it performs excellent on repeata-
bility, distinctiveness and robustness. The interest points are
detected using Hessian matrix, that is named as Fast Hessian
detector, which is calculated for each point. To solve it, SURF
makes efficient use of integral images. Then by comparing
each point with its 26 neighbours on the same octave and
the octave above and below, the points with maximum or
minimum responses are considered as interest points after
filtered by given threshold. The descriptor is based on sum
of Haar wavelet responses within the region in the size of
4 x 4, instead of histogram in SIFT, which is in the form as:

2odx 2 dy X ldx] 2 1dy,

dy and dy are the filter responses to the Haar wavelets. Thus
the output of SURF is a feature vector with 64 dimensions.

4.2.3 Local binary pattern (LBP)

Local binary pattern (LBP) is a type of texture spectrum
model proposed in [29] and first described by Ojala et al.
[24]. In this approach, an examined window is first divided
into 16 x 16 cells. And then for each pixel in a cell, compar-
ing the gray-value with other eight neighbors. It is assigned
as 1, when the neighbor is greater than center pixel. Thus, an
8 bit binary pattern comes, i.e LBP. Compute the histogram
of the frequency of each binary number occurring over the
cell and normalize. The feature vector for the window should
be the concatenate normalized histograms of all cells.

4.2.4 Histogram of oriented gradients (HOG)

HOG is first represented by Dalal and Triggs [5], which
focuses on pedestrian detection at that time. And the essential
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Fig. 2 Sample images from the datasets RGB-NIR, OutdoorUrban and MoCap respectively. The images in the first row are visual RGB images
and the images in the second row are the corresponding infrared (or near-infrared) images with respect to the images above

idea behind the Histogram of oriented gradient descriptors is
that local object appearance and shape within an image can
be described by the distribution of intensity gradients or edge
directions. To implement it, the image need to be divided into
small connected regions, called cells. And then compute the
gradient for each pixel in the region of a cell. The histogram
of gradient in each cell is the descriptor for the cell and the
combination of these histograms presents the descriptor. In
some advanced process, the cells are grouped into larger spa-
tial blocks and these blocks are normalized separately. As a
result, the final descriptor is exact the vector composed of all
the components of the normalized cells by the blocks in the
detection window.

5 Experiments of evaluation
5.1 Datasets

We use three datasets for evaluating interest point detec-
tors and feature descriptors, namely RGB-NIR scene dataset
from Image and Visual Representation Group in EPFL, Out-
doorUrban by Dynamic Graphics Project in University of
Toronto and MoCap from Institute for Information Process-
ing in Leibniz University Hannover.

These three datasets contain different image types and
are about different views. The dataset RGB-NIR consists
of numbers of images captured in RGB and Near-infrared

@ Springer

Table 1 Information of datasets

Dataset Type Data Image size  Contents
number

RGB-NIR Near-infrared 370 640%480 Nature
views

OutdoorUrban  Infrared 330 384 %288 City
views

MoCap Infrared 1300 640x480 Human
motions

(NIR) by visible and NIR filters using separate exposures
from modified SLR cameras. There are totally 9 categories
such as field, forest, mountain and water. And the images in
the dataset OutdoorUrban are fully about the views around
the city, such as cars, buildings and some other city scenes.
Compared to the natural scenery, there are greater thermal
variations in urban environments [22]. In this dataset, there
are total 290 outdoor urban daytime image pairs as well as
about 30 urban night-time image pairs. The data are captured
by a single axis, multiparameter camera which combines an
infrared camera and a visible light camera. And the content
of dataset MoCap is the human motions such as waving,
boxing and jogging indoors. Since the two cameras are set
with a small baseline, the taken images are not identical in
view, but nor too far away from each other. Some samples of
the datasets are shown in Fig. 2 and the basic information is
summarized in Table 1.
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Fig. 3 The example images with detected points by different detectors,
where each feature refers to a detected point. In details, red is Harris
corner detector, blue circles refer to DoG, the green ones are detected

5.2 Results of detectors evaluation
For a fair comparison, 100 image pairs are firstly random

selected from each dataset. The interest points are extracted
by the detectors introduced in Sect. 4.1 and the example

T T
O Harris corner detector
DoG

Harris Laplace
Hessian

Hessian Laplace i

by Harris Laplace detector, magenta refers to Hessian detector and the
yellows are Hessian Laplace detector (color figure online)

results are shown in Fig. 3. The results are presented as illus-
trated in Figs. 4, 5 and 6. From the figures, it is obvious that
Harris corner detector and Difference of Gaussian detection
stand out among the five evaluating objects on both repeata-
bility and accuracy.
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Fig. 4 The repeatability (left) and accuracy (right) performance of
detectors on dataset RGB-NIR. The detectors are distinguished by
colours, where red line refers to Harris corner detector, blue line is DoG

detector, green line refers to Harris Laplace detector, yellow lines refer
to Hessian detector and last the black lines refer to Hessian—Laplacian
detector (color figure online)
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Fig. 5 The repeatability (left) and accuracy (right) performance of detectors on dataset OutdoorUrban
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Fig. 6 The repeatability (left) and accuracy (right) performance of detectors on dataset MoCap

Firstly, we analyse the quantity of the detectors simply.
The Harris detector and DoG detector explore much more
keypoints than the others in the three datasets. However Har-
ris Laplace detector performs the worst among them, which
can detect only about 25 % of the amounts compared to Har-
ris detector. Especially in dataset RGB-NIR, Harris detector
extracts 3019 points in average, and DoG follows with 2153
detected keypoints. Besides, there is a distinct difference
among the datasets drawn from our results. It shows that
more visual detected points are explored than the infrared
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keypoints in dataset RGB-NIR as well as OutdoorUrban,
however there are more keypoints detected from infrared
images than them from visual images in the dataset MoCap.
Since the MoCap camera is a kind of thermal camera that
is sensible to thermal, the variations of body temperature
are shown clearly, which however can not be seen in visual
images.

On the perspective of repeatability, the red line referring
to Harris corner detector (Har) and the blue line referring to
Difference of Gaussian detector (DoG) lie higher than any
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Table 2 Repeatability and accuracy of detectors

Dataset Har DoG HarLap Hes HesLap
Repeatability
RGB-NIR 0.8913 09166 0.6815  0.6622  0.6080
OutdoorUrban  0.3298  0.4314 0.4322  0.2881 0.3913
MoCap 0.2123  0.3124 0.1356  0.1494  0.1433
Accuracy
RGB-NIR 0.9996  0.9949 09504  0.9574  0.6080
OutdoorUrban ~ 0.7909  0.7724  0.6981 0.7885  0.8571
MoCap 0.3057 0.6377 0.1230  0.1264 0.1186

other detectors in dataset RGB-NIR as illustrated in Fig. 4.
The score of repeatability of Harris corner detector is over
60 % and the DoG’s is about 56 %. The distance between
them is not so great, but the other detectors are standing
quite far away from them. The repeatability scores of Har-
ris Laplace detector (HarLap), Hessian detector (Hes) and
Hessian Laplace detector (HesLap) are around 25 %, which
are only about half of the scores on Harris corner detector and
DoG. The situation of dataset OutdoorUrban is the same as
in dataset RGB-NIR, but the degree falls down heavily in this
dataset. The bad performance mainly dues to the low sharp-
ness of the infrared images. In most images, there are only
a few and even no key points detected from the IR image.
Hence by Expression 1 the score is much less than expec-
tation. Furthermore we can find that in all the three dataset,
the green line referring to Harris-Laplace and the black line
referring to Hessian Laplace and the yellow line referring to
Hessian detection always accompany with each other.

The trend of accuracy is similar to the repeatability. Har-
ris corner detector and Difference of Gaussian detection are
better than the other three detectors.

Moreover, we extend the process on all the images from
each dataset. And the result is shown in Table 2 in detail.
The repeatability scores of Harris Laplace detector, Hessian
detector and Hessian Laplace detector increase particularly
twice than before. Considering accuracy, the first two posi-
tions belong to Harris corner detector and DoG detection as
before. And the accuracy scores are all located in a reason-
able range, which means that most key points detected from
infrared image can be detected from the corresponding visual
RGB image.

For dataset MoCap, the motion is classified with jogging
and waving. The result shows that the performance of waving
are overall greater than jogging. It is notable that the accuracy
of detectors from dataset MoCap is lower than them on other
datasets. The reason is, as mentioned before, that more inter-
est points are detected from the body of humans in infrared
images.

Notice that another reason is due to the content of the
images. An unexpected noise arises from the appearance of

Table 3 Precision and recall of feature descriptor SIFT, SURF, HOG
and LBP

RGB-NIR OutdoorUrban MoCap

Precision Recall Precision Recall Precision Recall
SIFT  0.8674 0.0200 0.0297 0.0000 0.0019 0.0000
SURF 0.7850 0.3400 0.0000 0.0000 0.0000 0.0000
HOG 1.0000 0.7000 0.4696 0.3333 0.7036 0.4538
LBP 009315 0.3676  0.3978 0.2126 0.3453 0.3440

a second person. While this person is standing behind the
participant, he has not been captured by the visual camera.
But because of a small angle between cameras, the shape of
the person is shown in infrared images.

As aresult, DoG stands in a dominant position comparing
to any other detectors not only in repeatability but also in
accuracy. This detector is strongly recommended in multi
modal detections.

5.3 Results of descriptors evaluation

As shown in Table 3, both SIFT and SURF perform well in
the dataset RGB-NIR. And the average of precision of SIFT
is 86.7 % that is about 8 % greater than it of SURF. However,
the precision in other datasets are so terrible that there is few
correct matches being found between a pair of images. The
recall of SIFT compared to SURF in the dataset RGB-NIR
is very low, mainly due to the less matches it has found.

From the Table 3, it is also clear that HOG and LBP both
have a good precision score. Especially the precision of HOG
is 100 % with recall being equal to 70 %. However the recall
score of LBP is a little less with about 35 %.

The performance of HOG and LBP is worse in dataset
OutdoorUrban than the other datasets. HOG still outperforms
than LBP in this situation, but not significantly. In dataset
MoCap, the precision score of HOG is over twice greater
than the score of LBP. Nevertheless, there is no big difference
of recall.

6 Feature regression analysis

Regression analysis is a statistical method to explore the
dependent relationship between variables. A regression
model consists of unknown parameter 8, independent vari-
ables X as well as the dependent variable Y. It relates Y to
a function of X and 8 as Y ~ f(X, B), which describes the
relationship between X and Y. In this way, Y can be predicted,
given X.

Based on this principle, we propose an idea named Feature
Regression analysis, in which the feature descriptor vectors
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Feature descriptor: Daj __f—% Db,

Visual image NIR image

Da, ——f—% Db,

Fig. 7 A diagram of the general illustration of Feature Regression
analysis

are regarded as variables of relation function. In our case, the
feature descriptors from visual images are treated as source
variables and the target variables are the ones from infrared
images. The detailed introduction is as following:

For a scene I, DA = {Da}; and DB = {Db}; are
sets of feature descriptors representing the interest points
of I in modality A and modality B respectively, where the
index i indicates the interest point. With the observations
DA and DB and using the technique of regression analy-
sis, an implicit or explicit mapping function is trained as
DB = f(DA), which relates the dependency between the
feature vectors from modality A to B. An illustration of Fea-
ture Regression analysis is given in Fig. 7.

Once the mapping function is determined, the feature
descriptor Db; of an interest point j about another scene
on modality B can be calculated, given the feature descriptor
Da; of the point on modality A, as Db; = f(Daj). As in
this work, the infrared features can be obtained through its
correspondences from visual images.

Since linear regression is acommon and light method used
in statistical problems, it is considered in this work at first.
Then Gaussian process is dealt as an advanced method, which
can especially solve non-linear problems.

6.1 Linear regression

In statistics, linear regression is an approach to model the
relationship between a scalar dependent variable and one or
more explanatory variables, in which data are modeled by lin-
ear functions and unknown model parameters are estimated
from the data [3].

Upon to the principle of linear regression, a descrip-
tor Da with n dimensions from visual image is mapped
to a descriptor as Db in the same dimension in infrared
image through a matrix as linear transformation, which is
given as:

Db = Da x H (5

@ Springer

where H is an x n matrix. H is firstly calculated by training
and then used to predict the new input Da forward to a Db.
The process of linear regression in our work is implemented
by the method of Least squares, which is a technique for
mathematical optimizing that the sum of the squares of the
errors is minimized by equating its gradient to zero and then
the regressors are obtained through the mean value.

6.1.1 Regression estimating

The regression procedure is estimated by a set of statistics,
such as R2, F, p and the estimate of the error variance
err.var. R? is the coefficient of determination defined as

_ SSres
SStot

and S S is the total sum of squares in the model that depends
only on the dependent variables, namely Db here. And SS;.¢
is the sum of squared errors in the linear model. It is a very
important indicator to state if the regression is efficient while
it informs the goodness of fit of a model. In regression, R>
represents the percent of the data that is the closest to the line
of best fit, in other words, it informs how well the regres-
sion line approximates the real data points. The F' statistic
is the test statistic of the F-test on the regression model,
for a significant linear regression relationship between the
response variable and the predictor variables. P value p is
the probability of obtaining a test statistic at least as extreme
as the one that was actually observed, assuming that the null
hypothesis is true. When the p value is less than the given
significant level, in usual case as 0.05, the null hypothesis
will be rejected. By using these arguments, the performance
of linear regression is evaluated.

RI=1 (©)

6.1.2 Predictions evaluating

After the regression procedure, the linear transformation
matrix H is obtained and then used to predict the new descrip-
tor Da forward to a Da’. For sake of predictions evaluating,
we compare the prediction Da’ and the true descriptor vector
Db by the absolute difference between corresponding com-
ponents in vectors as ¢ = |Da’ — Db|. Two parameters are
used to evaluate, that is mean, which is the average value of
¢ and the variance of €.

However, the method of linear regression can not solve
non-linear problems. Hence we use Gaussian process for
regression as an advanced method, in which a specific model
need not to be claimed at first.

6.2 Gaussian process for regression

Given some noisy observations of a dependent variable, the
estimate of anew value x comes out easily by using a function
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f (x), which can describe the distribution of the observations.
Rather than a specific model which the claimed function
f(x) relates to, a Gaussian process can represent f(x)
obliquely, but rigorously [25]. That is so-called Gaussian
Process Regression (GPR).

Taking account of the noise on the observed target values
from measurement errors and so on, which are given by

Ih =Ynt € @)

where y, = f(x,), and €, is a random noise variable whose
value is chosen independently for each observation n.

The conditional distribution of ¢y, given target values
t=1(t1,..., tN)T is itself Gaussian-distributed as the form:

tns1lt ~ NKTCR't e — kTCR'K). 8)

The mean, kTCX,It, is known as the matrix of regression
coefficients, and the variance, ¢ — kTCX,l Kk, is the Schur com-
plement of Cy in Cy 1. These are the key results that define
Gaussian process regression. While the vector k is a func-
tion with respect to the test input value Xy 41, the predictive
distribution is a Gaussian depended on Xy 1.

As a crucial component of a Gaussian process predictor,
covariance function controls how much the data are smoothed
in estimating the unknown function [25]. Two functions are
considered: the squared exponential (SE) covariance func-
tion has the form

2
ks (r) = exp (—;—EZ) : ©)

with parameter ¢ defined as characteristic length-scale. This
covariance function has sample functions with infinitely
many derivatives and thus is very smooth. Another is rational
quadratic (RQ) covariance function

2\ ¢

with «, £ > 0, which can be regarded as a scale mixture
(an infinite sum) of squared exponential (SE) covariance
functions with different characteristic length-scales (sums of
covariance functions are also a valid covariance).

The descriptors are treated in two ways:

6.2.1 Global descriptors

Assuming a particular structure, where the covariance func-
tion is set as the squared exponential function and the mean
of Gaussian process is defined as zero like the assumptions
in most cases. In addition, the Expectation propagation (EP)

is applied as the inference function and the likelihood func-
tion is in the form of Laplace. The parameters of covariance
function are initialized with zero at first and later they are
optimized by minimizing their negative log marginal likeli-
hood.

6.2.2 Local descriptors

The goal of this part is to check the potential location rela-
tionship of the descriptors. Based on the training data, the
descriptor vectors DA from visual images are mapped to the
infrared images as DA’. For each descriptor Da in the set
DA, we are looking for the most similar descriptors among
all the descriptors DB in infrared images. In other words, a
vector is predicted by a descriptor from visual image. And
the task is to check the location of this vector in the infrared
image.

The processing procedure is as following: first the inter-
est points are detected from infrared and visual images and
then represented by feature descriptors. Hence we obtain a
set of vector pairs. Each vector consists of two parts, the
descriptor of the interest points and its location. The next
step is to obtain the predictions by Gaussian process. The
initial hyperparameter of covariance function is set with
0.7. And then for one prediction vector, find the closest
vector among all the original descriptor vectors in infrared
images by using the Euclidean distance between two vec-
tors. Moreover min-pooling approach is used to avoid too
many incorrect matchings. In practice, assuming the infrared
image and visual image display completely the same scene.
Five candidates are chosen with most similar vectors. And
then the prediction is determined to locate in the position of
its nearest candidate.

7 Experiments of feature regression

We construct the experiments to regress the descriptors by
using linear regression and Gaussian process. And the results
are assessed by the criteria of error and the precision of
matching. Three datasets are used in this paper the same as
shown in Sect. 5.1.

7.1 Results of linear regression

Considering the regression, 300 images in RGB-NIR are
selected in the training set and the rest 37 images are kept for
testing. For dataset OutdoorUrban, the size of training data
is 100 and it is 27 of testing data. In dataset MoCap, there
are 800 images in the training dataset and 500 images are
regarded as testing data.

The regression is assessed by the results in Tables 4 and
5. In the tables, the value of R? is around 0.9, which means
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Table 4 The statistics of linear regression on HOG

Table 8 The result of GP regression for HOG

HOG Size  R? F p Err.var HOG RGB-NIR OutdoorUrban MoCap
RGB-NIR 300 0.9206 35.1212 0 0.0011 Mean 0.0342 0.1376 0.0146
Urban 100 0.9072 2.5281 0.0670 0.0055 Variance 5.8757e—04 0.0070 8.3017e—06
MoCap 1300 0.8482 101.2218 1.9102e—276 2.4714e—04
Table 9 Th 1t of GP ion for H ith 1 ini 1
Table S The statistics of linear regression on LBP ab €9 The result of GP regression for HOG with 100 training and 10
testing data
: 2
LBP S R £ P Err.var HOG RGB-NIR OutdoorUrban MoCap
RGB-NIR 300 09735 83986  6.8146e-06  5.5635e+05 Mean 0.0310 0.1416 0.0042
Urban 1001 NaN— NaN NaN Variance 4.0629¢—4 0.0036 4.5617e—06

MoCap 1300  0.8842 49.4688 5.4552e—16 1.0459e+06
Table 6 The test result of linear regression on HOG

HOG Size Mean Var
RGB-NIR 70 0.0356 0.1111
Urban 27 0.2710 0.0656
MoCap 500 0.0243 0.0005
Table 7 The test result of linear regression on LBP

LBP Size Mean Var
RGB-NIR 70 0.0246 0.0010
Urban 27 0.0277 0.0006
MoCap 500 0.0169 0.0002

that the regression function is much closer to the true values,
and it understands the information of the data very well. Also
most of the p-value in two tables are greater less than 0.05,
so the null hypothesis is rejected, namely the linear model
is correct for the data. But HOG in dataset OutdoorUrban
with the value 0.0670 is an exception. In a word, the two
descriptors are both regressed well with the training data,
and they draw linear lines perfectly fitting to the points.

For testing, the mean and var in Tables 6 and 7 refer to
the average value and variance of the error between the actual
value and the true value. That the mean error of HOG feature
is only about 0.03 on RGB-NIR and MoCap indicates an
excellent result. In order to compare with HOG feature we
normalize the LBP feature. And the low average values of
mean provides the possibility of linearity.

7.2 Results of GPR
7.2.1 GPR for HOG and LBP

By using these hyperparameters, the new feature descriptors
are predicted. First set with 10 test data, the two criteria, mean
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Table 10 The result of GP regression for HOG with 100 training and
50 testing data

HOG RGB-NIR OutdoorUrban MoCap
mean_err 0.0238 0.0280 0.0502
var_err 0.0004 0.0010 0.0024
fron_actual 21.1325 21.2427 20.8977
fron_true 21.4242 21.4240 21.2131

Table 11 The result of GP regression with exact inference method and
Gaussian likelihood function

HOG RGB-NIR OutdoorUrban MoCap
mean_err 0.0251 0.0287 0.0500
corr2 0.8909 0.9609 0.8983
frob_actual 21.1551 21.2685 20.8614
frob_true 21.4242 21.4240 21.2131

and variance are computed as shown in Table 8. On datasets
RGB-NIR and MoCap, the averages of absolute error are both
under 0.05. Meanwhile the variances on the two dataset are
in a great level as well.

Further, for the sake of analyzing the effect on training
and testing dataset, we enlarge the size of training data to
100 images and the size of testing data is amplified to 50
respectively. Comparison the data in Tables 8, 9 and 10 in
vertical direction, the result indicates that the size of neither
training data nor testing dataset can effect the performance
of Gaussian process heavily. Therefore, Gaussian process is
robust and efficient with fewer training data.

Applying exact inference method and Gaussian as likeli-
hood function, the sizes of training data and testing data are
set with 100 and 50 respectively. Based on this setting, the
process runs much faster than using EP inference method.
From Table 11, we can see that the performance of evalua-
tion is excellent, the average value of error is less than 0.03.
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Fig. 8 Example of descriptor matching. The descriptors are regressed
by Gaussian process with exact inference method. First two columns
refer to the results with RQ covariance function with mean value zero
and 100, and the last two columns show the results with SE covariance

According to Frobenius norm, the ratio between the actual
value and true value is over 99 %, which shows the similarity
completely.

function with mean value zero and 100. The squares refer to the detected
points in visual images and the stars refer to the relocated descriptors
in infrared images

Also we consider the role of the initial value of the hyper-
parameters of the covariance functions. The values are set to
change with step of 0.1. Since the procedure of parameter
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optimization is applied, the initial values make no sense to
effect the result and performance.

For the purpose of LBP , the same process contents have
been executed as HOG. However, the result turns that we can
not obtain an answer to the regression for LBP.

7.2.2 GPR for SIFT and SURF

We consider squared exponential function (SE) and rational
quadratic function as the covariance function for Gaussian
process regression. And also the two inference methods: EP
inference method and exact inference method, are applied in
this work. In addition the mean value of Gaussian process is
set as zero and 100. Thus, based on these three conditions,
where each has two values, there are totally 23 combinations.

From the results of SIFT, the process with RQ covari-
ance function by exact inference method outperforms than
the others with an optimal result, especially in RGB-NIR
with a precision over 90 %. And the precisions on other sets
are also acceptable with about 50 %. But the SE covariance
function is not fitted in this model. In addition, we can find
that the value of mean has little effect on the results. On the
aspect of SURF, both RQ and SE covariance functions per-
form well in this work. Based on the value of precision as well
as the illustration of the example result images in Fig. 8, the
regression results from EP method are totally failed in each
situation despite of higher computational cost. In a word, the
best performance is the process by exact inference method
with RQ covariance function.

7.3 Linear regression versus Gaussian process
regression

For descriptor HOG, both linear regression and Gaussian
process can predict reasonable mapping models from visual
images to infrared images. Comparing the two methods,
the results are shown in Table 12 depending on the condi-
tion of error introduced before. Both approaches perform
well with a low error. And it is obvious that Gaussian
process performs better than linear regression, where error
by Gaussian process is extraordinarily small. Another advan-
tage of Gaussian process appears when the training set is
small. It means that in practice, the requisite prior knowl-
edge is much less for GP than linear regression. However,

Table 12 Comparison of linear regression and Gaussian process for
HOG

mean_error Linear regression Gaussian process
NIR 0.1074 0.0553
OutdoorUrban 0.7019 0.0505
MoCap 0.0243 0.0475
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for this instance, linear regression also performs well, so it
is a good choice as well because the complexity and cost of
linear regression is much lower than GP. Notice that actu-
ally for the dataset OutdoorUrban, it does not fit into a linear
model. But Gaussian process can deal with linear model and
also non-linear model problems. We can see that comparing
to the error in OutdoorUrban by linear regression, Gaussian
process is much better than it in this case.

8 Conclusion

In this paper, we have first presented a comprehensive eval-
uation of detectors as well as descriptors among multimodal
images based on three extensive datasets of infrared (or near-
infrared) and visual image pairs, which include different
kinds of images with various contents that can present a
global view of all the possibilities of the multimodal images.

We have extracted the interest points with five different
detectors, that is Harris corner detector, DoG, Harris Laplace
detector, Hessian detector and Hessian Laplace detector. We
used the repeatability score in order to analyse the percent-
age of points found in a visual image that can be found in
the corresponding infrared image. On the other hand, the
evaluation was also performed using the accuracy rate for
purpose of analysing the percentage of points detected in
infrared image that are detected in visual image as well. A
simple quantity analysis is taken into accounts. In the view
of results, Harris corner detector and DoG outperform than
the other three detectors in quantity, repeatability and accu-
racy rate among all the datasets we have considered. But the
difference between Harris corner detector and DoG are not
significant except in dataset MoCap. The good performance
of accuracy indicates the limit of infrared images that usu-
ally visual images can present the scenes more significantly
while most infrared images happen to reduce some informa-
tion than RGB images such as brightness.

In the case of descriptors, i.e., SIFT, SURF, LBP and HOG,
we have analysed their performance based on two criteria:
precision and recall. The result of SIFT provided a perfor-
mance as great as SURF. The feature descriptors with high
precision make sense in computer vision community, espe-
cially to the applications of matching, while these descriptors
contain more information. And HOG outperformed than LBP
among all the datasets. It means that comparing to HOG, by
the feature descriptors LBP we can obtain correct matches,
but many others have been missed. And the low recall score
of LBP represents the poor ability to find the common infor-
mation among multi modal images.

Besides, we have focused on the relationships among
descriptors from multimodal image pairs. Between corre-
sponding HOG and LBP, linear relations have been provided
by least squares method with good regression qualities. This
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indicated the possibility to map a descriptor from visual
image to infrared modality by a linear transformation. Fur-
thermore, we have used Gaussian process for regression on
HOG and LBP. The optimal regression results have been
shown with small error by using squared exponential covari-
ance function. The GPR results of SIFT and SURF have
been evaluated by the application of matching. The process
of SIFT with rational quadratic function as covariance func-
tion has a good performance by evaluating the precision score
of matching. The results have presented not only the relation-
ships of SIFT and SURF corresponding descriptors, but also
the possibility of obtaining the relationship of descriptors in
multi-modal images by means of Gaussian process. In addi-
tion, comparing the results of linear regression and GPR of
HOG, Gaussian process performs better than linear regres-
sion but with a higher computational costs. For the future
work, we will perform some regression analysis for other
multimodal data, such as visual and depth images.
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