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Abstract. Imaging spectrometers have the potential to identify surface mineral-
ogy based on the unique absorption features in pixel spectra. A back-propagation
neural network (BPN) is introduced to classify Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) of the Cuprite mining district (Nevada) data into mineral
maps. The results are compared with the traditional acquired surface mineralogy
maps from spectral angle mapping (SAM). There is no misclassi® cation for the
training set in the case of BPN; however 17 per cent misclassi® cation occurs in
SAM. The validation accuracy of the SAM is 69 per cent, whereas BPN results
in 86 per cent accuracy. The calibration accuracy of the BPN is higher than that
of the SAM, suggesting that the training process of BPN is better than that of
the SAM. The high classi® cation accuracy obtained with the BPN can be explained
by: (1) its ability to deal with complex relationships (e.g., 40 dimensions) and (2)
the nature of the dataset, the minerals are highly concentrated and they are mostly
represented by pure pixels. This paper demonstrates that BPN has superior
classi® cation ability when applied to imaging spectrometer data.

1. Introduction

Imaging spectrometers have the potential to identify minerals based on the unique
absorption features of their spectra (Ustin and Rock 1985). Imaging spectrometers
acquire images simultaneously in many narrow contiguous bands (Goetz et al. 1985)
which are inherently registered such that each pixel has an associated continuous
re¯ ectance spectrum that can be used to identify the surface mineralogy (Vane and
Goetz 1985). The 40 bands within 2000± 2400 nm wavelength region of Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS; Vane et al. 1993) 1994 data were
used to identify speci® c minerals or mineral groups through a large number of
mineral absorption features for hydroxyl and carbonate minerals (Hunt 1979).

Methods for imaging spectrometer data analysis such as Spectral Angle Mapping
(SAM; Yuhas and Goetz 1993, Kruse et al. 1993), have been tested to increase the
accuracy of the classi® cation results. In this paper we introduce a new approach to
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imaging spectrometer data analysis using arti® cial neural networks (ANN), which
are brain-like machines that are used in a wide range of applications (Clarkson
1996). We evaluate adopted back-propagation neural network (BPN) for imaging
spectrometer data. A comparison is made with the result obtained by spectral angle
mapping (SAM) from AVIRIS 1994 data of the Cuprite mining district (U.S.A.). The
same training set was used as input for BPN classi® cation and their mean spectra
were used for SAM classi® cation. The accuracy of the training set and test set for
both BPN and SAM classi® cation was assessed. The results were compared to
evaluate the performance of these two classi® cation methods.

2. Approach

2.1. SAM
SAM is an automated method for comparing image spectra to a spectral library

assuming that the data have been reduced to apparent re¯ ectance (true re¯ ectance
multiplied by some unknown gain factor controlled by topography and shadows). The
algorithm determines the similarity between two spectra by calculating the s̀pectral
angle’ between them, treating them as vectors in a space with dimensionality equal to
the number of bands. In the analysis of images, for each reference spectrum chosen, the
spectral angle is determined for each image spectrum (pixel ). This value is assigned to
the corresponding pixel in the output SAM image, resulting in one output image for
each reference spectrum. Grey-level thresholding is used to determine empirically those
areas that most closely match the reference spectrum while retaining spatial coherence.

2.2. BPN
The ability to learn by example and to generalize, combined with the independ-

ence of distribution assumptions make arti® cial neural networks attractive for super-
vised classi® cation of remotely sensed data (Schalko� 1992, Richards 1993, Foody
and Arora 1995). The BPN is a new processing system that can examine all the
pixels in the image in parallel. It adapts itself to l̀earn’ the relationship between a
set of example patterns and is able to apply the same relationship to new input
patterns. This system can focus on the features of an arbitrary input dataset that
resembles other patterns seen previously. Furthermore it ignores the noise. The
network may be trained to correctly characterize classes in a remotely sensed dataset
through an iterative learning process which adjusts the strength of the weights
between network units with each iteration (Foody and Arora 1995).

3. Study site

The Cuprite mining district with hydrothermally alteration map shown in ® gure 1,
is situated in southwestern Nevada some 30km south of the town of Gold® eld. It
contains both hydrothermally altered and unaltered rocks. The eastern half of the
district studied here is an area of extensive hydrothermal alteration within a sequence
of rhyolitic welded ash ¯ ow and air fall tu� s (Albers and Stewart 1972). These altered
rocks can be subdivided into three mappable units: silici® ed, opalized and argillized
rocks. Silici® ed rocks, containing abundant hydrothermal quartz, form a large irregu-
lar patch extending from the middle to the south end of the area. Opalized rocks
contain abundant opal and as much as 3per cent alunite and kaolinite. Locally, an
interval of soft, poorly exposed material mapped as argillized rock separates fresh
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Figure 1. Hydrothermal alteration map of the Cuprite mining district (after Abrams et al. 1977).

rocks from opalized rocks. In the argillized rocks, plagioclase is altered to kaolinite,
and glass is altered to opal and varying amounts of montmorillonite and kaolinite.
The distribution of these alteration assemblages is characteristic for a fossilized hot-
spring deposit (e.g., Butchanan 1981) which often contains gold.

The empirical line calibration method was applied to calibrate the radiance data
from AVIRIS to re¯ ectance, thus forcing the image data to match selected ® eld
re¯ ectance spectra (Roberts et al. 1985, Conel et al. 1987, Kruse et al. 1990). The
AVIRIS dataset has been extensively studied by many authors (e.g., Hook et al. 1991,
Rast et al. 1991), and many articles have been published on the use of remote sensing
for mineral mapping in the Cuprite mining district by means of other image data
analysis techniques (e.g., Kruse et al. 1990, Okada and Iwashita 1992, Kahle and
Goetz 1983). Because both the geology and the spectral signature of the rocks in
this area have been characterized in detail, it is an appropriate dataset for the
evaluation of the use of arti® cial neural networks for imaging data classi® cation and
mineralogical mapping.
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4. Methods

4.1. Mineral mapping result of SAM technique
Select image endmembers: ® fteen endmember (as shown in ® gure 2 (a)) spectra

were selected representing known occurrences of the minerals to be mapped.
Classi® cation: next, the mean spectra (® gure 2 (b)) of the selected endmembers

Figure 2. (a) Colour composite image of bands 184, 194 and 207 of AVIRIS 1994 as RGB
with the training set numbered representing di� erent classes, (b) mean spectra of
di� erent classes from the training set.
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were calculated and used to classify the dataset. The result is a classi® cation image
showing the best SAM match at each pixel and a r̀ule’ image for each endmember
showing the actual angular di� erence in radians between each spectrum in the image
and the reference spectrum. Dark pixels in the rule images represent smaller spectral
angles, and thus spectra that are more similar to the reference spectrum. The
maximum angle thresholding of the 15 classes are: 0.0448, 0.0930, 0.0900, 0.0900,
0.0410, ± , 0.0720, 0.0680, 0.0660, 0.1008, 0.0380, 0.0420, 0.0600, 0.0448 and 0.0950
radians, respectively, the same order as in the legend of ® gure 3 (a). SAM produces
a class with unclassi® ed pixels. To assist image inspection and to compare with
results from BPN, a colour lut is used to discriminate di� erent classes.

4.2. Classi® cation by the BPN
4.2.1. T he mechanism of BPN

A BPN comprises a set of simple processing units arranged in a layered structure
with a weighted connection in adjacent layers. Three types of layers may be recog-
nized as shown in ® gure 4. The input layer comprises one unit for each discriminating
variable (e.g., waveband), while the one or more hidden layers each contain a user
de® ned number of units. The output layer contains one unit for each class.

Suppose we have a set of P vector-pairs, (x1 , y1 ), (x2 , y2 ), ¼ , (xp, yp ), which are
examples of a functional mapping y= W (x) : x×RN, y×RN. We want to train the
network so that it will learn an approximation o= y¾ = W ¾ (x). Learning in a neural
network means ® nding an appropriate set of weights so that we can ® nd the equation
of a line that best ® ts a number of known points. Because the relationship we are
trying to map is likely to be nonlinear, as well as multi-dimensional, an iterative
version of the simple least-squares method, called steepest-descent technique is
applied (Freeman and Skapura 1992). An input vector, xp= (xp1 , xp2 , ¼ , xpn )t , is
applied to the input layer of the network. The input units distribute the values to
the hidden-layer units. The net input to the jth hidden unit is

net h
pj = �

N

i=1
w h

ji xpi +h
h
j (1)

where wh
j i is the weight on the connection from the ith input unit; N is the total

number of the input units; and h
h
j is the bias term which is the weight on a connection

that has its input value always equal to 1. The h̀’ superscript refers to quantities on
the hidden layer. The output of this node is

ipj= fh
j (net h

pj) (2)

Move to the output layer, the net-input values to each unit is

neto
pk= �

L

j=1
wo

kjipj +h
o
k (3)

and the outputs are

opk= fo
k (net o

pk) (4)

where the ò’ superscript refers to quantities on the output layer; The subscript p̀’
refers to the pth training vector and k̀’ refers to the kth output unit; opk is the actual
output from the kth unit. The error terms for the output units are

d
o
pk= (ypk Õ opk )fo ¾k (net o

pk) (5)
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Figure 3. (a) Classi® cation results from spectral angle mapper, (b) classi® cation results from
the back-propagation network.

where ypk is the desired output value and the error terms for the hidden units are

d
h
pj= fh ¾j (net h

pj) �
k

d
o
pk ipj (6)



A back-propagati on neural network 103

Figure 4. Simpli® ed BPN (after Wasserman 1989).

The error terms on the hidden units are calculated before the connection weights to
the output-layer units have been updated. Next the weights are updated on the
output layer:

wo
kj(t+1)= wo

kj(t)+gd
o
pkipj (7)

and update the weights on the hidden layer:

wh
ji(t+1)= wh

ji(t)+gd
h
pjxi (8)

where the factor g is called learning rate parameter and t̀’ is the timestep. The order
of the weight updates on an individual layer is not important. The error term is

Ep =
1
2

�
M

k=1
d

2
pk (9)

where `M’ is the total number of output units. Since the quantity is the measure of
how well the network is learning, when the error is acceptably small for each of the
training-vector pairs (input± output), training can be discontinued.

4.2.2. Mineral mapping by the BPN network
4.2.2.1. Neural network structure. Considering the number of bands in the short-
wave infrared (SWIR) AVIRIS data (40 bands), a three-single-hidden-layered neural
network containing 40 hidden units was created. The network units used a standard
sigmoid transfer function with a gain factor of 1. Training each classi® cation involved
800 iterations of a back-propagation learning algorithm with the learning rate and
momentum set de® ned as 0.1 and 0.9, respectively.

4.2.2.2. T raining classes and training sample size. The training classes included 15
inputs, the same dataset as used for SAM. Di� erent classes containing di� erent
number of pixels with previous knowledge were used. For classes with large spectrally
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homogeneous areas, more pixels were selected; for classes with small spectrally
homogenous areas, less pixel were selected as shown in ® gure 2 (a).

4.2.2.3. Classi® cation. After training is completed, the rest of the image is classi® ed
by the acquired network which responds to each new ùnseen’ vector with the
k̀nowledge’ gained from the training stage.

The same colour lut used in the SAM results was applied to the BPN classi® cation
results (® gure 3 (b)) for comparison.

4.3. Accuracy assessment
The classi® cation accuracy was determined in two stages by using contingency

tables (error matrices). The cell entries show the number of sampled pixels whose
classi® ed category is the column label, and whose true category is the row label
( t̀rue’ here means having been derived from a presumably more accurate data source
than the classi® cation, e.g., ground visit ). First, the calibration accuracy was deter-
mined. This assessment describes the agreement between the actual class membership
for the pixels in the training area and the predicted class membership derived through
BPN and SAM classi® cation. These training-area pixels had been used to derive the
digital decision rules separating the classes. Second, the validation accuracy was
determined by comparing the actual class membership of the test-area pixels to the
predicted class membership arrived at by the BPN and SAM classi® ers. Test-area
pixels are totally independent on the formation of the digital decision rules. About
20 pixels were selected for each class in the training set if possible, which helps to
generalize the characteristics of di� erent classes. The test set selected for each class
was as large as possible so as to re¯ ect the real situation. The calibration and
validation accuracy for the BPN and SAM classi® cation are presented in tables 1± 4.
Numbers used to represent di� erent classes are the same as in the legend of
® gure 2 (a).

To compare the two classi® cation methods, the overall agreement is computed
for each matrix based on the di� erence between the actual agreement of the classi® ca-
tion (e.g., agreement between computer classi® cation and reference data as indicated
by the diagonal elements) and change agreement which is indicated by the row and
column marginals (Congalton and Mead 1983). This measure of agreement, called
khat (i.e., KÃ ), is calculated by

KÃ =

N �
r

i=1
xii Õ �

r

i=1
(x+i 1xi+)

N2 Õ �
r

i=1
(xi+ 1x+i )

(10)

where r is the number of rows in the matrix, xii is the number of the observations
in row i and column i, xi+ and x+i are the marginal totals of row i and column i,
respectively, and N is the total number of observations (Bishop et al. 1975).

A khat value is computed for each matrix and is a measure of how well the
classi® cation agrees with the reference data. Con® dence intervals can be calculated
for khat using the approximate large sample variance (Bishop et al. 1975, p. 396)

sÃ 2 (kÃ )=
1
N

h1 (1 Õ h1 )
(1 Õ h2 )

+
2(1 Õ h1 ) (2h1 h2 Õ h3 )

(1 Õ h2 )3
+

(1 Õ h1 )2 (h4 Õ 4h2 )2

(1 Õ h2 )4
(11)
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Table 1. Error matrix of the training dataset for ANN classi® er in the Cuprite mining district.

Row
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 total

1 20 20
2 20 20
3 20 20
4 4 4
5 30 30
6 18 30
7 25 18
8 26 26
9 18 18

10 24 24
11 20 20
12 20 20
13 24 24
14 30 30
15 8 8
Column

total 20 20 20 4 30 18 25 26 18 24 20 20 24 30 8 307

The producer’s accuracy, the user’s accuracy and overall accuracy are all 100%.

where

h1 = �
i=1

xii

N
, h2 = �

i=1

xi+ 1x+i

N2 ,

h3 = �
i=1

xii

N Axi+
N

+
x+i

N B , h4 = �
i=1

xij

N
, Axj+

N
+

x+i

N B2

,

and xj+ is the marginal total of row j.
A test for signi® cance of khat can be performed for each matrix separately to

determine if the agreement between the classi® cation and the reference data is
signi® cantly greater than zero. The test statistic for signi® cant di� erence in large
samples is given by

Z=
kÃ 1 Õ kÃ 2

Ó sÃ 2
1 + sÃ 2

2
(12)

(Cohen 1960). Table 5 shows the khat statistic to be used as an accuracy measure-
ment. Notice that with more than 95per cent con® dence, the di� erence between the
BPN and SAM classi® cation is signi® cant. Therefore, based on khat values, the
BPN classi® er is better than the SAM classi® er. The result agrees with the overall
performance accuracy value given in tables 3 and 4.

5. Discussion

5.1. Shadows
The SAM classi® er can not handle the classi® cation of shadows and the shadows

were all unclassi® ed in SAM. The poor ability to identify the low re¯ ectance features
lowered the overall accuracy of the SAM classi® er. BPN classi® er, on the other
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Table 2. The error matrix of the training dataset for SAM classi® er in Cuprite mining district.

Row
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0* total

1 20 1 2 23
2 20 20
3 16 16
4 4 4
5 29 29
6 0 0
7 4 4
8 26 26
9 18 18

10 21 21
11 19 2 21
12 1 20 21
13 22 22
14 28 28
15 8 8
0* 4 18 21 3 0 46
Column

total 20 20 20 4 30 18 25 26 18 24 20 20 24 30 8 0 307

Producer’s accuracy (%) User’s accuracy (%)

1 100 87
2 100 100
3 80 100
4 100 100
5 96.4 100
6 0 Ð
7 16 100
8 100 100
9 100 100

10 87.5 100
11 95 90.4
12 100 95.2
13 91.6 100
14 93.3 100
15 100 72.7
0* Ð 0

Overall accuracy= 255/307= 83%.

hand, is able to identify some of the minerals in the shadow areas. This might be
because the shadows have low re¯ ectance in all bands (dimensions) and SAM
classi® er only counts the direction but not the magnitude of each spectrum, whereas
BPN classi® er counts both. The shadows that could not be classi® ed by BPN are
not likely to be classi® ed by other classi® ers.

5.2. Pure pixels and mixed pixels
Among kaolinite, alunite and buddingtonite which are presented mostly in pure

pixels, the producer’s accuracy of kaolinite and alunite by BPN is much higher than
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Table 3. Error matrix of the test set for BPN classi® er in Cuprite mining district.

Row
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 total

1 156 2 158
2 72 1 73
3 6 68 74
4 4 4
5 136 4 2 142
6 26 113 139
7 9 108 117
8 1 84 85
9 65 65

10 14 25 2 3 44
11 13 100 3 2 118
12 2 143 3 148
13 70 70
14 1 3 1 1 48 54
15 17 17
Column

total 156 80 72 5 140 35 221 84 96 25 104 143 80 50 17 1308

Producer’s accuracy (%) User’s accuracy (%)

1 100 98.7
2 90 98.6
3 94.4 91.9
4 80 100
5 97.1 95.7
6 74.3 18.7
7 48.9 92.3
8 100 98.8
9 67.7 100

10 100 56.8
11 96.1 84.7
12 100 96.6
13 87.5 100
14 96 88.9
15 100 100

Overall accuracy= 1122/1308= 86%.

that of SAM and the producer’s accuracy of buddingtonite by BPN is much lower
than that of SAM because there were only ® ve pixels used for the test, in which one
pixel weights 20 per cent. These results suggest that BPN has higher ability to identify
pure pixels than SAM. Varies fans mapped are mostly pixels of mixed minerals. For
class F̀an 1’, F̀an 5’ and K̀aolinite fan’, the producer’s accuracy of BPN is the same
as that of SAM. However, for class F̀an 3’, F̀an 4’ and S̀ilica fan’, the producer’s
accuracy of BPN is much higher than that of SAM because there is no or very little
misclassi® cation by BPN classi® er. Only for class F̀an 2’, the producer’s accuracy
of BPN is 6.7per cent less than that of SAM. We may deduce that BPN is also a
better classi® er than SAM when the pixel is mixed.
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Table 4. The error matrix of the test set for SAM classi® er in Cuprite mining district.

Row
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0* total

1 156 7 12 175
2 52 1 53
3 4 62 66
4 5 5
5 130 130
6 0 0
7 0 2 2
8 2 83 85
9 2 4 1 71 5 83

10 2 15 11 28
11 1 1 1 5 82 23 2 115
12 2 3 1 15 120 6 147
13 60 60
14 1 1 2 48 52
15 1 1 2 17 21
0* 18 4 32 221 4 7 0 286

Column
total 156 80 72 5 140 35 221 84 96 25 104 143 80 50 17 0 1308

Producer’s accuracy (%) User’s accuracy (%)

1 100 89.1
2 65 98.1
3 86 93.9
4 100 100
5 93 100
6 0 0
7 0 0
8 99 97.6
9 74 85.5

10 44 39.3
11 79 71.3
12 84 81.6
13 75 100
14 96 92.3
15 100 81
0* Ð 0

Overall accuracy= 897/1308= 69%.

6. Conclusions

There is no misclassi® cation for the training set in BPN; however 17per cent
misclassi® cation occurred in SAM. The calibration accuracy by BPN is higher than
that obtained by SAM, suggesting the training process of BPN is better than that
of SAM for this dataset. The validation accuracy obtained by SAM is 69 per cent
and by BPN 86per cent, which suggests that both SAM and BPN classi® ers have
the ability to identify minerals easily separated by their spectra. The high validation
accuracy of the BPN has two causes: (1) its ability to deal with complex relationships
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Table 5. The result of the test of agreement between error matrices for ANN and SAM
classi® cation (with khat statistic and its variance).

Z statistic 95% Con® dence level

10.44 1.96

Error matrix khat statistic Variance

ANN 0.8448 0.0001
SAM 0.6639 0.0002

(e.g., 40 dimensions) and (2) the nature of the dataset, the minerals are highly
concentrated and they are mostly represented by pure pixels.

Acknowledgment

This research was undertaken with the support of Institute of Remote Sensing
Applications, Chinese Academy of Sciences. Special acknowledgments are addressed
to Mr Lucas Broekema, Gerrit Huurneman and Wanning Peng for their advice and
comments on the study. We also want to thank the two referees for their critical
review to improve the quality of the paper.

References

Abrams, M . J., Ashley, R. P., Rowan, L. C., Goetz, A.F.H ., and Kayle, A. B., 1977,
Mapping of hydrothermal alteration in the Cuprite mining district, Nevada using
aircraft scanner images for the spectral region 0.46± 2.36 mm. Geology, 5, 713± 718.

Albers, J. P., and Stewart, J. H ., 1972, Geology and mineral deposits of Esmeralda County,
Nevada. Nevada Bureau Mines Geologic Bulletin, 78, 1± 80.

Bishop, Y. M . M ., Feinberg, S. E., and Holland, P. W ., 1975, Discrete Multivariate Analysis Ð
T heory and Practice (Cambridge, MA: MIT Press).

Butchanan, L. J., 1981, Precious metal deposits associated with volcanic environments in
the southwest. In Relations of T ectonics to Ore Deposits in the South Cordillera. Arizona
Geology Society Digest, 24, edited by W. R. Dickinson and W. D. Payne, pp. 237± 262.

Clarkson, T. G ., 1996, Introduction to neural networks. Neural Network World, 6, 123± 130.
Cohen, J., 1960, A coe� cient of agreement for nominal scales. Educational and Psychological

Measurement, 20, 37± 46.
Conel, J. E., Green, R. O., Vane, G ., Bruegge, C. J., Alley, R. E., and Curtiss, B. J., 1987,

Airborne imaging spectrometer-2: radiometric spectral characteristics and comparison
of ways to compensate for the atmosphere. In Proceedings, SPIE, vol. 834, pp. 140± 157.

Congalton, R. G ., and Mead, R. A., 1983, A quantitative method to test for consistency
and correctness in photointerpretation. Photogrammetric Engineering and Remote
Sensing, 49, 69± 74.

Foody, G . M ., and Arora, M . K ., 1995, An evaluation of the factors a� ecting neural network
classi® cation accuracy. Proceedings of the 21st Annual Conference of the Remote Sensing
Society, 11-14 September 1995, University of Southampton , pp. 42± 49.

Freeman, J. A., and Skapura, D . M ., 1992, Neural Networks, Algorithms, Applications, and
Programming T echniques (Addison-Wesley: Reading, MA).

Goetz, A. F. H ., Vane, G ., Solomon, J. E., and Rock, B. N ., 1985, Imaging spectrometry
for earth remote sensing. Science, 211, 1147± 1153.

Goetz, A. F. H ., Rock, B. N ., and Rowan, L. C., 1983, Remote sensing for exploration: an
overview. Economic Geology, 78, 573± 590.

Hook, S. J., Elvidge, C. D ., Rast, M ., and Watanabe, H ., 1991, An evaluation of short-
wave-infrared (SWIR) data from the AVIRIS and GEOSCAN instruments for minera-
logical mapping at Cuprite, Nevada. Geophysics, 56, 1432± 1440.



A back-propagati on neural network110

Hunt, G . R., 1979, Near-infrared (1.3± 2.4 mm) spectra of alteration mineralsÐ potential for
use in remote sensing. Geophysics, 44, 1974± 1986.

Kahle, A. B., and Goetz, A. F. H ., 1983, Mineralogical information from a new airborne
thermal infrared multispectral scanner. Science, 222, 24± 27.

Kruse, F. A., Keirein-Young, K . S., and Boardman, J. W ., 1990, Mineral mapping at
Cuprite, Nevada with a 63-channel imaging spectrometer. Photogrammetric
Engineering and Remote Sensing, 56, 83± 92.

Kruse, F. A., Lefkof, A. B., Boardman, J. W ., Heidebrecht, K . B., Shapiro, A. T., Barloon,
J. P., and Goetz, A. F. H ., 1993, The spectral image processing system (SIPS)Ð
Interactive visualization and analysis of imaging spectrometer data. Remote Sensing
of Environment, 44, 145± 163.

Okada, K ., and Iwashita, A., 1992, Hyper-spectral image analysis based on waveform
characteristics of spectral curve. Advanced Space Resources, 12, 433± 442.

Rast, M ., Hook, S. J., Elvidge, C. D ., and Alley, R. E., 1991, An evaluation of techniques
for the extraction of mineral absorption features from high spectral resolution remote
sensing data. Photogrammetric Engineering and Remote Sensing, 57, 1303± 1309.

Richards, J. A., 1993, Remote Sensing Digital Image Analysis: an Introduction, 2nd edn (Berlin:
Springer-Verlag).

Roberts, D . A., Yamaguchi, Y., and Lyon, R. J. P., 1985, Calibration of Airborne Imaging
Spectrometer data to percent re¯ ectance using ® eld measurements. In Proceedings of
Ninth International Symposium on Remote Sensing of Environment, Ann Arbor, MI,
October 21± 25, 1985.

Schalkoff, R. J., 1992, Pattern Recognition: Statistical, Structural and Neural Approaches
(New York: Wiley).

Treitz, P. M ., Howarth, P. J., Suffling, R. C., and Smith, P., 1992, Application of detailed
ground information to vegetation mapping with high spatial resolution digital imagery.
Remote Sensing of Environment, 42, 65± 82.

Ustin, S., and Rock, B. N ., 1985, Preliminary analysis of AIS spectral data acquired from
semi-arid shrub communities in the Owens valley, California. Proceedings of the
Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, California, April
8 ± 10, 1985 , pp. 41± 45.

Vane, G ., and Goetz, A. F. H ., 1985, Introduction to the Proceedings of the Airborne
Imaging Spectrometer (AIS) Data Analysis Workshop. Proceedings of the Airborne
Imaging Spectrometer Data Analysis Workshop, Pasadena, California, April 8± 10,
1985 , pp.21.

Vane, G ., Green, R. O., Chrien, T. G ., Enmark, H . T., Hansen, E. G ., and Porter, W .
M ., 1993, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing
of Environment, 44, 127± 143.

Wasserman, P. D ., 1989, Neural Computing: T heory and Practice (New York: Van Nostrand
Reinhold).

Yuhas, R. H ., and Goetz, A. F. H ., 1993, Comparison of airborne (AVIRIS) and spaceborne
(TM) imagery data for discriminating among semi-arid landscape endmembers.
Proceedings of Ninth T hematic Conference on Geologic Remote Sensing, Environmental
Research Institute of Michigan, Ann Arbor, MI, pp. 503± 511.


