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Abstract

This paper presents a case study on the use of features derived from remote sensing data for mapping the highly fragmented
semideciduous Atlantic forest in Brazil. Innovative aspects of this research include the evaluation of different feature sets in
order to improve land cover mapping. The feature sets were defined based on expert knowledge and on data mining techniques
to be input to traditional and machine learning algorithms for pattern recognition, viz. maximum likelihood, univariate decision
trees, multivariate decision trees, and neural networks. The results showed that the maximum likelihood classification using
temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic
forest. In this study, a special accuracy measure was used: the so-called class mapping accuracy. Maximum likelihood
performed relatively well, with forest mapping accuracies ranging from 34.5 to 51.3%. In contrast, accuracies for neural
networks ranged from 19.0 to 45.2%. Classification confusion occurred mainly with coffee and eucalyptus plantations.
Univariate trees provided the most robust results for different feature sets, with accuracies ranging from 39.6 to 46.7%.
Temporal information of vegetation indices was more important than image texture, terrain topography and raw spectral
information for discriminating semideciduous Atlantic forest.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

July 2001 forests gained renewed interest at the
world conference on global change in Bonn, Ger-
many, mainly because of their role in important
environmental matters such as carbon cycle, climate
change, and biodiversity conservation. Data acquisi-
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tion at appropriate spatial and temporal scales is the
keystone to achieve the mapping accuracy needed for
mentioned fields of application. In Brazil, ongoing
initiatives have been producing valuable information
on forest resources (INPE, 2000; Souza and Barreto,
2000; Alves et al., 1999). The Amazonian and the
evergreen Atlantic forests have been subject of reg-
ular research in many scientific fields (Goldsmith,
1998), whereas only few studies have dealt with the
semideciduous Atlantic forest (de Oliveira-Filho and
Fontes, 2000). The semideciduous Atlantic forests of

0303-2434/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jag.2004.02.002



174 L.M.T. de Carvalho et al. / International Journal of Applied Earth Observation and Geoinformation 5 (2004) 173–186

Brazil are in an advanced stage of fragmentation and
biodiversity is seriously threatened. Accurate forest
monitoring is of utmost importance for supporting
incentives to stop these degradation processes.

It was acknowledged at the environmental con-
ferences in Rio de Janeiro and Kyoto that satellite
imagery will offer the most promising and probably
the only feasible way for a detailed mapping and
monitoring of forests over large geographical areas.
The operational use of remote sensing for forest map-
ping at regional and local scales has many challenges
that must be overcome in order to realise its potential.
For example, there is a need for effective information
extraction from a combination of different remotely
sensed data sets. The preprocessing and analysis tools
should be able to deal with a variety of data types to
enhance our ability to distinguish between landscape
features. This need is evident when considering the
increasing availability of many remotely sensed data
sets and our poor knowledge on basic information
about forest extent and condition.

Coarse spatial resolution sensors such as the
NOAA-AVHRR have been used widely for land cover
mapping (Mücher et al., 2000; Lucas et al., 2000a).
However, the results are also spatially coarse and,
thus, unsuitable for analysing landscapes that are
fragmented at a high spatial frequency (Foody et al.,
1997; Lucas et al., 2000b). Recently, attempts to over-
come the spatial constrains imposed by sensors such
as AVHRR have explored the use of mixture mod-
els, fuzzy clustering and artificial neural networks
(Atkinson et al., 1997; Tatem et al., 2001). Fine spatial
resolution images (e.g., SPOT-XS and Landsat-TM
imagery) have been used to map forests with the
accuracy required by regional-scale models (Frohn
et al., 1996). Significant operational limitations are
due to spectral overlap, large data volumes, and con-
sequently the computational costs needed for large
area mapping (Kontoes and Rokos, 1996; Townshend
et al., 1997; Suzen and Toprak, 1998). Still, fine spa-
tial resolution images provide the most feasible way
of dealing with situations where a sufficient level of
detail is required over large geographical areas.

The issues discussed above are relevant in the map-
ping of the highly fragmented semideciduous Atlantic
forest in southeastern Brazil. By estimating its ac-
tual cover using NOAA-AVHRR imagery, one would
probably conclude that this ecosystem has been al-

most extinguished (Fig. 1). Spectral overlap affects
the use of e.g., Landsat-TM imagery because of the
co-occurrence of land cover types such as coffee and
eucalyptus plantations (Varona, 2000; Raga, 2001).

1.1. Information sources

Since the first images from the Landsat satellite
reached the scientific community, numerous studies
have demonstrated the applicability of spectral infor-
mation to discriminate among land cover types. To-
gether with the capabilities of multispectral analysis,
its limitations were also revealed. Scientists found that
some objects on the Earth’s surface reflect the electro-
magnetic energy in the same way when sensed with a
multispectral scanner (Skidmore et al., 1988; Ma and
Olson, 1989). In addition, objects’ reflectance may
vary according to growth stage, phenology, humid-
ity, atmospheric transparency, illumination conditions
etc. These drawbacks led to a search for alternative
features to enable the discrimination of land cover
classes with similar reflectance behaviour.

The developed approaches rely on the use of addi-
tional information mainly related to topography, geol-
ogy, historical imagery, land cover data, image textural
measures, and multisensor imagery.Skidmore (1989)
successfully mapped different eucalyptus species in
Australia by incorporating information on their pre-
ferred terrain positions based on a digital terrain model
(DTM), whereasde Bruin and Gorte (2000)obtained
better classification results by using geological strat-
ification. Temporal information has been considered
in an attempt to distinguish agricultural crops using
their development stages within the yearly growth
cycle (Clevers et al., 1999; Ortiz et al., 1997). For
perennial plants (like trees) information over many
years can be used instead of the temporal information
within 1 year as for most agricultural crops. Tempo-
ral signatures are mostly treated in the same way as
spectral signatures. An exception is a recent method-
ology developed byVieira et al. (2000), the so-called
spectral-temporal response surface (STRS), which
characterises the pixel’s reflectance over time for each
waveband by means of analytical surface fitting.De
Jong and Riezebos (1991)increased classification by
20% using agro-ecological zones and the probabilities
of a land cover type to occur within certain zones.
Xia (1996)was able to identify five additional classes
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Fig. 1. Image used in the present study. The area within dashed lines is the subset shown inFig. 2.

when information about objects’ form was combined
with spectral classification results. Image texture had
little effect on increasing classification accuracy ac-
cording toDikshit (1996). In contradiction,Haralick
(1979) obtained highly accurate results when using
textural features derived from co-occurrence matri-
ces.Manian et al. (2000)and Zhu and Yang (1998)
reported promising results when texture features were
extracted with logical operators and using wavelet
transforms. Texture measures have been demonstrated
to be of utmost importance for the analysis of SAR

images (Soares et al., 1997; Fukuda and Hirosawa,
1999; Simard et al., 2000). The synergistic use of
optical and radar remote sensing holds new oppor-
tunities for land cover classification (Clevers et al.,
2000; Kuplich et al., 2000) since the latter provides
additional data on vegetation structure and on areas
frequently covered by clouds (Leeuwen et al., 1994).

Information sources for the present study were cho-
sen as to evaluate the benefits provided by some of
the features discussed above. The references cited in
this section show evidences for the concomitant use of



176 L.M.T. de Carvalho et al. / International Journal of Applied Earth Observation and Geoinformation 5 (2004) 173–186

spectral and other sources of information to improve
land cover mapping. Nevertheless, there is a lack of
exploratory analyses comparing the accuracy achieved
when using e.g., temporal instead of topographic in-
formation.

1.2. Classifiers

The above multisource information may be fed into
a variety of classification schemes. The algorithms
have evolved beyond the traditional probabilistic clas-
sifiers to deal with such heterogeneous data sets. Three
approaches based on intelligent data analysis are be-
ing increasingly applied in the field of remote sensing.
The first one, known as expert systems, works with
encoded information termed knowledge base, which is
generated by domain specialists. Unlike conventional
mathematical models, the knowledge is stored in a
separate file, which is evaluated within a set of rules
defined by specialists (van den Eijkel, 1999). Some
references cited above have used these models for land
cover mapping (e.g.,Skidmore, 1989; De Jong and
Riezebos, 1991).

The second family of intelligent models is known
as artificial neural networks. The most popular neural
network model for classification of remotely sensed
data is the multi-layer perceptron (MLP).Skidmore
et al. (1997)used the backpropagation learning algo-
rithm with a MLP model and reported no statistically
significant improvement of classification accuracy for
mapping forest types. New architectures have been
developed in an attempt to improve over MLP, like
the fuzzy ARTMAP (Carpenter et al., 1992), textural
neural networks (Kaminsky et al., 1997) and combi-
nations of neural networks and expert systems (Murai
and Omatu, 1997).

Decision trees are the third family of ‘intelligent’
algorithms used for geographical analysis (Skidmore
et al., 1996; Simard et al., 2000; Friedl et al., 2000;
Gahegan, 2000). Induction of decision trees enables
learning from pattern and is useful in selecting rel-
evant features for classification (Borak and Strahler,
1999). It has been used extensively in other disciplines
as a means of discovering knowledge for expert sys-
tems (Quinlan, 1986). Surprisingly, despite these at-
tractive characteristics and investigations in the past
(Swain and Hauska, 1977; Lee and Richards, 1985;
Belward and de Hoyos, 1987), decision trees have

only recently been considered for classification of re-
motely sensed images and not much work has been
done up to now (Friedl and Brodley, 1997; DeFries
et al., 1998; Friedl et al., 1999; Borak and Strahler,
1999). Finally, large-scale mapping projects using an
increasing amount of remotely sensed data demand
methods that are less dependent on human interven-
tions and more capable of handling spectral, spatial,
temporal and ancillary data from a variety of sources.
In this context, decision trees have been regarded as
one of the most important alternatives (DeFries and
Townshend, 1999).

Artificial neural networks and decision trees were
used in the present study because they have been
regarded as the most promising approaches for au-
tomatic classification of large and heterogeneous
datasets (DeFries and Townshend, 1999). Further-
more, they were compared to the traditional maxi-
mum likelihood classifier in terms of classification
accuracy.

1.3. Objective

The operational use of fine spatial resolution im-
ages for forest mapping is still premature, especially
within complex and fragmented agricultural systems.
There is a need for an effective classification proce-
dure that: (a) distinguishes between natural forest and
classes that spectrally overlap with it, (b) gets the most
from available features for classification, and (c) re-
quires the least human intervention, if reliable esti-
mates of forest cover are to be made frequently over
large geographical areas.

Based on the statement above, the general objective
of this study is to evaluate suitable methods of classi-
fying forest cover in a representative study area in the
semideciduous Atlantic forest in Brazil. This study in-
tends to evaluate the suitability of a multisource clas-
sification approach by testing the following features
for distinguishing natural forest from coffee and eu-
calyptus plantations.

• Multispectral remote sensing (RS) data within 1
year.

• Multispectral RS data over many years.
• Monotemporal RS data combined with DTM infor-

mation.
• Spatial image texture.
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• Temporal image texture.
• Spectral-temporal response surface method.
• Combination of all features (“data mining”).

Classification performance is evaluated by using
maximum likelihood, neural network, and decision
tree (univariate and multivariate) classifiers in combi-
nation with each feature set.

2. Material and methods

2.1. Study site and data

It is supposed that the Brazilian Atlantic forests
have once covered about one million square kilome-
tres, corresponding to almost 12% of the country’s
area (de Oliveira-Filho and Fontes, 2000). Nowadays,
estimated figures indicate that it has been reduced to
less than 5% of the original cover and has become one
of the most important examples of the radical destruc-
tion of tropical forests reported. An area in the “Vale
do Alto Rio Grande”, southeastern Brazil, represent-
ing a complex and fragmented land cover pattern, was
chosen as study area (Fig. 1). The occupation of this
region was characterised by four economic cycles.
Gold mining in the 18th century was the first important
activity in the region. Mining was soon abandoned giv-
ing room to ranching and agriculture. In the nineteenth
century, the region was the main furnisher of cattle
and working animals to the market of Rio de Janeiro,
which was by that time the capital of Brazil. Later
in this century, the culture of coffee was introduced
and increased very fast to become one of the main
causes of deforestation in the region. Nowadays, be-
sides the increasing industrialisation, coffee and milk
production form the main economical activities in the
region.

The “Vale do Alto Rio Grande” is characterised
by gentle hills, with altitudes ranging in most of the
region between 700 and 1000 m. However, altitudes
between 100 and 1400 m occur on the steeper ridges
of some mountain chains. Additionally, flat areas are
mainly represented by flood plains at the river’s mar-
gins and by a few localised plateaus. The main land
cover types in the study area are perennial crops like
coffee, eucalyptus and pasture, enclosing remnants
of semideciduous Atlantic forest and savanna-related

Table 1
Acquisition dates (day/month/year) of Landsat-TM images used
in this study

12/10/84 04/06/89 05/06/95
09/06/85 22/07/89 31/01/96
15/10/85 26/10/89 07/06/96
16/11/85 25/07/90 28/07/97
14/07/86 23/04/91 01/11/97
03/11/86 14/09/91 16/08/98
17/07/87 30/07/92 29/04/99
13/03/88 01/07/93 19/08/99
03/07/88 05/08/94 23/11/99

formations. Both natural formations are often con-
fused with planted crops because of their similar
reflectance characteristics. Thus, the potential of vari-
ables derived from time series of reflectance data,
spatial and temporal texture, and terrain topography
were assessed to define a mapping strategy for the
semideciduous Atlantic forests.

The input data set consisted of spectral bands 3–5
from 27 Landsat-TM images of the study area acquired
between 1984 and 1999 (Table 1). In addition, digi-
tised contour lines with 20 m vertical resolution were
used to derive a digital terrain model (DTM) of the
study area. Land cover maps were obtained by com-
bining the information of a field campaign in 1999
with available aerial photographs of the study area.
Carvalho (2001)gave an extensive description of the
study area and the data collection procedures.

2.2. Data preprocessing

Image registration was performed using a first
order polynomial function and a nearest neighbour
resampling method. Ten ground control points were
selected for each image and the root mean square
errors (RMSE) were less than one pixel for all regis-
trations. The resulting time-series was declouded us-
ing the method developed and described inCarvalho
(2001).

2.3. Development of feature sets

Seven sets of attributes were input to four classifi-
cation algorithms. Descriptions of derived features, as
well as the motivation for construction of each feature
set, are listed further.
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2.3.1. Set 1—yearly cycle of multispectral data
Bands 3–5 of TM data acquired in August 1998,

April 1999, August 1999, and November 1999 were
combined to form a set of 12 features. This data set
was motivated by the assumption that different land
cover types exhibit different dynamics throughout the
year, which might aid the discrimination of spectrally
similar land cover types.

2.3.2. Set 2—15 years of NDVI data
The normalized difference vegetation index (NDVI)

images were calculated from TM images acquired
yearly from 1985 till 1999. NDVI was chosen because
it is thought to represent not only phenological vari-
ation but also rotation and management practices in
perennial crops. It is assumed that natural forests ex-
hibit a relatively constant temporal profile in relation
to eucalyptus and coffee plantations.

2.3.3. Set 3—topography
From the digitised contour lines, a regular grid of

elevation data with a spatial resolution of 30 m was
generated using Delaunay triangulation with linear
interpolation. This grid was then used to derive slope
and aspect information. Elevation, slope and aspect
features were combined with all TM bands (except
for the thermal channel) of an image acquired in Au-
gust 1998, thus forming a set with nine features. The
assumption here was that topography determines agri-
cultural land use and might provide discriminating
information for forest classification.

2.3.4. Set 4—spatial texture
Multiscale texture descriptors were extracted in

the spatial domain using a 2D discrete wavelet trans-
form (Carvalho, 2001). Using this transform, four
high-frequency images, representing textural variation
at increasing spatial frequencies, were obtained for
three TM bands (3–5) from 1999. Thus, 15 features
(12 texture features and three TM bands) composed
this set. The ‘à trous’ algorithm with linear spline ba-
sis (Holschneider et al., 1989; Carvalho et al., 2001)
was used for the wavelet decomposition.

2.3.5. Set 5—temporal texture
The 1D discrete wavelet transform was applied to

extract temporal texture descriptors from the NDVI
time series. Temporal profiles were decomposed

pixel-wise using the Haar wavelet basis and pyrami-
dal decomposition (Carvalho, 2001). Different from
the ‘à trous’ algorithm, the pyramidal algorithm is
non-redundant, i.e., generates two transformed vec-
tors with half of the elements in the original vector,
one representing low-frequency components and the
other high-frequency components. One-level decom-
position was applied to 14 NDVI images resulting
in seven high-frequency texture features. These were
stacked with TM bands 3–5 from 1999 generating a
set with 10 features for classification.

2.3.6. Set 6—the spectral-temporal
response surface (STRS)

Bands 3–5 from 27 images acquired from 1984
to 1999 were used to calculate coefficients of the
spectral-temporal response surface (Vieira et al.,
2000). The coefficients of the fitted analytical surface
describe pixels as a function of time and wavelength,
and represent the spectral-temporal relations. In two
dimensions, i.e., spectral (x-coordinate) and tempo-
ral (y-coordinate), polynomials derived by multiple
regression for each pixel in the image are surfaces
[f(x, y)] of the form (Burrough and McDonnell,
1998):

f(x, y) = b0 (zero order)

f(x, y) = b0 + b1x + b2y (first order)

f(x, y) = b0 + b1x + b2y + b3x
2 + b4xy+ b5y

2

(second order)

f(x, y) = b0 + b1x + b2y + b3x
2 + b4xy+ b5y

2

+ b6x
3 + b7x

2y + b8xy2 + b9y
3 (third order)

As suggested byVieira et al. (2000), a polynomial fit of
third order was used to generate a set of 10 coefficients
(i.e., features) for each pixel in the subset scene.

2.3.7. Set 7—mined features
The 59 features described previously (in some of

the previous sets the same features occur) were fed
into a data mining package called classification and
regression trees (CART) (Breiman et al., 1984) for
exploratory analysis with decision trees (Carvalho,
2001). The top 10 discriminating features were se-
lected to compose the last set for classification. The
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automatically selected features were six NDVI images
from 1985 till 1987 and from 1992 till 1994, band 5
from April 1999 and the second, fourth and seventh
coefficient images of the STRS.

In this way, sets 1–6 reflected expert knowledge on
how different information might contribute to class
discrimination, whereas in set 7, this knowledge was
automatically generated based on relationships not al-
ways clear to domain experts. For the purpose of map-
ping semideciduous Atlantic forests, we hypothesise
that feature sets 2 and 5–7, which include long time
series, should be more relevant than the other feature
sets that represent yearly cycles or have no temporal
information included.

2.4. Classification procedures

2.4.1. Maximum likelihood
This algorithm has been the most popular for clas-

sification of remote sensing imagery. As a parametric
classifier, it assumes that a hyper-ellipsoid decision
volume can approximate the shape of the data clusters.
For a given unknown pixel, described by a vector of
features, the probability of membership in each class is
calculated using the classes’ mean feature vector, co-
variance matrix and prior probability (Duda and Hart,
1973). The unknown pixel is considered to belong to
the class with maximum probability of membership.

2.4.2. Artificial neural networks
This algorithm has spread in the remote sensing lit-

erature as a promising technique for a number of situ-
ations such as non-normality, complex feature spaces
and multivariate data types, where traditional meth-
ods fail to give accurate results (Atkinson and Tatnall,
1997). All feature sets were normalised before input
to the neural network. The MLP model with a back-
propagation learning algorithm (Carvalho, 2001) was
used in the present case. The network architecture was
set as follows: two hidden layers with 18 nodes each
using the sigmoid function as the activation method, a
fixed learning rate set to 0.9 and learning momentum
set to 0.7.

2.4.3. Decision trees
Inductive learning is another approach for artificial

intelligence. The rationale behind it is very simple and
intuitive: starting from a set of examples (e.g., training

pixels) described by a set of features, a binary decision
rule is defined to split the data into subsets more homo-
geneous than the original. Each subset is then subject
to a new split generating even more homogeneous sub-
sets. Theoretically, the procedure iterates until ‘pure’
subsets are obtained. Decision rules at each split are
normally obtained by thresholding the best discrimi-
nant attribute (univariate tree) or by defining the best
discriminant function based on linear combinations
of attributes (multivariate tree) (Brodley and Utgoff,
1995). The choice of attributes to be used in each split
is guided by a quality measure applied to the generated
subset. Decision trees share the same advantages of
neural networks compared with traditional probabilis-
tic algorithms because they are strictly nonparametric,
free from distribution assumptions, able to deal with
nonlinear relations, insensitive to missing values, and
capable of handling numerical and categorical inputs.
CART was used in this study to generate univariate
and multivariate classification trees (Carvalho, 2001).

We expect neural networks and decision trees to
be more accurate than the maximum likelihood clas-
sifier because of the advantages mentioned above
and the complex land cover pattern in the study
site.

Classifiers were trained with a set of 700 sam-
ple pixels equally distributed over seven main land
cover types: natural forest, savanna, coffee, eucalyp-
tus, annual crops, grassland and bare land. In addi-
tion, decision trees were pruned with another set of
700 sample pixels different from the training set. A
class-oriented approach was chosen and all classes,
except forest, were merged in a single class named
non-forest.

2.5. Accuracy measures

Each forest/non-forest output map was tested for
accuracy using a unique set of 2000 pixels selected
with simple random sampling. Training, pruning and
testing pixels were checked during field campaigns in
1999 aided by visual interpretation of small-format
aerial photos and Landsat-TM images. Only 162 out
of 2000 testing pixels were forest pixels, indicating
that forest was only a minor class in the study area.

The chosen accuracy measure for classification
comparisons was the class mapping accuracy pro-
posed byKalensky and Scherk (1975):
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Table 2
Forest mapping accuracy with 99% confidence interval according toThomas and Allcock (1984)with omissions and commissions for each
combination of feature set/classifier evaluated in this study

Feature sets Classifiers

Maximum likelihood Neural network

Forest accuracy (%) Omissions/commissions (pixels) Forest accuracy (%) Omissions/commissions (pixels)

One year cycle 46.9± 2.4 16/149 44.2± 2.2 16/168
NDVI time series 44.2± 2.2 16/168 20.8± 0.8 9/574
Topography 34.5± 1.7 16/261 33.8± 2.4 29/231
Spatial texture 39.8± 1.6 11/217 40.2± 5.2 68/72
Temporal texture 51.3± 3.0 21/113 35.1± 2.2 23/234
STRS 34.7± 1.0 6/287 45.2± 2.7 22/148
Mined features 42.8± 1.5 8/198 19.0± 0.6 6/658

Univariate Tree Multivariate Tree

One year cycle 41.8± 3.1 32/149 38.4± 2.4 23/200
NDVI time series 43.3± 1.9 13/182 36.0± 1.4 10/260
Topography 41.8± 3.1 32/149 44.0± 2.9 26/147
Spatial texture 39.6± 3.4 40/146 40.1± 4.6 59/95
Temporal texture 42.0± 2.5 21/174 32.1± 1.8 19/283
STRS 44.4± 2.5 23/182 43.4± 2.7 23/158
Mined features 46.7± 4.3 43/93 35.8± 1.7 14/251

Ai = Ni

Ni + Ei

100%, (1)

where,Ai is the percentage mapping accuracy of class
i, Ni the number of correctly classified pixels in class
i, and Ei the sum of omissions and commissions in
classi. This measure was chosen instead of the overall
classification accuracy or theκ-statistics because the
former might overestimate positional class accuracy
(Skidmore, 1999) and the latter lacks probabilistic in-
terpretation due to adjustments for hypothetical chance
agreement (Stehman, 1997). Although included in the
calculations ofAi, the number of omissions and com-
missions are also presented along withAi in Table 2
because they provide meaningful indicators of classi-
fication performance. In addition, the entire confusion
matrices are shown for the three best combinations of
classifier and feature set.

3. Results and discussion

Table 2shows an overview of the results of the clas-
sification into forest and non-forest for each combina-
tion of classifier and feature set. The forest mapping

accuracy was highest when using the temporal texture
as input for the maximum likelihood classification
(Table 2). Some classifier-feature set combinations
omitted less forest pixels than the most accurate ones,
whereas others classified fewer non-forest pixels as
forest. For example, when mined features were input
to neural networks, only six forest pixels were omitted
from this class, but 658 non-forest pixels were clas-
sified as forest. On the other hand, neural networks
with spatial texture showed a few commissions but
more omissions than the best combination. The third
most accurate combination, the univariate tree with
mined features, provided a balance between omis-
sions and commissions, similar to the multivariate
tree with spatial texture, but yet with high accuracy.
The least accurate classification result (19%) was
provided by the combination of neural networks with
mined features mainly due to the large number of
commissions.

Maximum likelihood performed relatively well
with all input feature sets (Table 2) with accuracies
ranging from 34.5 to 51.3%. In contrast, neural net-
works showed the greatest variation, with accuracies
ranging from 19.0 to 45.2%. Commissions made by
this type of classifier range from 72 to 658 pixels
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Fig. 2. Illustration of two Landsat-TM images and the best feature set for each of the four classifiers. Black arrows indicate misclassifications.

(out of 2000 pixels), the lowest and highest com-
mission values inTable 2. Univariate trees provided
the smallest range of variation for different feature
sets, with classification accuracies ranging from 39.6
to 46.7%.

As expected, classification confusion (arrows in
Fig. 2) occurred mainly with coffee and eucalyptus

plantations, but neural networks and univariate trees
also misclassified deforested areas currently covered
with pasture.Table 3provides a schematic overview
of the classification results, combining the mapping
accuracy and the errors of omission and commission
in a somewhat subjective way, but helping in making
the results more transparent.
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Table 3
Schematic overview of the classification results of this study

Feature sets Classifiers

Maximum likelihood Neural network Univariate tree Multivariate tree

One year cycle ++ ++ + +
NDVI time series ++ − ++ 0
Topography 0 0 + ++
Spatial image texture + ++ + ++
Temporal image texture +++ 0 + 0
STRS 0 ++ ++ ++
Mined features ++ − ++ 0

(−) Unsuitable; (0) neutral; (+) suitable; (++) very suitable; (+++) most suitable.

3.1. Feature sets and classifiers

The information provided by the high frequency
components extracted from temporal profiles was rel-
evant in this study, probably because of the different
dynamics exhibited by natural forests and managed
land cover types with similar reflectance characteris-
tics. Considering that temporal information provides
discriminating features for a given application, we sug-
gest that these findings could be applied to other areas
as well, and high frequency coefficients as extracted
with pyramidal wavelet transforms might provide data
reduction and yet enough information for class dis-
crimination. The Haar wavelet was chosen for this
study because it is equivalent to subtracting subsequent
years and, thus, represents differences in land cover
characteristics between the considered years. Wavelet
coefficients were able to capture land cover dynam-
ics, thus enabling change information to be used ef-
fectively during classification. Note that this feature
set provided more accurate results than the NDVI time
series from which wavelet coefficients were extracted.
This fact may be explained by the so-called curse of
dimensionality: provided that the number of training
samples per class is fixed, the classification accuracy
decreases as the number of input features increases
(Bishop, 1995). In contrast to the results presented
here,Borak and Strahler (1999)concluded that fea-
tures representing time had minor importance for class
discrimination, but their temporal data set included
only images from a one-year cycle. Long time series
(e.g., over decades) can be very effective for class dis-
crimination if the goal is comparisons between natu-
ral and managed land cover types, since the latter are

mostly more dynamic. Another reason for this differ-
ent conclusion could have been the pronounced spec-
tral overlap of forests with perennial crops in our study
site, preventing the efficient use of spectral features
for class separation. Neural networks combined with
STRS coefficients and univariate trees combined with
mined features misclassified deforested areas currently
covered with pasture (black arrows inFig. 2), proba-
bly because temporal information was not effectively
used. The fact that forests once covered these areas
might have been more important for the mentioned
combinations of classifiers-feature set.

From the seven feature sets evaluated, only sets
three (topography) and four (spatial texture) repre-
sented static information. Probably because of the ex-
plicit combination of features to define discriminant
functions, multivariate trees performed well when sets
three and four were supplied for classification. For ex-
ample, when a multivariate tree was grown using to-
pographic information, a relationship between slope,
near-infrared reflectance (NIR) and the occurrence of
forest was found, which could have been hidden for
other classifiers hampering their ability to use topo-
graphic features for classification. Another indication
for the lesser importance of topography and spatial
texture comes from the fact that they were rarely se-
lected during data mining and hence considered to
have low discriminating power. Data mining with de-
cision trees provided an effective feature selection and
reduction, but classification accuracy increased only
when the mined features were used to grow another
decision tree. Eighty-one features were reduced to ten
coefficients of the STRS, which kept most of the rel-
evant information and showed good accuracy when
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Table 4
Accuracy measures for the map produced with the maximum likelihood classifier applied to feature set 5 (temporal texture)

Mapped class Ground truth Commission error (%) User accuracy (%)

Forest Non-forest Total

Forest 141 113 254 44.49 55.51
Non-forest 21 1725 1746 1.20 98.80
Total 162 1838 2000
Omission error (%) 12.96 6.15
Producer accuracy (%) 87.04 93.85

Values in the contingency table are the number of pixels. Overall accuracy= 93.30%,κ-coefficient= 0.6425,Z-statistic= 7.90.

input to neural networks, univariate and multivariate
decision trees. Although preprocessing with data min-
ing decreased the neural network’s accuracy, the most
accurate results provided by feature reduction with the
STRS show the benefit of using data transformations
and preprocessing before neural network classifica-
tion.

It is important to mention that equal prior prob-
abilities were provided to the maximum likelihood
classifier, whereas neural networks and decision trees
learned the different prior probabilities from training
data distributions. Still, maximum likelihood was the
best classifier in this study and an increased accuracy
may still be achieved by provision of prior probabili-
ties for each land cover class. On the other hand, the
unpredictable behaviour of neural networks could be
a reflection of its lack of interpretability, demanding
careful experimentation before use in particular situa-
tions.

Univariate trees were more accurate than multivari-
ate trees whenever temporal information was used.
Classifiers with learning capabilities generally provide
better results when more examples (i.e., training sam-

Table 5
Accuracy measures for the map produced with the neural network classifier applied to feature set 4 (spatial texture)

Mapped class Ground truth Commission error (%) User accuracy (%)

Forest Non-forest Total

Forest 94 72 166 43.37 56.63
Non-forest 68 1766 1834 3.71 96.29
Total 162 1838 2000
Omission error (%) 41.98 3.92
Producer accuracy (%) 58.02 96.08

Values in the contingency table are the number of pixels. Overall accuracy= 93.00%,κ-coefficient= 0.5351,Z-statistic= 5.26.

ples) are provided. In this study, only 100 pixels for
each of the seven original classes were used for train-
ing and that could have limited the accuracy levels
obtained with decision trees.

3.2. Mapping accuracy

As for the choice of classifiers, decision of what
should be considered the most appropriate in terms
of accuracy depends largely on the objectives of the
mapping project (Stehman, 1997). Because the aim of
this study was to evaluate classification of forests as a
whole, the total number of misclassifications was the
chosen indicator. As opposed to measures based on in-
dicators of type I and type II errors (e.g., user and pro-
ducer accuracy), the class mapping accuracy proposed
by Kalensky and Scherk (1975)takes omissions and
commissions into account generating an unbiased es-
timator of positional class accuracy (Skidmore, 1999)
(compareTables 4 and 5). The combination shown in
Table 6would be considered the best for forest map-
ping if one used producer accuracy as indicator. Con-
sidering the class-oriented approach and the binary
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Table 6
Accuracy measures for the map produced with the maximum likelihood applied to feature set 1 (yearly cycle)

Mapped class Ground truth Commission error (%) User accuracy (%)

Forest Non-forest Total

Forest 146 149 295 50.51 49.49
Non-forest 16 1689 1705 0.94 99.06
Total 162 1838 2000
Omission error (%) 9.88 8.11
Producer accuracy (%) 90.12 91.89

Values in the contingency table are the number of pixels. Overall accuracy= 91.75%,κ-coefficient= 0.5968,Z-statistic= 7.81.

classification problem presented in this study, the over-
all accuracy would yield similar results, but still, the
combination of a neural network with the spatial tex-
ture (overall accuracy of 93%) would be misinter-
preted as giving the second best result even omitting
a large number of forest pixels.Stehman (1997)criti-
cised the lack of probabilistic interpretation when us-
ing coefficients like Kappa and conditional Kappa, but
in the present study they did not lead to misinterpre-
tation of the case mentioned above (compareTables 5
and 6). In all three cases the obtainedZ-statistic was
highly significant.

4. Conclusions

Considering the study set up and its outcomes, the
following statements could be drawn about mapping
the semideciduous Atlantic forest.

• Temporal information from vegetation indices was
more important than image texture, terrain topogra-
phy and raw spectral information for discriminating
semideciduous Atlantic forest in the present study.
Nevertheless, spatial texture and topographical fea-
tures were still important when neural networks and
multivariate trees were used for classification.

• The choice of classifier is dependent on the data,
objectives, resources, and expertise available for a
given mapping project. Aiming at accurate mapping
of semideciduous Atlantic forest in the “Vale do
Alto Rio Grande”, using the data set available for
this study and considering the other factors given,
one is advised to use maximum likelihood classi-
fication and temporal texture descriptors of NDVI
time series as input data.

References

Alves, D.S., Pereira, J.L.G., De Souza, C.L., Soares, J.V.,
Yamaguchi, F., 1999. Characterizing landscape changes in
central Rond̂onia using Landsat TM imagery. Int. J. Remote
Sens. 20, 2877–2882.

Atkinson, P.M., Tatnall, A.R.L., 1997. Neural networks in remote
sensing—Introduction. Int. J. Remote Sens. 18, 699–709.

Atkinson, P.M., Cutler, M.E.J., Lewis, H., 1997. Mapping sub-pixel
proportional land cover with AVHRR imagery. Int. J. Remote
Sens. 18, 917–935.

Belward, A.S., de Hoyos, A., 1987. A comparison of supervised
maximum likelihood and decision tree classification for crop
cover estimation from multitemporal Landsat MSS data. Int. J.
Remote Sens. 8, 229–235.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition.
Clarendon, Oxford.

Borak, J.S., Strahler, A.H., 1999. Feature selection and land
cover classification of a MODIS-like data set for a semi-arid
environment. Int. J. Remote Sens. 20, 919–938.

Breiman, L., Friedman, J.H., Olsen, R.A. and Stone, C.J., 1984.
Classification and Regression Trees. Wadsworth, Belmont.

Brodley, C.E., Utgoff, P.E., 1995. Multivariate decision trees.
Machine Learning 19, 45–77.

de Bruin, S., Gorte, B.G.H., 2000. Probabilistic image classification
using geological map units applied to land-cover change
detection. Int. J. Remote Sens. 21, 2389–2402.

Burrough, P.A., McDonnell, R.A., 1998. Principles of Geographic
Information Systems. Oxford University Press, New York.

Carpenter, G.A., Grossberg, S., Markuzon, S., Reynolds, N., Rosen,
D.B., 1992. Fuzzy ARTMAP: a neural network architecture
for incremental supervised learning of analog multidimensional
maps. IEEE Trans. Neural Networks 3, 698–713.

Carvalho, L.M.T., 2001. Mapping and monitoring forest remnants:
a multiscale analysis of spatio-temporal data. Ph.D. Thesis,
Wageningen University, Wageningen, The Netherlands.

Carvalho, L.M.T., Fonseca, L.M.G., Murtagh, F., Clevers, J.G.P.W.,
2001. Change detection at multiple spatial scales with the aid
of multiresolution wavelet analysis. Int. J. Remote Sens. 22,
3871–3876.

Clevers, J.G.P.W., Vandysheva, N.M., Mücher, C.A., Vassilenko,
G.I., Filonov, S.V., Zhoukova, G.A., Izotova, V.P.,
Gurov, A.F., Nieuwenhuis, G.J.A., Addink, E.A., 1999.



L.M.T. de Carvalho et al. / International Journal of Applied Earth Observation and Geoinformation 5 (2004) 173–186185

Agricultural Land Use Monitoring with Improved Remote
Sensing Techniques. Report LUW-GIRS-199902, Wageningen
University, Wageningen, The Netherlands.

Clevers, J.G.P.W., Vonder, O.W., Schok, H.A., Addink, E.A., 2000.
Applications of Multisensor Remote Sensing Satellite Sensors.
CGI Report 2000-03, Wageningen University, Wageningen, The
Netherlands.

DeFries, R.S., Townshend, J.R.G., 1999. Global land cover
characterization from satellite data: from research to operational
implementation? Global Ecol. Biogeogr. 8, 367–379.

DeFries, R.S., Hansen, M., Townshend, J.R.G., Sohlberg, R., 1998.
Global land cover classifications at 8 km spatial resolution: the
use of training data derived from Landsat imagery in decision
tree classifiers. Int. J. Remote Sens. 19, 3141–3168.

De Jong, S.M., Riezebos, H.T., 1991. Use of a GIS database as
“a priori” knowledge in multispectral land cover classification.
In: Proceedings of the Second European Conference on
Geographical Information Systems. Brussels, pp. 503–508.

Dikshit, O., 1996. Textural classification for ecological research
using ATM images. Int. J. Remote Sens. 17, 887–915.

Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene
Analysis. Wiley, New York.

Eijkel, G.C. van den, 1999. Rule induction. In: Berthold, M.,
Hand, D.J. (Eds.), Intelligent Data Analysis: An Introduction.
Springer-Verlag, Berlin, pp. 195–216.

Foody, G.M., Lucas, R.M., Curran, P.J., Honzak, M., 1997.
Mapping tropical forest fractional cover from coarse spatial
resolution remote sensing imagery. Plant Ecol. 131, 143–154.

Friedl, M.A., Brodley, C.E., 1997. Decision trees classification of
land cover from remotely sensed data. Remote Sens. Environ.
61, 399–409.

Friedl, M.A., Brodley, C.E., Strahler, A.H., 1999. Maximizing land
cover classification accuracies produced by decision trees at
continental to global scales. IEEE Trans. Geosci. Remote Sens.
37, 969–977.

Friedl, M.A., Woodcock, C., Gopal, S., Muchoney, D., Strahler,
A.H., Barker-Schaaf, C., 2000. A note on procedures used for
accuracy assessment in land cover maps derived from AVHRR
data. Int. J. Remote Sens. 21, 1073–1077.

Frohn, R.C., McGwire, K.C., Dale, V.H., Estes, J.E., 1996. Using
satellite remote sensing analysis to evaluate a socio-economic
and ecological model of deforestation in Rondonia, Brazil. Int.
J. Remote Sens. 17, 3233–3255.

Fukuda, S., Hirosawa, H.A., 1999. Wavelet-based texture feature
set applied to classification of multifrequency polarimetric SAR
images. IEEE Trans. Geosci. Remote Sens. 37, 2282–2286.

Gahegan, M., 2000. On the application of inductive machine
learning tools to geographical analysis. Geograph. Anal. 32,
113–139.

Goldsmith, F.B., 1998. Tropical Rain Forest: a Wider Perspective.
Chapman and Hall, Padstow.

Haralick, R.M., 1979. Statistical and structural approaches to
texture. Proc. IEEE 67, 786–804.

Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchmitchian,
P., 1989. A real time algorithm for signal analysis with the
help of the wavelet transform. In: Combes, J.M., Grossman,
A., Tchmitchian, P. (Eds.), Wavelets: Time Frequency Methods
and Phase Space. Springer-Verlag, New York, pp. 286–297.

INPE, 2000. Monitoramento de Floresta Amazônica por Satélite
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