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Abstract
We demonstrate the controlled growth of Bi(110) and Bi(111) films on an α-Al2O3(0001)
substrate by surface x-ray diffraction and x-ray reflectivity using synchrotron radiation. At
temperatures as low as 40K, unanticipated pseudo-cubic Bi(110) films are grown with
thicknesses ranging from a few to tens of nanometers. The roughness at the film–vacuum as well
as the film–substrate interface, can be reduced by mild heating, where a crystallographic
orientation transition of Bi(110) towards Bi(111) is observed at 400K. From 450K onwards
high quality ultrasmooth Bi(111) films form. Growth around the transition temperature results in
the growth of competing Bi(110) and Bi(111) domains.

Supplementary material for this article is available online

Keywords: bismuth, sapphire, surface x-ray diffraction

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanostructured ultrathin Bi films have recently attracted a lot
of interest as they reveal exotic magneto-electronic properties
making them appealing materials for spintronic applications
[1–12]. Especially the spin-momentum locked surface states
of topological insulating Bi films [13–16], make them very
attractive candidates for spintronic devices. To develop and
optimize topological insulators (TIs) towards applications,
thin films of high quality are a necessity, as otherwise the
exotic electronic properties are hampered by bulk conduction
[7, 17, 18]. To minimize the contribution of the substrate [10],
an atomically well defined insulating substrate, providing an
infinite potential well barrier, is essential for both future
electronic applications as well as to get a deeper under-
standing on the controllability of Bi growth. This choice of
substrate is also very beneficial for practical applications, as
the interface will be protected from oxidation effects from

ambient exposure. It is this interface between the film and
insulating oxide which is expected to reveal topological states
[19]. Although a direct dry transfer of a single-crystalline thin
film onto arbitrary substrates as recently demonstrated may be
a viable route towards applications [20], the resulting thin film
quality and its properties at the interface is rather hard to
control upon transfer. The direct growth onto a suitable
substrate should be prefered as it leads to a well defined
interface and highest possible film quality. The growth of Bi
has been extensively studied on Si(111) [21–30] and highly
oriented pyrolitic graphite [13, 31–33] as well as other sur-
faces [3, 4, 12, 34–40], resulting in fabrication of films with a
range of different morphologies, orientations, and strain. The
fabrication of Bi films has attracted considerable interest in
recent years, as their controlled growth, with focus on
morphology and crystallographic orientation, on semi-
conductor and oxide surfaces is not a trivial task. It is well-
known that metals on semiconductors and oxides usually
show 3D growth modes [41] instead of atomically smooth
(2D) films. However, this problem can be overcome by use of
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deposition at low temperatures [42, 43] or surfactant-medi-
ated growth [44, 45], as it modifies the film kinetics.

In this study we demonstrate by surface x-ray diffraction
(SXRD) the controlled growth of thin Bi(110) and Bi(111)
films (the index used throughout this paper refers to the
rhombohedral system) on such an insulating substrate:
atomically smooth insulating sapphire (α-Al2O3(0001)) hav-
ing a lattice mismatch of 4.6% with Bi(111), so large that
thermal mismatch might be ignored. The preparation of
pseudo-cubic (110)-oriented Bi films, a rather exotic orien-
tation, is a difficult task [46]. At temperatures as low as 40K,
we are able to slow down kinetics resulting in a high
nucleation density of Bi islands and thereby controlling the
growth of Bi towards smooth Bi(110) films, stable up to
400K. By annealing the Bi(110) films beyond this temper-
ature, they can be transformed towards stable Bi(111) films.
For films grown around RT, a competition between (110) and
(111) thin film domains is observed.

2. Experimental

For the SXRD experiments described here, we used hat
shaped α-Al2O3(0001) single crystals with a miscut of <0.2°.
Prior to annealing for 12 h in a tube furnace at 1323K using
an O2 flow of 150l h−1, the samples have been ultrasonically
degreased in acetone and ethanol. The samples were then
initially inspected by tapping mode atomic force microscopy
(TM-AFM) for their stepheight (0.21 nm between two adja-
cent oxygen planes) and terrace width (∼300 nm,) and x-ray
photoelectron spectroscopy to verify the surface cleanliness
where only minor traces of C and Ca were found, see sup-
plementary material available online at stacks.iop.org/
NANO/28/155602/mmedia. After insertion into the UHV
system of the surface diffraction beamline ID03/ESRF
(Grenoble, France) [47] with a base pressure below
1×10−10mbar, the sample was cleaned by mild 700eV
Ar+ sputtering at = ´ -( )p Ar 3 10 6 mbar and subsequent
annealing to 1200K in an O2 background pressure of
1×10−6 mbar cycles, where we monitored the sample
quality by Auger electron spectroscopy, see supplementary
material. Bi was deposited at a typical deposition rate of 1.3Å
per minute from a Mo crucible mounted inside an electron-
beam evaporator (Omicron EFM-3). According to the bulk
phase diagram, Bi and sapphire are immiscible in the bulk
[48]. The SXRD experiments were performed using a
monochromatic synchrotron x-ray beam at 24keV and a
MAXIPIX detector [49] with 512×512 pixels. For data
integration and the creation of reciprocal space maps from the
2D detector frames we used the BINoculars software package
[50]. All reciprocal space positions are given in (h,k,l) mea-
sured in reciprocal lattice units of the hexagonal substrate
(0001) surface lattice. Bragg peaks of the thin Bi films are
labeled by their conventional rhombohedral Miller indices
[1]. X-ray reflectivity (XRR) curves have been fitted using the
GenX software package [51].

3. Results

In order to determine the surface structure and morphology of
the thin Bi films grown in situ, we make use of XRR scans,
crystal truncation rod (CTR) scans and reciprocal space maps
determined by SXRD. The out-of-plane (electronic) density
profile measured by XRR provides information on film layer
density, film thickness and interface roughness. The measured
(00) CTR provides information on the out-of-plane crystal-
lographic orientation of the film. To be sensitive to the in-
plane registry we record reciprocal spacemaps (at constant
L = 0.5). In figures 1(a)–(b) and (c)–(d) we show the (00)
CTRs and reciprocal space maps of thin Bi films grown on the
sapphire substrate. A sharp pronounced (0006) Bragg peak in
(a) and (b) corresponds to the out-of-plane interlayer distance
of the sapphire (0001) surface unit cell. Upon growth of a
20nm thick film at 40K, a Bragg-peak is found at L=4
corresponding to the 3.25Å interlayer distance of Bi(110) [1],
see figure 1(a). In the reciprocal space map, see figure 1(c),
rings appear caused by the rotationally disorder of the Bi(110)
domains. The position of the rings perfectly matches to the
(011), (112) and (1̄1 0) Bi planes expected for the Bi(110)
surface, as depicted in figure 1(e), and corresponding to in-
plane distances of 3.28Å, 4.75Å and 4.55Å respectively.
The homogeneously distributed intensity in the rings in
figure 1(c), reveal no preferential alignment with respect to
the substrate.

Annealing the as grown film up to 400K, results in the
repositioning of the Bi Bragg peak in the recorded (00) CTR
to L=3.3, corresponding to the interlayer distance of 3.94Å
for Bi(111) [1], see figure 1(b). The corresponding reciprocal
space map is shown in figure 1(d). For this film, also ring
structures in the diffracted intensity appear, with the most
intense ring position matching the (01̄1) plane, see figure 1(f),
and corresponding to an in-plane distance of 4.55Å. Analo-
gously to the Bi(110) film, the presence of the rings results
from rotational disordered Bi(111) domains on the surface.
The Bi(111) domains show slight preferential alignment with
respect to the six-fold symmetric substrate as can be seen
from the increased intensity on the ring close to the (11) CTR,
see figure 1(d).

To test both the Bi(110) and Bi(111) film for their ther-
mal stability and to investigate the effects of kinetics on the
film roughness, we deposited 14nm of Bi on the sapphire
surface at 40K and gradually increased the temperature.
Figure 2(a) shows XRR curves, revealing the effect of
increasing the temperature. At higher temperature, the number
of Kiessig fringes and their amplitude, arising from the con-
structive interference between the x-rays reflected from the
film–vacuum and substrate–film interface, increases, indicat-
ing the decrease in roughness on both interfaces. At 400K,
the Kiessig fringes are also visible beyond L=1.3. The film
consists at this temperature of Bi(110) and Bi(111) domains,
discussed below. The reason for the Bi(110) films not trans-
forming below 400K are the slowed kinetics [41]. When
heating the same film beyond 400K, the film shows a pure
Bi(111) crystal structure. For temperatures at 500K and
above (but below the film melting temperature of ∼545 K
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Figure 1. (00) CTR scan for a 20nm thick Bi(110) film deposited at 40K revealing the Bi(110) Bragg peak at L=4 (a) and a 20nm thick
Bi(111) film revealing the Bi(111) Bragg peak at L=3.3 after annealing to 400 K (b). The corresponding reciprocal space maps for the
20nm thick Bi(110) measured at L=0.5 at RT (c) and for the annealed Bi(111) (d) film. The substrate (11) CTR is marked by dashed
circles. Next to the diffraction rings, resulting from the rotationally disordered domains, the corresponding miller indices of their
crystallographic planes are denoted. (e) A ball model of the pseudo-cubic Bi(110) surface. (f) A ball model of the hexagonal Bi(111) surface.
Atoms in the 1st, 2nd and 3rd layer are marked by purple, blue and red colors, respectively.
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depending on film thickness [53]) the number of Kiessig
fringes increase even beyond the film Bragg peak at L=3.3,
see also figure 3(a).

In order to quantify the roughness for the film–vacuum
and substrate–film interface, we model the system as a film of
uniform (electronic) density on top of a uniform (electronic)
dense substrate. Fitting was done by using the fitting

Figure 2. (a) XRR scan for a 14nm thick Bi(110) film grown at 40K, heated to and subsequently measured at 120, 300 and 400K. At
400K, reflectivity scans reveal a Bi(110) and Bi(111) peak, indicating the crystallographic orientation transition (see also figure 3(a)). (b)
XRR scans for the resulting 14nm thick Bi(111) film heated to and subsequently measured at 450, 475 and 500K. The solid curves in (a)
and (b) have been obtained by fitting as described in the text.

Figure 3. (a) XRR curves for a 14nm Bi(110) film grown at 40K (corresponding to figure 2(a)) measured at 300, 400 and 450K. At 400K,
the onset of the crystallographic orientation transition towards a Bi(111) film is seen where at 450K the entire film is transformed. (b) XRR
curves for increasing Bi film thickness, grown at RT. The first 4nm, Bi(110) domains are grown, followed by Bi(111) domains starting
around 6nm total Bi film thickness.

4
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parameters film thickness (d), film–vacuum interface rough-
ness (Rrms

film), substrate–film interface roughness (Rrms
substrate) (see

table 1), a background resulting from scattering and a nor-
malization factor [51]. Note that we fit up to limited L (here
0.6) to ensure the dynamical scattering theory is applicable
and stay far from the kinetical scattering regime [54].

The roughness for the Bi(110) film–vacuum interface can
be reduced by about 40% to 4.4Å by heating the sample to
RT, see table 1. The Rrms

substrate can also be greatly reduced,
which may be indicative of the rough initial growth due to the
lattice mismatch described above, resulting in an electronic
gradient in the profile going from substrate to film. Upon
heating, these lattice defects might be restored and the film
might be (more) decoupled from its substrate as the roughness
for the Bi(110) film at RT is similar to Bi(111) films. The
ultrasmooth Bi(111) films, having a Rrms

film below 1Å, also
reveal a decreasing Rrms

substrate upon increasing temperature.
Note, that the used modeling only includes a fixed and
homogeneous electronic density value for vacuum, film and
substrate, giving a very reasonable fit as shown by the solid
curves in figures 2(a) and (b). This means that the electronic
density profile is close to a step function, indicating the
decoupling of electronic density between substrate and film.

By measuring the broadening of the Bi(110) and Bi(111)
peak and applying the Scherrer formula [52], we estimate the
mean domain size D, see table 1. As the Bi(110) and Bi(111)
peaks hardly broaden upon heating, we conclude the mean
domain size to stay constant upon heating. Note that the
Scherrer formula provides a lower bound on the domain size.

A striking feature in the growth of Bi on sapphire is the
appearance of the Kiessig fringes when the film is deposited
at 40K, in contrast to films deposited at RT and above. We
expect this to result from 2D island growth as described by
Campbell for the growth of metals on oxide surfaces [41].
According to this model, due to the low temperature, the
kinetic limitations cause a high nucleation density resulting
initially in 2D island growth. Subsequently, the deposited
material grows on top of these islands in a layer-by-layer
fashion, as between the islands the filling proceeds rather
slowly. In literature, there are multiple examples of such
growth reported [42, 43, 55, 56], e.g., continuous Ag films on
ZnO(0001) are demonstrated to grow at reduced temperature

[57]. For the initial low temperature growth of Bi on quasi-
crystal surfaces, small 2D island formation is reported,
transforming towards continuous films at higher cov-
erages [39].

Bi(110) films grown at low temperatures can be trans-
formed to ultrasmooth Bi(111) films upon annealing to
450K. However, interesting is the region in between, as the
film shows a crystallographic orientation transition from
Bi(110) towards Bi(111) in a temperature window of
300–450K, see figure 3(a). The 14nm Bi film shown in
figure 3(a) is grown at 40K and shows only the Bi(110)
Bragg peak, heating it to 400K reveals the onset of a Bi(111)
Bragg peak. At a temperature of 450K the entire film has
transformed into an ultrasmooth Bi(111) film as the Bi(110)
Bragg peak has vanished. The thin film roughness has been
reduced (to a <R 1rms

film Å) as can be seen from the Kiessig
fringes appearing around the Bi(111) Bragg peak at L=3.3.
We anticipate this crystallographic orientation transition to be
resulting from enhanced kinetics due to surface pre-melting of
the thin Bi film [23]. For flat ultrathin Bi(111) films on
Si(111)-7×7 surface pre-melting occurs at about 350K
[23], very similar to our observations. From this data, it is
however not evident how the crystallographic orientation
transition proceeds. One interpretation could be that at 400K
both Bi(110) and Bi(111) domains are in competition. A more
unlikely interpretation could be that a Bi(111) film could be
stacked on top of the initially grown Bi(110) film, which
would be energetically highly unfavorable. The crystal-
lographic orientation transition of Bi(110) to Bi(111) at a
critical film thickness is subject to ongoing debate in litera-
ture. According to Nagao et al [24, 27], at low film thickness
the (puckered-layer) Bi(110) is more stable as a result of
surface effects. As the thickness approaches a critical few
layers, the surface effects become less dominant, transforming
the film to Bi(111), as it becomes energetically more favor-
able. Similar observations were done by Bobaru et al [39]
reporting the coexistence of the Bi(110) and Bi(111) domains
grown at low temperatures and coverage, as well as the
transformation of Bi(110) to Bi(111) domains at higher
coverages. There, the coexistence of both crystallographic
orientations was attributed to the minor difference in surface
free energy of ultrathin Bi(110) and Bi(111) films. Bi(111)
films were observed to be kinetically limited at low tem-
peratures. Here, we observe solely the growth of Bi(110) at
low temperatures, transforming to Bi(111) around about 400
K. Surprisingly, the Bi(110) (domains) can be grown up to
thicknesses of 14nm, well beyond the critical thickness
reported by both, Nagao [24, 27] and Bobaru [39].

To test the hypothesis of Bi(110) and Bi(111) domain
competition versus stacking, we study films grown around the
transition temperature. In figure 3(b) we show the growth of a
16nm thick film grown at RT where we measured a (00)
CTR at several different thicknesses. The very thin 4nm Bi
film reveals a Bragg reflection for Bi(110) at L=4, but upon
increasing the film thickness, the Bragg reflection for Bi(111)
at L=3.3 starts developing, and for thicker films the ratio
between both peaks becomes more similar. Note that the
center of the Bi(110) peak for the 4nm thick film grown at

Table 1. Obtained roughness for the film–vacuum interface (Rrms
film),

the substrate–film interface (Rrms
substrate) and the film thickness (d) from

fitting [51] the experimental data as shown in figures 2(a)–(b). The
average domain size D is calculated from the Bi(110) and Bi(111)
peak broadening [52]. For temperatures < 400K, the film grown at
40K is pure Bi(110), for temperatures above pure Bi(111).

T(K) Bi film structure Rrms
film(Å) Rrms

substrate(Å) d(Å) D(Å)

40 (110) 7.2 8.1 142 80
120 (110) 5.5 9.1 143 80
300 (110) 4.4 3.3 140 80
400 (110) and (111) 4.8 3.2 138 —

450 (111) <1 5.7 136 95
475 (111) <1 3.2 137 95
500 (111) <1 2.6 137 95
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RT, is slightly shifted towards higher L as compared to
thicker films. This peak position corresponds to a slightly
compressed average interlayer distance of 3.24Å as com-
pared to the bulk interlayer distance of 3.27Å [1, 58]. From a
quantitative low energy electron diffraction (LEED) analysis
described in literature [58], contracted interlayer relaxations
are present within the first 4 layers of Bi(110), which can
heavily contribute to the average interlayer spacing on films
of only several double bilayers as is the case here. Although
one might anticipate that at RT the Bi(110) film only grows
up to a certain thickness and then simply transforms into a
Bi(111) film, this cannot be concluded from the increasing
area of the peak at L=4 with increasing thickness. This
reveals that the Bi(110) film continues to grow up to a sig-
nificant thickness, indicative of the competition between
domains [39].

Realspace in situ scanning probe microscopy images
might help to study this initial thin film growth around the
transition temperature.

4. Conclusions

In summary, we have presented SXRD, CTR and XRR
measurements demonstrating the controlled growth of
Bi(110) and Bi(111) on an atomically well defined insulating
α-Al2O3(0001) substrate. At temperatures as low as 40K, the
kinetics of the film growth can be slowed down, resulting in
high quality pseudo-cubic Bi(110) films, having rotationally
disordered domains and growing solely Bi(110) up to unan-
ticipated thicknesses of tens of nanometers. Bringing the film
to RT decreases the film–vacuum and film–substrate rough-
ness, indicative of (electronic) decoupling of the film from the
substrate. By heating the Bi(110) film above 400K a crys-
tallographic orientation transition occurs to Bi(111).

High quality and ultrasmooth Bi(111) films can be pro-
duced by heating Bi(110) to 450K onwards, where the
roughness of the film–vacuum interface is below 1Å and the
roughness between film and substrate decreases with
increasing temperature. The films show a slight preferential
alignment with respect to the substrate.

At temperatures around the crystallographic orientation
transition (≈400 K), the growth of Bi(110) and Bi(111)
domains are in competition. A film grown at this temperature
results in the growth of thin Bi(110) domains followed by
thicker Bi(111) domains.

The growth of Bi(110) structures on α-Al2O3(0001) is
unanticipated but will have interesting electronic properties
[1, 2, 10]. The growth and possible coexistence of both
Bi(110) and Bi(111) films on an insulating substrate is very
attractive for future electronic and practical applications, as
the interface between substrate and film, expected to reveal
topological states, will be protected from influencing oxida-
tion effects upon ambient exposure [19]. The electronic
properties of the buried interface could, e.g., be probed by
second-order nonlinear optical spectroscopy [59]. The lateral
disorder in these films and accompanying compressive and

tensile strain in the vicinity of grain boundaries, might easily
enhance or destroy surface states [60].
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