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Abstract—Impaired balance may limit mobility and daily

activities, and plays a key role in the elderly falling. Maintain-

ing balance requires a concerted action of the sensory,

nervous and motor systems, whereby cause and effect

mutually affect each other within a closed loop. Aforemen-

tioned systems and their connecting pathways are prone

to chronological age and disease-related deterioration.

System redundancy allows for compensation strategies,

e.g. sensory reweighting, to maintain standing balance in

spite of the deterioration of underlying systems. Once those

strategies fail, impaired balance and possible falls may

occur. Targeted interventions to prevent falling require

knowledge of the quality of the underlying systems and

the compensation strategies used. As current clinical bal-

ance tests only measure the ability to maintain standing bal-

ance and cannot distinguish between cause and effect in a

closed loop, there is a clear clinical need for new techniques

to assess standing balance. A way to disentangle

cause-and-effect relations to identify primary defects and

compensation strategies is based on the application of

external disturbances and system identification techniques,

applicable in clinical practice. This paper outlines the
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multiple deteriorations of the underlying systems that may

be involved in standing balance, which have to be detected

early to prevent impaired standing balance. An overview of

clinically used balance tests shows that early detection of

impaired standing balance and identification of causal

mechanisms is difficult with current tests, thereby hindering

the development of well-timed and target-oriented interven-

tions as described next. Finally, a new approach to assess

standing balance and to detect the underlying deteriorations

is proposed. � 2014 IBRO. Published by Elsevier Ltd. All

rights reserved.

Key words: balance control, elderly persons, standing

balance, system identification.
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INTRODUCTION

Impaired standing balance, defined as having difficulties

maintaining an upright position in daily life activities, is a

common problem among the elderly (Jonsson et al.,

2004; Lin and Bhattacharyya, 2012) and has a

significant impact on the health and quality of life (Lin

and Bhattacharyya, 2012). Impaired standing balance

plays a key role in falls (Rubenstein, 2006) and is a

strong risk factor for falls (Muir et al., 2010); one third of
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elderly persons aged 65 or older falls at least once a year

(Tinetti and Ginter, 1988; O’Loughlin et al., 1993;

Luukinen et al., 1994; Stalenhoef et al., 1999; Chu

et al., 2005). Ten percent of falls among community-

dwelling elderly persons result in serious injuries, such

as hip fractures (1–2%), other fractures (3–5%) or head

injuries (5%) (NVKG, 2004). A quarter of the deaths in

home situations are the result of falls (CBS, 2013).

Furthermore, falls are related to psychosocial factors

such as fear of falling and social isolation. (Tinetti et al.,

1994; Vellas et al., 1997); the resulting restricted

mobility may further deteriorate standing balance (Vellas

et al., 1997; Allison et al., 2013). Therefore, falls have a

profound socioeconomic impact (Hartholt et al., 2012).

To prevent falling, targeted interventions improving

standing balance are needed which requires knowledge

of the underlying cause of impaired standing balance at

an early stage.

The ability to maintain balance requires appropriate

interaction of several key systems, i.e. the motor

(muscles), nervous and sensory systems, connected via

efferent and afferent signal pathways resulting in a

closed loop in which cause and effect are interrelated.

Aforementioned systems deteriorate with advanced age

(Horak et al., 1989; Manchester et al., 1989; Sturnieks

et al., 2008) and as a result of specific diseases

and medication use (Konrad et al., 1999). System

redundancy allows for compensation strategies to

maintain balance and so it is only when those strategies

fail, e.g. in cases of severe system deterioration, multiple

system deterioration and/or environmental disturbances

exceeding system resilience, that impaired balance and

finally falling may occur. Impaired balance may thus go

unnoticed until an advanced stage.

Current clinical balance tests, such as the Berg

balance scale (BSS) and the short physical performance

battery (SPPB), include an assessment of the ability to

maintain standing balance during challenging standing

conditions (Whitney et al., 1998; Langley and

Mackintosh, 2007) by narrowing the base of support or

closing the eyes. However, identification of cause-and-

effect relations, primary deterioration and compensation

strategies, and ultimately the quality of the underlying

systems requires new technical approaches such as

closed loop system identification techniques. This allows

for early failure detection, so that there are no missed

opportunities for targeted interventions and disease

management.

The present paper outlines the clinical need for proper

balance assessment, describes the available balance

tests and proceeds to describe promising control

engineering-based solutions and their applicability for

clinical practice.
DETERIORATION OF STANDING BALANCE

Advanced age in combination with (multi) morbidity and

the use of medication will result in a variety of

deterioration patterns in the underlying systems involved

in maintaining standing balance, which subsequently

results in a widely heterogeneous pathophysiology of
impaired standing balance among the elderly (Horak

et al., 1989). Changes in the sensory systems lead to

conflicting and inaccurate sensory information about

body position. Motor system changes comprise low

muscle mass and strength, preventing correction for

balance deviations in a proper and efficient way.

Changes in the nervous system result in abnormal

scaling and timing of corrective responses to internal

disturbances, which include sensor and motor noise due

to deterioration of the underlying systems, and external

disturbances, which are caused by the environment, for

example a slip or a push (Horak et al., 1989). Due to

system redundancy it is possible to compensate for

those changes by selecting proper strategies to maintain

balance.
Deterioration of the sensory systems

With advanced age, sensory systems deteriorate.

Impaired proprioception is apparent from reduced

vibration sense by the cutaneous receptors (Dorfman

and Bosley, 1979) or reduced joint position sense by the

muscle spindles and the golgi tendon organs (Gilman,

2002), due to axonal degeneration and decrease in the

number and density of nerve fibers (Dorfman and

Bosley, 1979). Reduced joint position sense can also be

due to degenerating chrondrocytes in the cartilage

surface of joints caused by degenerative joint disease

(Skinner et al., 1984). Age-related diseases, such as

diabetes, also result in impaired proprioception (Arnold

et al., 2013). Visual impairment at an advanced age

comprises a decline in visual acuity, contrast sensitivity,

glare sensitivity, dark adaptation, accommodation and

depth perception (Horak et al., 1989; Sturnieks et al.,

2008). Cataract and macular degeneration mainly affect

central vision, whereas chronic glaucoma reduces

peripheral vision (Eichenbaum, 2012). Vestibular

impairment at an advanced age results from a reduced

number of vestibular hair cells, Scarpa’s ganglion cells

and nerve fibers (Horak et al., 1989; Woollacott, 1993;

Sturnieks et al., 2008; Barin and Dodson, 2011). Nerve

conduction speed in afferent and efferent pathways

slows down due to a decrease in the number of

neurons, loss of myelination and other neural changes

(Sturnieks et al., 2008; Barin and Dodson, 2011).
Deterioration of the motor system

With advanced age, muscle mass decreases, which can

result in low muscle mass, i.e. sarcopenia (Morley,

2008). Furthermore, muscle strength, the rate of force

production and muscle power declines with age (Thom

et al., 2007; Narici and Maffulli, 2010) due to age-

related alterations in muscle architecture (Narici et al.,

2003), muscle control (Campbell et al., 1973; Dalton

et al., 2008), activation dynamics (Payne and Delbono,

2004; Short et al., 2005; Gannon et al., 2009) and

muscle fiber typing (Vandervoort, 2002). Tendon

stiffness decreases with age due to an increase of non-

reducible collagen cross-linking, a reduction in collagen

fibril crimp angle, an increase in elastin content, a

reduction of extracellular water content and an increase
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in type tube V collagen. This results in a lower velocity of

shortening and a change in the length-tension relation,

which causes a reduction of force production (Narici

et al., 2008). In addition, with age the tendon becomes

thicker, hypoechogenic and more likely to tear (Yu

et al., 2012). Orthopedic pathologies (e.g. arthritis) can

lead to restricted mobility; arthritis correlates with a

decrease in range of motion in joints (Badley et al.,

1984; Hughes et al., 1994).
Deterioration of the nervous system

The sensory and motor systems are linked by the nervous

system. The nervous system has the adaptive capacity to

compensate for the deterioration of the sensor and motor

systems by selecting a compensation strategy to maintain

balance. However, this capacity deteriorates with age and

disease (Horak et al., 1989). In the elderly, deficits in

stimulus encoding, central processing and response

initiation result in diminished transmission speed and a

lower accuracy of sensory information and delayed

muscle activation (Horak et al., 1989). Impaired blood

pressure regulation, as demonstrated by hypertension

and orthostatic hypotension, could result in a decrease

of cerebral blood flow (Strandgaard and Paulson, 1995;

Novak et al., 1998) and therefore increase the risk of

hypoperfusion of the brain, resulting in brain damage

and impaired neural control. As with age cognitive

control seems to become of increasing importance for

standing balance (Ward and Frackowiak, 2003;

Heuninckx et al., 2005), balance will also be negatively

influenced by deteriorating cognitive function (Shin

et al., 2011; Suttanon et al., 2012; Taylor et al., 2013).
Compensation strategies to maintain standing
balance

System deterioration may induce the selection of

alternative compensation strategies. First, sensory

reweighting implies that the nervous system will rely on

more accurate as compared to less accurate and

conflicting sensory information. The elderly are less

capable of reweighting sensory information than young

people (Teasdale et al., 1991; Hay et al., 1996).

Furthermore, in balance control the elderly rely more on

visual information than do the young (Faraldo-Garcia

et al., 2012). As a consequence, the elderly are less

able to compensate in situations where visual

information is disturbed or excluded by the environment.

Second, the elderly rely more heavily on the hip

strategy, i.e. movement around the hip joint, to maintain

standing balance compared to the young who rely more

on the ankle strategy, i.e. pivot around the ankle joint

during normal stance (Hsu et al., 2013). In response to

more challenging conditions, e.g. altered sensory

conditions in which vestibular or proprioceptive

information is reduced, the young will change their

balance strategy by relying more on the hip strategy

(Turcato and Ramat, 2011). As elderly already rely

more heavily on the hip strategy, they are less able to

adapt to environmental changes. Third, co-contraction is

a commonly used strategy in the elderly when other
compensation strategies cannot be used efficiently

(Benjuya et al., 2004). Co-contraction is energy-

demanding and makes the body stiffer, reducing the

range of motion. As a consequence, resilience to larger

disturbances is reduced and stepping out strategies

may be required to prevent falling (Rogers and Mille,

2003). Fourth, deterioration of underlying systems

increases the attentional demands to maintain standing

balance (Shumway-Cook and Woollacott, 2000). When

attentional resources are limited, this could result in

impaired standing balance or falls; if two tasks are

performed simultaneously and require more attentional

demands than the total capacity, the performance on

either or both tasks deteriorates, depending on the

difficulty of the tasks. One can compensate for the

shortcoming of attention by task prioritization; one task

is prioritized over another task to complete the most

important task successfully (Woollacott and Shumway-

Cook, 2002; Lacour et al., 2008).
CURRENT STANDING BALANCE ASSESSMENT

Clinical balance tests

Clinical balance tests are developed to assess physical

performance, such as the Tinetti balance test (Tinetti,

1986), the functional reach test (Duncan et al., 1990),

the BBS (Berg, 1989), the clinical balance test of

sensory interaction and balance (CTSIB) (Shumway-

Cook and Horak, 1986), the SPPB (Guralnik et al.,

1994), the balance error scoring system (BESS) (Finnoff

et al., 2009), the star excursion balance test (SEBT)

(Gribble et al., 2012) and the Romberg’s test (Rogers,

1980). As daily activities require balance and balance is

hard to detect during these activities, in those tests the

ability to maintain balance is dichotomously assessed

and scored in specific standing and/or dynamic balance

conditions, possibly combined with walking.

Clinical balance tests are practical in use because of

their low cost, simple equipment and time efficiency.

Furthermore, the tests have a good inter-rater and intra-

rater reliability (Duncan et al., 1992; Whitney et al.,

1998; Langley and Mackintosh, 2007; Bell et al., 2011;

Freiberger et al., 2012; Gribble et al., 2013). Due to the

dichotomous assessment of the ability to maintain

standing balance, clinical balance tests only detect

impaired balance when compensation strategies fail

(Duncan et al., 1992; Pardasaney et al., 2012). Often,

active people can maintain standing balance without any

problem despite severe system deterioration due to an

efficient compensation by selection of proper strategies

(Pardasaney et al., 2012). This may hamper the use of

clinical balance tests in active elderly people or at an

early stage of deterioration (i.e. ceiling effect). In

addition, clinical balance tests do not provide

information about the underlying systems involved in

maintaining standing balance and the compensation

strategies used. Therefore, the underlying cause of

impaired standing balance cannot be detected.
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Posturography

Posturography is an alternative method to assess

standing balance using a continuous scale (Visser et al.,

2008). Static posturography comprises assessment of

the center of mass (CoM) and/or center of pressure

(CoP) movement during an unperturbed stance. CoM

movement represents movement of the body, while CoP

movement is a reflection of balance control to keep

CoM within the base of support (Winter et al., 2003).

CoM and CoP movement are interrelated but reflect

different aspects of balance control, which shows the

necessity to measure both entities simultaneously. CoM

movement can be measured using inertial sensors

(Aminian et al., 1999; Mayagoitia et al., 2002;

Moe-Nilssen and Helbostad, 2002; Turcato and Ramat,

2011) or position tracking systems (Zabjek et al., 2008;

Forsell and Halvorsen, 2009), which measure body

segment displacement with respect to a local or global

coordinate system. CoP movement can be measured

using force plates (Rogind et al., 2003; Clark et al.,

2010; Najafi et al., 2010) or in-shoe pressure

assessment devices (Han et al., 1999; Donath et al.,

2012) which measure ground reaction forces. Inertial

sensors and in-shoe pressure assessment devices are

less expensive and can be used outside the laboratory.

Deterioration detection of a specific sensory system can

be facilitated by manipulation of standing conditions, i.e.

several foot positions (changes in base of support), with

eyes open or eyes closed (elimination of vision), or on a

firm or compliant surface (disturbance of proprioception)

(Visser et al., 2008). The sensory orientation test (SOT)

uses six sensory conditions in which the information of

three main sensory systems is alternately eliminated or

disturbed. Ratios between conditions give more insight

into the quality of the underlying sensory systems

(NeuroCom, 2012). In contrast to static posturography,

dynamic posturography comprises CoM or CoP

movement assessment during external disturbances

applied by platform movement or disturbances applied

to upper body parts.

Posturography is easily applicable, but a major

disadvantage is the high intrasubject variability

preventing individual assessment of standing balance

(Visser et al., 2008). A main source of variability is the

use of different compensation strategies depending on

age, disease and test condition (Benvenuti et al., 1999;

Helbostad et al., 2004; Lafond et al., 2004). The

reliability depends on the population of interest, time of

measurement and number of trials. To reach a good

reliability, it is recommended to measure CoP and/or

CoM movement more than once and during a time

period of 90 s (Lafond et al., 2004; Ruhe et al., 2010),

which is less feasible in clinical practice and in an

elderly population. The results of posturography are also

inherently difficult to interpret. Increased CoP or CoM

movement is generally assumed to reflect a

deterioration of balance control; this may however not

be the case (Winter et al., 1990; Horak et al., 1997;

Mancini and Horak, 2010). As the underlying systems

are interrelated, selection of another compensation

strategy could induce either increased or diminished
CoP and/or CoM movement, in fact reflecting optimal

balance control. Furthermore, changes in CoM and/or

CoP movement can be multicausal, i.e. caused by

deterioration of several underlying systems. In addition,

CoP and/or CoM movement are influenced by training,

such as ballet training. Ballet dancers show a better

stability compared with untrained controls (Golomer

et al., 1999; Hugel et al., 1999), but have an increased

CoP and/or CoM movement in specific sensory

conditions compared with untrained controls due to

different use of sensory information (Perrin et al., 2002;

Simmons, 2005). As a result, posturography cannot

distinguish between the various underlying systems and

the compensation strategies used and it therefore fails

to reveal the details of the underlying pathophysiology of

impaired standing balance (Mancini and Horak, 2010).
INTERVENTIONS TO IMPROVE STANDING
BALANCE

Individually targeted multifactorial intervention, including

individual risk assessment, is shown to be the most

effective with a significant and beneficial effect on the

rate of falling (Gillespie et al., 2012). However, due to

the lack of clinical tests that can make a distinction

between underlying causes of impaired standing

balance, nowadays general fall prevention interventions

are used, comprising exercising, environmental

modification, medication optimization, education, or a

combination. To reduce the risk of falling, exercising

seems to be the best to use in the elderly (Chang et al.,

2004; Sherrington et al., 2011; Gillespie et al., 2012).

Exercising, either balance, resistance or cognitive-motor

training (Granacher et al., 2011a,b; Pichierri et al.,

2011) could also be prescribed to improve standing

balance in the elderly in particular (Howe et al., 2011).

For traditional balance training there are hardly any

scientific guidelines regarding contents, optimal duration

and intensity. The American College of Sports Medicine

(ACSM) recommends exercises that include (1)

standing conditions with increasing difficulty caused by

gradually reducing the base of support (e.g. semi-

tandem stance, tandem stance and one-leg stance); (2)

dynamic movements that disturb the CoM (e.g. tandem

walk, circle turns); (3) stressing muscle groups involved

in standing balance (e.g. heel stands, toe stands); and

(4) reducing sensory input (e.g. standing with eyes

closed) (Chodzko-Zajko et al., 2009). Perturbation-

based balance training concentrates on compensation

strategies to recover from unexpected disturbances

using exercises matching real life conditions (Maki et al.,

2008). Multitask balance training focuses on balance

control during dual task activities, as instability

increases when shared attention is needed (Granacher

et al., 2010). Perturbation-based and multitask balance

training are shown to be more effective than traditional

balance training (Granacher et al., 2011a,b). However, a

drawback of all aforementioned training types is the lack

of a clear dose–response relationship and the unknown

effects on the underlying systems and the compensation

strategies used (Granacher et al., 2012).
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Resistance training is used to improve the motor

system, i.e. muscle function. It comprises strength

training (Fiatarone et al., 1990; Granacher et al., 2009)

and power training (Fielding et al., 2002; Reid et al.,

2008) to increase muscle strength and velocity of force

production respectively. High-intensity strength training

appears to be more effective than low-intensity training.

However, the effect on standing balance is less clear

(Latham et al., 2004). Power training has been shown to

be more effective in improving standing balance than

strength training (Tschopp et al., 2011). Low-intensity

power training seems to be better than high- or medium-

intensity power training (Orr et al., 2008). However, the

most effective intensity of resistance training is still

under debate.

Cognitive-motor training focuses on the attentional

demands needed to perform standing balance

conditions. Three types of cognitive or cognitive-motor

trainings are proposed. First, cognitive rehabilitation

intervention has as goal to maximize the cognitive

functioning and/or to reduce the risk of cognitive decline,

e.g. by mental imagery training on standing balance.

Second, cognitive-motor interventions are interventions

combining cognitive tasks with physical tasks, e.g.

balancing with a current mental task like memorizing

words. Third, computerized interventions use

biofeedback or virtual reality to improve standing

balance. In the first case, feedback is given on the

balance task, e.g. by visual feedback about the CoP

movement. In the second case, environments are

created in which subjects interact with images and

virtual objects in a virtual environment, such as

computer games. Previous research showed that

cognitive and cognitive-motor training are effective to

improve standing balance. However, more research is

needed to get more evidence on the effectiveness of

cognitive or cognitive-motor training (Pichierri et al.,

2011).

Despite the generally positive effect of balance

training, resistance training and cognitive-motor training

on standing balance, it remains unclear which

intervention (i.e. content, duration and intensity) can

best be prescribed to improve standing balance in any

specific case. This requires identification of the

underlying cause and primary deterioration in impaired

standing balance and the proper compensation strategy

to be trained to improve standing balance. This is not

possible with the current clinical assessment tools,

preventing goal directed and time efficient therapy.
A NEW METHOD TO IDENTIFY THE
UNDERLYING CAUSE OF IMPAIRED STANDING

BALANCE

As with current clinical balance tests and posturography it

is difficult to identify and to distinguish the primary

deterioration of the various underlying systems and the

used compensation strategies which are needed to

prescribe targeted interventions, there is a clear clinical

need for novel techniques to assess standing balance.
Balance control: a closed loop

The underlying systems involved in balance control

interact within a closed loop (Fig. 1). When the body is

disturbed by internal and/or external disturbances, it has

to react to these disturbances. Changes in body position

are perceived by the three main sensory systems:

central and peripheral (Paulus et al., 1984; Bardy et al.,

1999) vision, proprioception and the vestibular system

(Johansson et al., 1988). This sensory information is

combined and integrated by the nervous system with a

specific time delay. Subsequent motor system action in

the form of corrective, stabilizing joint torques is

generated. This changes body position, which is again

perceived by the sensory systems. Thus, in daily life

cause and effect are interrelated in a continuous

process (Fig. 1) within a closed loop (Morasso and

Schieppati, 1999).
Externally applied disturbances and closed loop
system identification techniques

One way to ‘‘break open’’ the loop of balance control and

disentangle cause-and-effect relations is to apply precise

external disturbances and record how the system reacts.

The relation between the disturbances and the response

can be described in the frequency domain by a

frequency response function (FRF); per applied

disturbance frequency the amplitude ratio and time

delay between input and output is described. FRFs can

be compared between or within subjects to identify

changes in the balance control across different

disturbance conditions. An additional step is to translate

those FRFs to parameters, which makes it possible to

describe the underlying systems involved in balance

control. The experimental FRFs are compared with a

model of the balance control describing the underlying

systems mathematically. Using optimization methods,

the parameters are estimated, so that they will

represent the experimental data the best. The estimated

parameters give a physiological meaning to the FRFs

(van der Kooij et al., 2005).

Identifying deterioration in the nervous system and

changes in strategies requires mechanical disturbances.

Measuring separately the generated activity of each leg

(i.e. the CoP movement) and the CoM movement,

makes it possible to identify the contribution of each leg

to the stabilization of standing balance (van Asseldonk

et al., 2006). By applying mechanical disturbances at

ankle and hip level, the inter-segmental stabilizing

mechanisms which represent the contribution of the

ankle and hip strategy to the control of standing balance

can be identified. Furthermore, the movements of the

two joints influence each other. This coupling between

the joints can be expressed by relating the joint torques

to the joint angles (Boonstra et al., 2013).

Quantifying the contribution of the sensory systems

requires disturbances of a specific sensory system, e.g.

visual scene movement disturbing vision or ankle

rotations disturbing proprioception. The contribution of

each sensory system in maintaining standing balance

can subsequently be expressed by a weighting factor
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(Peterka, 2002). A distinction can be made in the

contribution of the proprioceptive information of the left

and the right leg to detect asymmetries (Pasma et al.,

2012). Sensory reweighting strategies can be assessed

by increasing sensory disturbance amplitudes (Peterka,

2002) as this scales down the contribution of a sensory

system, and thus lowers its weighting factor. The quality

of the sensory systems can be determined by estimating

the noise level (van der Kooij and Peterka, 2011).

Applying precise external disturbances makes it

possible to identify the quality of each underlying

system. Simultaneous disturbances of different sensory

systems allow for assessment of sensory reweighting

and together with mechanical disturbances aimed at

different joints, hip and ankle strategies can be

identified. The use of random multisine disturbances

consisting of specific frequencies prevents anticipation

and allows for assessment of the bandwidth of system

quality. As the goal is to identify balance control and not

to identify its limits, sub maximal amplitudes which the

participant can withstand, are used to disturb the system.
Clinical relevance

The use of externally applied disturbances and closed

loop system identification techniques makes it possible

to detect a deterioration in the underlying systems and

the compensation strategies used by elderly persons

with impaired standing balance. Using this knowledge a

physician can diagnose the underlying and primary

cause of impaired standing balance, which makes it

possible to prescribe targeted interventions. This

method may also be applicable to detect deterioration of

balance control at an early stage in elderly persons

without impaired standing balance, i.e. who do not show

deterioration of balance control using current clinical

balance tests. Furthermore, the described method is

time and cost effective since it allows for simultaneous

application of several external disturbances with

different frequency contents. The external disturbances

are sub maximal, which makes the method safe for the

patient. However, before this method can be clinically

applied, further research has to investigate sensitivity
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and specificity of the method to identify impaired standing

balance and risk of falling in the population of interest. As

such, prototypes are currently implemented and

evaluated in clinical practice.
CONCLUSION

There is a clinical need for new techniques to assess

standing balance that can detect the underlying cause

and primary deterioration in impaired standing balance

at an early stage. Externally applied disturbances in

combination with closed loop system identification

techniques may fill the void, which makes it possible to

intervene in impaired standing balance, at an early

stage, with targeted interventions.
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