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In this paper a numerical procedure to simulate low diffusivity scalar turbulence is 
presented. The method consists of using a grid for the advected scalar with a higher 
spatial resolution than that of the momentum. The latter usually requires a less refined 
mesh and integrating both fields on a single grid tailored to the most demanding variable
produces an unnecessary computational overhead. A multiple resolution approach is used 
also in the time integration in order to maintain the stability of the scalars on the finer 
grid. The method is the more advantageous the less diffusive the scalar is with respect 
to momentum, therefore it is particularly well suited for large Prandtl or Schmidt number 
flows. However, even in the case of equal diffusivities the present procedure gives CPU time 
and memory occupation savings, due to the increased gradients and more intermittent 
behaviour of the scalars when compared to momentum.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Countless phenomena in Nature and technology involve one or more scalar fields that are advected and diffused by 
a turbulent flow. The dilution of pollution in the atmosphere [1], the transport of nutrients in oceans [2], the cooling or 
heating of devices [3] and the buoyancy-driven currents generated by natural- [4,5] and double-diffusive [6,7] convection 
are just few examples among many. Scalars have also be used to capture interfaces in multiphase flows [8] or to determine 
the dynamical properties of turbulent flows [9].

Scalars can be classified as either passive or active, depending on whether they couple back to the velocity field or 
not. Many studies of simulations of passive scalars in incompressible homogeneous isotropic turbulence (HIT) have been 
performed during the years [10–15]. For a comprehensive overview, we refer the reader to the review by Warhaft [16] and 
the references therein. For active scalars, especially in the context of natural convection, numerical simulations have also 
been proven to be very helpful in unravelling the complex physics behind these phenomena [17] even if the calculations 
have shown to be more demanding than expected, taking up to millions of CPU hours in recent studies [18,19].

The common understanding of the problem is that in three-dimensional turbulent flows, there is a cascade from the 
largest towards the small spatial scales up to a lower limit that is determined by the diffusivity. As each field has its own 
diffusivity, these scales can have different magnitudes. In direct numerical simulation (DNS) the mesh size must be smaller 
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Fig. 1. A horizontal plane halfway between the plates for a Rayleigh–Bénard simulation in a Cartesian geometry at Ra = 1010 and Prandtl number Pr = 1. 
(a) Vertical velocity, red indicating rising fluid while blue indicates falling fluid, (b) temperature, red indicating hot fluid and blue indicating cold fluid. 
Even though the Prandtl number is one, much sharper gradients can be seen in the right panel. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 2. (a) Instantaneous θ and uz profiles as a function of the vertical coordinate z/L for Ra = 1010, Pr = 1 RB simulation. (b) PDF of ∂zθ and ∂zuz for the 
same simulation in the bulk.

than the smallest among them: This requirement quickly renders DNS infeasible. Denoting as ηK the smallest (Kolmogorov) 
scale of the momentum field, we can calculate the analogous quantity for a scalar field S as ηB = ηK /Sc1/2, also called 
the Batchelor scale, with Sc = ν/κS the Schmidt number defined as the ratio of the kinematic viscosity ν and the scalar 
diffusivity κS , respectively. In some cases, like sugar in water, the Schmidt number exceeds 103 resulting in a Batchelor 
scale of ηB � ηK /30. With equal grid resolutions for the scalar and the momentum fields, this entails that the momentum 
field is overresolved by a factor of approximately 30 in each spatial direction. The problem is exacerbated by the fact that a 
scalar is described by only a single quantity, while momentum is a vector field satisfying the incompressibility condition or 
other related constraints. This implies that the solution of the momentum alone generally takes an order of 90% of the total 
CPU time of a simulation and therefore resolving it on an unnecessary fine mesh is not desirable.

The above scenario, essentially derived from dimensional analysis, does not give the complete picture since it does not 
account for the structure of the equations. In fact, the naïve comparison between the Kolmogorov and Batchelor scales 
suggests that for Sc ≈ 1, ηK � ηB although in practice the resolution requirements for the momentum and the scalar fields 
are not the same. Visual evidence of the latter statement can be obtained from the instantaneous snapshots of Fig. 1 showing 
horizontal cross-sections of temperature and vertical velocity in a thermally driven turbulent flow, the Rayleigh–Bénard (RB) 
problem, i.e. the flow between two parallel plates heated from above and cooled from below. In RB flow, the fluid hotter than 
the average temperature (0.5 in nondimensional units) generates upward buoyancy and therefore positive vertical velocity 
(and vice versa). Although the two fields are very well correlated on the large scales, the sharp fronts of the scalar field do 
not have an analogous counterpart in the momentum distribution and this results in a different resolution requirement for 
scalar and momentum fields.

For a fully resolved DNS, the momentum gradients must be adequately captured so that the dissipative scale (and thus 
vorticity) is adequately resolved. Analogously, the scalar (temperature) gradients must be correctly captured so that the 
diffusive scale (and thus the scalar variance) is adequately resolved. We quantify the difference in gradients between scalars 
and momentum in Fig. 2(a) by showing instantaneous temperature θ and vertical velocity uz profiles across a vertical line 
from a doubly periodic Rayleigh–Bénard simulation: much steeper gradients can be seen in the temperature (scalar) field. 
These steep gradients are smoother in the vertical velocity and this lowers the resolution requirements of momentum with 
respect to those of scalars. This observation is further corroborated by Fig. 2(b) showing the probability density functions 
of ∂zθ and ∂zuz computed in the bulk of the flow without the boundary layers. Extreme gradients can be seen to be more 
likely for θ thus evidencing a more intermittent behaviour. This behaviour has been extensively studied in experiments 
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(cf. Fig. 2 in Ref. [16]). It is a well established fact that the intermittency corrections to the structure function exponents 
are much larger for scalars than for velocity [20,21]. Indeed, these fronts become much sharper with increasing Reynolds 
number, and thus increasing small-scale intermittency [22,10,12,13,16,23].

This consideration motivates the present paper that describes a strategy for efficiently simulating scalar driven turbulent 
flows with different spatial resolutions for momentum and scalar fields. A problem related to the non-local equations for 
momentum is their high computational cost and the detrimental implications on the parallel performance. Therefore, the 
possibility of using different meshes for momentum and scalars opens the door to very large gains in performance, not 
only by reducing the amount of operations, but also the communication of data among processors and the total memory 
usage. In this context, there already exist similar approaches, which however, have focused on passive scalars in HIT. Gotoh 
et al. [24] already used an approach using a multiple resolution strategy to simulate a scalar in decaying HIT. They used a 
pseudospectral method to solve the incompressible Navier–Stokes equations on a coarse mesh, and combined compact finite 
differences for the scalar advection–diffusion equation on a finer mesh for decaying HIT turbulence. Reductions of computa-
tional time of 25% for Sc = 1 and 74% for Sc = 50 were reported. Recently, Lagaert et al. [25] used a hybrid spectral-particle 
approach to simulate high Sc flows, where the incompressible Navier–Stokes equations are solved pseudospectrally, while a 
particle method is used to solve for the scalar field on the same test cases as Ref. [24], providing even greater speedups. 
Another approach worth mentioning by Verma and Blanquart [26] uses a Large Eddy Simulation (LES)-type filter in the 
“viscous-convective” scale range, i.e. the scale range λvc for which ηK << λvc << ηB , to simulate high Schmidt number 
flows, resolved in velocity but filtered for the scalar. However, it is unclear how this approach will work with active scalars.

All previous methods focus on the simulation of passive scalars. In natural convection however, the flow is driven by 
temperature, so in this case we must simulate an active scalar. This motivates the present study where we will detail 
the application of a multiple resolution strategy for active scalars on non-uniform grids needed to properly capture the 
dynamics in the near-wall region. This method will be mainly applied to Rayleigh–Bénard (RB) convection, the flow of a 
fluid vertically confined by a top cold and a bottom hot plate. We will simulate a “rectangular” domain, periodic in both 
horizontal directions, so only the vertical (wall-bounded) direction will be non-homogeneous. The horizontal periodicity 
length will be taken as a half of the height, so the aspect ratio � is fixed � = 1/2. In the RB problem, the flow is driven 
by the temperature (scalar) field whose diffusivity can be changed by the Prandtl number Pr (the temperature Schmidt 
number). RB is a particularly suitable example for the present application since analytical exact relations are available 
for this problem that can be used to check the correctness of the numerical results. It is worth mentioning that in RB 
convection the forcing comes from the heated and cooled surfaces where viscous and thermal boundary layers develop. 
Since they become thinner as the forcing strengthens, the resolution requirements in these boundary layers become more 
stringent than in the bulk. This implies a strong non-uniformity in the spatial discretization, not accounted for in the 
previously mentioned multiple-resolution methods. An extensive analysis of the problem can be found in Ref. [27] where 
all the details, estimates and guidelines for numerical simulations are given. Here, it suffices to mention that a non-uniform 
mesh is required in the wall normal direction such to cluster the nodes within the boundary layers. Nevertheless, even if 
the grid spacing at the wall is much finer than that in the bulk, the volume of fluid within these layers is at most a few 
percent of the total and the nodes allocated there are only a small fraction of the whole mesh.

We will additionally show another numerical example. Namely, double diffusive convection (DDC), in which the flow is 
driven by two scalars with very different diffusivities and with opposite, stabilizing and destabilizing, effects on the flow. In 
this case the multiple resolution strategy is even more advantageous and it allows for the simulation of flow regimes that 
otherwise would be out of reach.

The organization of the paper is the following. In the next section we describe the governing equations and the numerical 
method. Section 3 quantifies the differences of momentum and scalar gradients and presents some analytical exact relations 
for RB. The section closes with the results of reference simulations obtained on a standard single grid. In Section 4 the mul-
tiple resolution strategy and numerical details are explained. Finally, Section 5 discusses the results and the computational 
performance of the method for RB flow and double diffusive convection. Closing remarks are reported in Section 6.

2. Governing equations and numerical method

The incompressible Navier–Stokes equations with the Boussinesq approximation for thermal convection, in nondimen-
sional form, read:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∂i p +

√
Pr

Ra
∇2u + θez, (2)

∂θ

∂t
+ u · ∇θ =

√
1

Ra Pr
∇2θ, (3)

where u is the velocity, p is the pressure, θ is the temperature (rescaled such that it is one at the hot plate and zero at the 
cold plate) and ez is the unitary vector in the anti-parallel direction to gravity, which is also the plate-normal direction. The 
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Rayleigh number Ra is the non-dimensional temperature difference defined as Ra = gβT (Th − Tc)L3/κT ν , where ν is the 
kinematic viscosity, βT is the isobaric thermal expansion coefficient and κT is the thermal diffusivity of the fluid, g is the 
gravity, L is the distance and Th and Tc are the temperature at the hot and cold plates, respectively. The Prandtl number Pr, 
which is the temperature analogue of the Schmidt number, is defined as Pr = ν/κT .

The integration of the above system is performed by a fractional timestepping [28] with the modifications proposed in 
Refs. [29,30]. In short, a provisional velocity ûi is computed from the previous field un

i using the old pressure pn

ûi − un
i


t
= −∂i pn − Nn+1/2

i + Dn+1/2
i , (4)

Nn+1/2
i contains the non-linear terms and the scalar forcing while Dn+1/2

i has the viscous terms: The former are computed 
explicitly in time, the latter implicitly. The flow incompressibility is then enforced by a pressure correction that takes 
the form of a Poisson equation ∇2φ = ∂i ûi whose solution is the most computationally demanding step, especially on 
non-uniform grids. In addition, the Poisson equation is non-local and this has consequences on code parallelization, requiring 
the largest amount of communication. Once the scalar φ is obtained, the velocity ûi is projected onto the solenoidal field 
un+1

i and the new pressure pn+1 can be computed. The advancement of the scalar is performed directly through

θn+1 − θn


t
= −Mn+1/2 + V n+1/2, (5)

where, again, Mn+1/2 contains the explicit non-linear terms and V n+1/2 the implicit diffusive terms.
All the variables are discretized by central second-order finite-differences on a staggered grid and the time advancement 

of the solution is obtained by a low-storage third-order Runge–Kutta scheme. Further details can be found in Ref. [29].

3. Heat transfer in RB

In RB flow, one of the interesting quantities is the heat flux Q transferred from one plate to the other. In non-dimensional 
form this is the Nusselt number, Nu = Q /κT (Th − Tc)L−1. This is not only interesting from a physical point of view, but also 
as a monitoring variable since it has been observed [31] that when the separately calculated Nusselt numbers converge and 
are grid independent, at least all quantities up to second order statistics are properly resolved.

There are several ways to calculate Nu, either by measuring the convective heat transport in the system

Nu(z) = √
Ra Pr〈uzθ〉A,t + 1, (6)

or by using the exact relationships derived from global balances [32] of kinetic energy,

εν = νU 2
f L−2〈[∂iu j]2〉V ,t = ν3L−4(Nu − 1)Ra Pr−2, (7)

and thermal energy,

εθ = κT (Th − Tc)
2L−2〈[∂iθ]2〉V ,t = κT (Th − Tc)

2L−2Nu. (8)

Here the subscripts t , A and V denote, respectively, averages in time, horizontal homogeneous planes and the whole fluid 
volume, and U f the free-fall velocity U f = √

βg(Th − Tc)L. Although equation (6) depends on z, once the equilibrium is 
reached its value becomes constant. This condition is requested to assess the statistical convergence of the results.

From here on, we denote Nu with a subscript, either Nuuzθ , Nuεν or Nuεθ which specifies the particular equation, i.e. 
(6)–(8) respectively, with which Nu is calculated. In addition, we also denote the Nusselt number calculated by the tem-
perature gradient at the wall as Nuθw . All definitions are equivalent analytically, but they involve gradients of the variables 
that, when calculated numerically, can deviate from each other if the simulations do not have enough spatial resolution to 
capture the smallest flow scales: the diffusive/scalar variance scale in Nuεθ and the dissipative/vorticity scale Nuεν : Their 
comparison can thus be used as a test for the adequacy of the mesh [31]. We note that these relationships are not only valid 
in the Cartesian geometry considered here, with horizontally periodic boundary conditions, but in any geometry in which 
the horizontal sidewalls are impermeable and adiabatic (or periodic). For example, this criterium was adopted by Stevens 
et al. [31], where the geometry is a cylinder with impermeable adiabatic sidewalls. According to their results, summarized 
in Fig. 3, it is evident that equation (8) shows the slowest grid convergence, and this is the reason for adopting the above
mentioned criterium.

This criterium will be now applied for the Cartesian geometry considered here. Figs. 4(a) and 4(b) show the ratios 
Nuεθ /Nuuzθ and Nuεν /Nuuzθ for RB simulations performed on the same grid for momentum and temperature (scalar) at Ra =
109 and Pr = 1 or Pr = 10. Resolutions between 962 × 192 and 3842 × 768 were used, the larger number corresponding to 
the vertical (wall-bounded) direction. An aspect ratio of � = 1/2 was used in both directions. Points were clustered near the 
wall using a Chebychev-like distribution according to the prescriptions of [27]. See Table A.1 for the raw numerical results. 
The Kolmogorov scale is computed from the kinetic energy dissipation rate using ηK /L = (ν3/εν)1/4 and the Batchelor 
scale ηB/L = ηK /LPr−1/2. As mentioned above, the various expressions for Nu should be equivalent, their ratios however, 
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Fig. 3. Ratio between different ways of calculating Nu against grid size for a cylindrical RB simulation with Ra = 109 and Pr = 0.7, taken from Ref. [31]. Red 
squares are Nuεν /Nuuzθ , blue circles are Nuεθ

/Nuuzθ .

Fig. 4. (a) Ratio between different ways of calculating Nu against grid size for a rectangular RB simulation with Ra = 109 and Pr = 1. Red squares are 
Nuεν /Nuuzθ , blue circles are Nuεθ

/Nuuzθ . (b) The same as (a) for Pr = 10. Nuεθ
is plotted against max(
/ηB ) while Nuεν is plotted against max(
/ηB ). 

For Pr = 1, ηB ≡ ηK . (c) Convergence to an asymptotic value of Nuuzθ for Ra = 109 and Pr = 1. (d) The same as (c) for Pr = 10. (See Table A.1 for the raw 
numerical results.)

approach the unity limit only when the normalized mesh sizes 
/ηK and 
/ηB decrease and they do not converge at 
the same rate. In particular it can be noted that Nuεν /Nuuzθ tends to unity for larger grid spacings than Nuεθ /Nuuzθ even 
for Pr = 1 and this corroborates our hypothesis that a finer resolution is needed for the scalar than for momentum. Using 
an identical mesh to spatially discretize both momentum and the scalars therefore produces an overhead in computational 
resources that is redundant.

At the highest resolution, all the definitions converge to the same value (within an uncertainty of 2–3%), therefore we 
will refer to it as Nuref without specifying the particular expression and Figs. 4(c) and 4(d) show the convergence of Nuuzθ

to this asymptotic value.

4. The multiple resolutions strategy

4.1. Multiple resolution strategy in space

In this subsection we present a method to decouple the spatial discretization of the scalars and the momentum, which 
allows for large computational savings. This is achieved by refining every cell of a base mesh Mi times in each i-th 
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Fig. 5. Location of pressure, active scalar and velocities of a 2D simulation cell. The third dimension (z) is omitted for clarity. As on an ordinary staggered 
scheme, the velocity vectors are placed on the borders of the cell and pressure and scalars are placed in the cell center.

Fig. 6. (a) Normalized metric 
x/Nx , where Nx is the amount of grid points for a Chebychev-type grid clustering for a refined-mesh generated (M = 8) 
from a base mesh by splitting the base cells (squares), and the base mesh generated from the refined mesh (diamonds). The first method causes a 
staircase-like metric, which leads to spurious oscillations. (b) Comparison on interpolated velocity v from a base mesh to the refined mesh (M = 8) using 
linear interpolation (squares) and cubic Hermite splines (diamonds). Both interpolations coincide at the base mesh points. The direction of interpolation is 
uniformly discretized, showing that this problem with linear interpolation is present in all directions.

direction. A simplified two-dimensional sketch of this procedure is shown in Fig. 5. On the left, the location of the scalars 
and velocities in the standard single mesh is shown for a staggered arrangement. There, the velocity components are at the 
centers of the cell faces, while the pressure and the scalar are discretized at the center of the cell volume. The right panel 
shows a case with velocity and pressure on the base grid, and a doubly refined (Mx =My = 2) mesh for the scalar, which 
is temperature in the RB case.

The method works as follows. We first generate the refined mesh over which the scalar field is discretized and then a 
coarser mesh is obtained by taking only one out of Mi nodes in the i-th direction. Note that when the mesh is uniform 
in space this is equivalent to start from the coarse cells and split them into Mi identical parts. For a non-uniform mesh, 
however additional care must be taken. This naive splitting would result in a staircase distribution of the metrics for the 
fine grid, which would have constant coefficients within each coarse element and with jumps across its boundaries. These 
discontinuities in the metric would locally decrease at the border elements the accuracy of the discretization to first order 
and also introduce spurious oscillations in the resolved fields. The difference between the resulting metric from the naïve 
method and the used method is highlighted in Fig. 6(a) for a mesh obtained by a Chebychev-like distribution with 96 
base nodes and a refinement factor of eight. We note that in this section, most numerical examples are obtained using 
the same Mi in every direction therefore, unless otherwise specified, from here on we will use only M to indicate the 
isotropic refinement factor without specifying the direction. However, this is not required for the method to work and the 
same procedure can be applied to refinement levels different in each direction depending on the particular flow physics. An 
example of anisotropic refinement factors will be shown in Section 5.2.

In order to advect the scalar, a velocity field has to be projected from the base mesh onto the refined grid in a stag-
gered arrangement with respect to the scalar. A first straightforward possibility consists of using a tri-cubic Hermite spline 
interpolation, with a stencil of four points in every direction, for a total of sixty-four points in three dimensions. This is, 
according to our numerical tests, the minimum required. At the top and bottom boundaries, one-sided interpolation is used, 
which in principle is less accurate, but as it is performed on a much finer grid, the amplitude of the error is much smaller 
than in the bulk. The accuracy of Hermitian interpolation has proven to be sufficient in our turbulent flows, and it is com-
parable to that of B-splines [33]. Hermitian interpolation, however, is preferred in this method as B-splines are much more 
computationally expensive.

Preliminary simulations have shown that a linear interpolation using a two point stencil, though computationally cheaper, 
is not adequate since it results in a spatially interpolated velocity field which has equal gradients for all the refined points 
inside every base cell, and discontinuities at the base cell boundaries (Fig. 6(b)). This lack of homogeneity results in spurious 
oscillations in the scalar field, in particular around local maxima and minima of velocity. An example of these oscillations is 
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Fig. 7. (a) Pseudocolour plot of temperature at the mid-height when using a refinement of M = 3 and linear interpolation for the velocities. Spurious 
oscillations every three points can be seen all over the domain. (b) Zoom-in of the region inside the black square of (a). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. When the refinement factors are even, as in (a), the finely-discretized scalar does not directly correspond to the coarsely-discretized scalar. When 
the refinement factors are all odd as in (b), one of the finely-discretized scalars coincides with the coarsely-discretized scalar. However, the value of S at 
this point only represents the value of the scalar in the sub-cell (shaded area) and not the entire coarse cell.

shown in Fig. 7 with the checkboard pattern given by the footprint of the base mesh. We note that this problem is not due 
to the non-uniformity of the mesh, and it would be present for uniform meshes if linear interpolation were to be used.

The spatially interpolated velocity can then be used to advance equation (3), and compute the values of the scalars at 
the new time. If a finely-discretized scalar couples back to the momentum field, like in the case of RB flow, a spatial filter 
must be applied to calculate a “coarsened” scalar, as information from the multiple sub-cells must be mapped on to the 
coarser momentum mesh. In this case, an averaging using equal weights within each refined cell is used. This averaged 
scalar is then used in equation (2) to advance momentum and pressure.

This procedure is needed mainly due to two reasons. First, the position of the scalar in the fine grid only coincides with 
the position of the scalar on a coarse grid if odd refinement factors are used in all directions. This is shown graphically in 
Fig. 8. Therefore, some sort of interpolation is needed to map the scalars on the fine grid onto a value for the scalar on 
the coarse grid. Second, even if all refinement factors are odd, and there exists a coincident position for the scalar in the 
coarse and fine mesh, the scalar in the fine mesh only represents a fraction of the total volume of the coarse cell, and thus 
averaging the value across the cells of the fine mesh contained in the coarse cell gives a conserved scalar. In addition, for 
non-uniform meshes, even if the refinement factors are all odd, there is not a coincident position and an interpolation or 
filtering is always needed.

Indeed, by using a multiple resolutions strategy for the scalar, we are missing the forcing of the scalar at sub-grid 
wavenumbers. However, if the velocity field is resolved correctly, this sub-grid forcing which we are missing is at sub-
Kolmogorov wavenumbers, which are damped by viscosity. This again highlights the need to have a sufficient mesh for the 
velocity field, otherwise this missing forcing will result in a different (and wrong) physics for the velocity.

We stress that the interpolation of a velocity field between two different grids is a very dangerous operation since 
its effect is equivalent to that of a low-pass filter, which usually leads to loss of energy and generation or destruction of 
information. This is catastrophic in the DNS of turbulent flows where the dynamics are based on the energy cascade through 
the scales. If the velocity is underresolved, then the unresolved sub-grid scales are a relevant part of the physics and contain 
a significant energy. This is lost, and thus the energy cascade is seriously disturbed. It has even more serious consequences 
in a RB flow where the balance between thermal (potential) and kinetic energy determines the heat transfer. Nevertheless, 
if the base mesh already captures the smallest momentum structures, the field is smooth already at the scale of the base 
cell, and the subgrid scales have very little energy. Thus, an interpolation kernel that is continuous enough does not alter 
the energy content or the velocity gradients of the field. This has been directly verified with the DNS data by computing 
the relation (7) and the various meshes and comparing the results.

As mentioned above, interpolating the velocity field from the base to the refined mesh is the most immediate although 
it must be noted that it results in a non-solenoidal field. We wish to stress that this is not due to the tricubic Hermitian 
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Fig. 9. Pseudocolour plot of the local divergence of the tricubically-interpolated velocity field ∇ · ũ. The local residual can be seen to be very large near the 
walls, where the grid is highly non-uniform. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

interpolation since, owing to the staggered arrangement of the velocity components, even a linearly interpolated velocity 
would be non-solenoidal on the fine grid.

Indeed one may also just use the tricubic interpolation “as-is”. Our simulations in this section indicate that the global 
responses and turbulent statistics show great agreement with those by using a single refined grid, and this locally non-
solenoidal field has not resulted in apparent problems. The residual divergence is in fact very small (∼ O(10−3)) for most 
part of the flow domain as long as the base mesh is in the DNS range for the momentum. Higher residual divergence may 
be observed in some very localized regions which are usually close to the wall boundary, such as the places where the 
scalar plumes develop and the grid is highly non-uniform. This is shown in Fig. 9, which shows a pseudocolour of the local 
divergence of the tricubically-interpolated field in a vertical cut. Notice that at every time step the refined velocity field 
is interpolated from a solenoidal velocity field on the coarse grid, and the tricubic interpolation preserves the property of 
being globally divergence-free in our problems. Any interpolation, even non-physical ones preserve a globally solenoidal 
field, as the domain is bounded by two impermeable walls in one direction, and is periodic in the other two. Thus the error 
induced by the residual divergence should be small and does not accumulate during the time advance. Nevertheless, the 
effect may get worse as the grid becomes more non-uniform which could become a problem at higher drivings.

A drastic way of addressing this issue could be a “minimum energy” correction to fully remove the residual divergence 
of the interpolated velocity; this would require the solution of a Poisson equation for a velocity correction, with the local 
divergence as source term. While the multiple resolutions strategy would remain favourable, solving a Poisson equation on 
the fine grid would negate one of the main advantages of the method.

Alternatively, we propose here a locally mass-conserving interpolation which produces a divergence-free velocity field 
without solving the Poisson equation on the fine grid. Notice that the velocity field on the coarse grid is solenoidal in the 
sense of ∂xu + ∂y v + ∂z w = 0 at the cell center. Thus we first compute (∂xu, ∂y v, ∂z w) at the cell center on the coarse grid, 
then interpolate them to the cell center on the fine grid by using the tricubic interpolation. Since the three quantities are 
defined at the same locations on both the coarse and fine grids, the interpolation involves the same stencil points and there-
fore the relationship ∂xu + ∂y v + ∂z w = 0 is always satisfied at the cell centers on the fine grid, as it is satisfied to machine 
precision at every cell center of base mesh. Therefore, continuity is automatically preserved during the interpolation.

With the interpolated (∂xu, ∂y v, ∂z w) the velocity field can be reconstructed. For example, one can conduct a two-
dimensional tricubic interpolation for u on an arbitrary y–z plane, then integrate along the x-direction according the 
interpolated ∂xu. v can be treated similarly. For wall normal velocity w , one can just integrate ∂z w from the two plates 
where w ≡ 0.

Of course some price has to be paid by using this new interpolation. It requires more CPU time than the tricubic 
interpolation due to extra integration and data communication between processes. Another issue is the accumulated error 
of the integration. For instance, the integral of the interpolated ∂z w from one plate to the opposite one may not equal to 
zero, which will violate the impermeability condition at wall boundary. In practice, one can reduce the error by constructing 
w from both plates and taking the average. In our simulation we found out that the error of w at two plates is of order 
10−6, and the total flux caused by this error is basically machine zero (O(10−16) as we use double precision) at both 
plates. We note that the difference between the total kinetic energy of the coarse grid and fine grid is usually about 0.1%. 
Lastly, this interpolation technique is anisotropic. From the previous discussion, we have seen that the divergence in the 
interpolated field is the highest near the walls. We perform the integration in the non-uniform direction to keep errors 
as low as possible because there is a clear starting point for the interpolation (the walls), unlike the two homogeneous 
directions.
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The previous discussion suggests that the proposed multiple resolution procedure can only work if the coarse mesh is 
fine enough to fully resolve the momentum field. In Section 5 numerical results will confirm this statement showing that 
when the base mesh adequately resolves the momentum field good results and CPU time saving can be obtained by refining 
only the grid for the scalar. On the other hand, if the coarse grid does not fully resolve the momentum field even very large 
values of M do not lead to correct results.

4.2. Multiple resolution strategy in time

The multiple resolution in space entails that the node spacing for the scalars (
S ) is smaller than that for the momentum 
(
U ) and this has immediate consequences on the stability of the time integration because of the explicit terms. Due to 
the Courant–Friedichs–Lewy condition [34], 
t · max[U/
S ] ≤ CCFL , in fact, the time step must decrease by a factor equal 
to the refinement M because min[
S ] = min[
U ]/M. As this small 
t is not needed by the base mesh for momentum 
and pressure, the usage of the current approach becomes disadvantageous very rapidly, especially in high Sc flows requiring 
high values of M. However, a multiple resolution strategy can be applied also in time, by advancing the more expensive 
momentum and pressure with a larger time-step and the scalar with a smaller one, using a temporally interpolated velocity. 
In this way, the stability of the explicit terms in the scalar equation is retained without the penalization of an unnecessary 
small integration step for all the other equations.

The integration of the scalar equation is therefore performed in L sub-steps, and at each intermediate l time level the 
velocity is linearly interpolated through

q̄l = L− l

L
q̄n + l

L
q̄n+1, (9)

where q̄n is the spatially interpolated velocity at time step n. A simple linear interpolation is used, which is enough to 
ensure correctness as is demonstrated in Section 5. This velocity is then used to advect the scalar(s) for every subtimestep 
using equation (3) until the scalars have been advanced to the time tn+1. Then, the velocity can be advanced a further 
time-step and the procedure repeated. If the maximum possible CFL is used for the velocity equations, which is usually the 
case, then L ≥M must be satisfied to ensure stability. We also note that no filtering in time is applied for the scalar when 
coupling back to the momentum equation. This filtering appears to be unnecessary, as the time-step is set not due to the 
physical time but instead due to the stability constraints of the advective term and thus the error incurred is small.

5. Results and computational performance

In this section we will present the results of the multiple resolution method, and the associated saving in computational 
time and memory usage. A more extensive analysis will be performed in the first part for RB flow while, in the second part, 
additional results with anisotropic refinements will be shown for DDC flow.

5.1. Rayleigh–Bénard flow

A series of rectangular RB simulations with aspect ratio � = 1 were run to validate and to demonstrate the benefits of 
the described method. Meshes of 962 × 192, 1282 × 256 and 1922 × 384 (only for Pr = 1) were used for momentum, the Ra
was kept constant at 109 while Pr was taken Pr = 1 or Pr = 10. In order to minimize the computational costs L = M was 
always used except for a specific set of runs in which the effects of L were isolated (see Table A.3).

Fig. 10(a), (b) shows the ratio between the different definitions of Nu and the maximum refinement level M while the 
bottom panels report the convergence of Nuuzθ to the asymptotic reference value, calculated from a wiggle-free simulation 
such as the one seen in Fig. 7(b). The raw numerical values can be found in Table A.2 at the end of Appendix A.

As mentioned before, the multiple resolution strategy only works if the base mesh is sufficiently fine to fully resolve 
the momentum field. Looking at Fig. 4(a) we can see that at Pr = 1 the 962 × 192 mesh is not sufficiently fine, and the 
different Nu definitions do not show a monotonic convergence of the Nusselt ratios to the asymptote. It is interesting to 
note that for M = 4 the Nu ratios get close to one, although the absolute values of Nu are wrong and do not indicate a 
convergence towards the reference grid independent value. On the other hand, the 1922 × 384 grid yields a converged value 
of Nuεν even though that resolution is not enough for the computation of Nuεθ that involves squared temperature gradients. 
For this case a refinement factor M = L = 2 for the temperature gives an appropriate resolution as shown by the Nusselt 
numbers that converge to the reference value. Although a factor two in space and time might seem to produce only limited 
benefits, we should consider that it implies a grid for the momentum and pressure with 23 less elements than for the 
temperature. In addition, the momentum equations are solved only once every other time sub-step therefore, even if there 
is an overhead introduced by the interpolation of the fields, the CPU time savings are substantial. In our case the standard 
simulation on the single grid 3842 ×768 required for the integration of dimensionless time unit a wall-time of 36.4 minutes 
on 96 processors, for a total of 58.2 CPU hours using 13 GB of RAM memory. Using L = M = 2, one dimensionless time 
unit required a wall-time of 36.7 minutes on 48 processors for a total of 29.4 CPU hours using 4.9 GB of RAM memory.

The method becomes even more advantageous as the Prandtl number increases. In fact, from equations (2)–(3) we 
see that the nondimensional diffusivities of momentum and temperature, read Re = √

Ra/Pr and Pe = √
Ra Pr, respectively. 
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Fig. 10. (a) Ratio between different ways of calculating Nu against grid size for the two base meshes and increasing spatial refinement for Pr = 1. (b) The 
same as (a) for Pr = 10. (c) Convergence to an asymptotic value of Nuuzθ for increasing refinement and Pr = 1. (d) The same as (c) for Pr = 10. Circles are 
for base meshes of 962 × 192, while triangles are for 1922 × 384 base meshes. On the top panels, blue indicates the ratio Nuεθ

/Nuuzθ and red the ratio 
Nuεν /Nuuzθ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Therefore for Pr > 1 the momentum field smoothens while the temperature (scalar) field develops sharper gradients. This 
results in larger Kolmogorov ηK and smaller Batchelor ηB scales that need different meshes to be properly resolved. Fig. 4(b) 
shows that at Pr = 10 the increased momentum diffusivity makes even the relatively coarse grid 1282 × 256 adequate for 
the description of the momentum field. On the other hand, the same mesh is clearly too coarse for the scalar field as the 
ratio Nuuzθ /Nuεθ strongly deviates from one. This grid, however, can be used to advance the momentum and to generate a 
refined mesh to advect the scalar. For this case the convergence of the Nusselt numbers to the reference value is obtained 
for M = L = 3 that yields a computational gain around a factor 7 and a reduction of RAM memory by a factor 3.5 when 
compared to the reference cases using a single mesh.

Before concluding this section we point out that for all simulations we have used a refinement factor for the time step 
L = M. Values of L smaller than M can be used provided the CFL number for momentum is reduced so that the scalar 
integration remains stable; this increases the number of time steps needed to advance the simulation over the same physical 
time resulting in an increased computational cost. On the other hand, further increasing L beyond M does not modify the 
results within statistical error and empirical evidence supporting this statement can be found in Table A.3 at the end of 
Appendix A.

5.2. Double diffusive convection

In this section we apply the multiple-resolution technique to convection flows with two active scalar components, 
namely, the double-diffusive convection (DDC). In this system two scalars with very different diffusivities are coupled to 
the flow field, one of which is stabilizing and the other destabilizing. For instance, in the ocean the two scalars are temper-
ature (PrT ≈ 7) and salinity (PrS ≈ 700). We will simulate the situation often found in subtropic gyres, where the top water 
are warmer and saltier. Thus the temperature field stabilizes the flow while salinity field has the opposite effect. We utilize 
a geometry similar to the RB flow which is vertically bounded by two non-slip plates. A snapshot of the flow can be seen in 
Fig. 11. Very sharp gradients of salinity can be observed as salt fingers grow from both plates, while the temperature field 
is in a quasi-diffusive state.

Even for the flow shown in Fig. 11 with RaS = 5 ×107, which is not so turbulent, the salt fingers have rather small length 
scale and require very fine mesh due to the very high Prandtl number PrS = 700. If one uses a single-resolution strategy 
and solves the salinity field properly, then momentum and temperature fields must be heavily over-resolved. By using 
our multiple-resolution method, such as the meshes shown in Fig. 12, the unnecessary computation cost can be reduced 
significantly. In this case, the temperature and momentum are discretized on base mesh of resolution 144 × 144 × 144, 
and salinity on refined mesh of resolution 432 × 432 × 432 with factor M = 3, respectively. We did not use the maximum 
possible CFL for the velocity equations, and L = 1 for the time step.
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Fig. 11. Instantaneous snapshot of (a) salinity (Scs = 700), (b) temperature (Pr = 7) and (c) vertical velocity in a DDC simulation at drivings of Ras = 5 × 107

and RaT = 5 × 105. This results in Le = 100 and Rρ = 1.

Fig. 12. Zoom-in plots show the base mesh for velocity and refined mesh for salinity near one salt finger root. The control parameters are the same as in 
Fig. 11.

Similar to the RB case, the results in terms of heat transfer, salinity fluxes and turbulence statistics agree within the 
uncertainty of 2–3% with those obtained using a single refined grid for all the variables. By using two 12-core 2.6 GHz 
Intel Xeon E5-2690v3 (Haswell) CPUs with 12 MPI process and 2 OpenMP threads, the CPU time for one time step is about 
12.9 seconds for using single refined grid, 2.69 seconds for multi-grids with tricubic interpolation, and 2.98 seconds for 
multi-grids with our mass conserving interpolation, yielding a saving factor that exceeds 4. A decrease of RAM memory 
usage by more than 50% is also achieved by using the multi resolution strategy.

Actually, the multiple-resolution method has been used to conduct a systematic investigation on the DDC flow, e.g. see 
Ref. [35], in which the simulation was validated by making a one-to-one comparison with experiment and agreement is 
within the measurement uncertainty. Also the huge saving of CPU time and memory allows us to achieve very high Rayleigh 
number even for PrS as large as 700.

Before concluding this section it is worthwhile to discuss briefly why in DDC it is possible to simulate a flow with a 
Schmidt number of 700 without using a refinement factor 

√
Sc � 27. The DDC equations in nondimensional form read

∂t ui + u j∂ jui = −∂i p +
√

PrS

RaS
∂ j jui + (Rρθ − S)δiz, (10)

∂tθ + u j∂ jθ = Le

√
1

PrS RaS
∂ j jθ, (11)

∂t S + u j∂ j S =
√

1

PrS RaS
∂ j j S, (12)

where the flow parameters are defined as RaT = gβT 
T L/(νκT ), PrT = ν/κT , RaS = gβS
S L/(νκS) and PrS = ν/κS , Le =
PrS/PrT and Rρ = RaT Le/RaS .

It can be noted that the Reynolds number Re = √
PrS/RaS decreases with PrS . Therefore for large enough values the flow 

does not fully transition to turbulence. Furthermore, when dealing with an active scalar with a very large Prandtl number, 
the inertial terms in the Navier–Stokes equations become negligible and the velocity becomes effectively “linearly enslaved” 
to the scalar field [36]. The equations for both scalars are linear and they cannot sustain the cascade without a turbulent 
velocity field. This is indeed the case for the flow parameters of the present numerical example (see also Ref. [35]) where 
the fully turbulent three dimensional cascade cannot be achieved and a factor M = √

Sc � 27 is not required for salinity. 
Even so, the multiple resolutions strategy results in a substantial gain factor in computational time and RAM memory 
occupation when compared against the single grid strategy.
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6. Summary and conclusions

In this paper we have presented a numerical strategy for the direct numerical simulation of turbulent flows with active 
and/or passive scalar fields without over-resolving the momentum equation and its pressure correction. This is certainly 
the case of flows with scalar diffusivity smaller than the kinematic viscosity (Pr or Sc > 1). Substantial computational time 
and memory occupation savings are even obtained for equally diffusive fields with Schmidt numbers of order unity. The 
different requirements for spatial discretization of scalars with respect to momentum originate not only from the diffusivity 
but also from the higher intermitency of scalars. This scenario modifies the picture obtained from dimensional analysis that 
compares only the Kolmogorov and the Batchelor scales for the resolution requirements.

To reduce computational costs, a multiple resolutions strategy was developed in which momentum is discretized on a 
base mesh while scalars are discretized on a refined mesh. To solve the scalar diffusion–advection equation, momentum is 
spatially interpolated onto the refined grid and either tricubic Hermitian splines or a more sophisticated procedure, based 
on the interpolation of velocity divergence, are proposed. The scalar is advanced in time, and if necessary, coarsened to 
couple it back to the momentum equations. Due to stability constraints on the non-linear terms, the scalar is advanced 
in time using a refined timestep. Velocity is linearly interpolated in time for all the intermediate timesteps. The optimal 
amount of substeps L coincides with the grid refinement factor M, when it is isotropic, or with max[Mi] when it is 
anisotropic.

The method was applied to Rayleigh–Bénard convection, and decoupling the grid resolutions was found to result in 
computational speedups around two for Prandtl number unity, and seven for Pr = 10. This strategy was also applied to 
high Sc flows, also resulting in computational advantages of approximately a factor four in CPU time reduction. In large Sc
flows with an active scalar, the velocity becomes effectively enslaved to the active scalars, and very large grid refinements 
are not needed. Due to the large costs, both in operations, memory usage and in communication associated to solving 
the Poisson equation, we expect the gains to increase for larger grids and larger drivings. This is because the Poisson 
solver is the most expensive part of advancing the Navier–Stokes equations in time, and this does not scale linearly with 
the amount of points, while the scalar diffusion–advection equations do. We expect gains of about three to four times 
for RB simulations at Pr = 1 and Ra = 1012 with production grids of about 1 billion points and M = 2, planned for the 
future. Also the memory consumption is heavily reduced, by a factor 2.6× with a refinement of two, and this makes some 
simulations possible on supercomputers with a lower memory per core and decreases the dependence on high CPU-memory 
bandwidth.

Once again, it is crucial that the base mesh is fine enough to correctly resolve the momentum field. Adding more 
refinement to the scalar mesh when the velocity grid is insufficient does not give an improvement of the quality of the 
results, and it might even lead to the suppression of small scales that violate energy conservation. This method could in 
principle be additionally applied to flows with Sc < 1. Obviously, in this case the velocity field should be solved on a mesh 
finer than that of the scalar. Although explicit numerical tests have not been attempted, we expect that the computational 
overhead introduced by the interpolation and coarsening of the fields overcomes the advantages produced by solving the 
scalar equation on a coarser mesh.
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Appendix A. Numerical details

Table A.1
Details of grid resolution used for standard single grid runs. Simulations were run until Nuuzθ achieved 1% temporal convergence. All the simulations are 
performed at Ra = 109 and � = 1. The first column shows resolution, the second shows Pr, while the other four show the results of the different definitions 
of Nu.

Nx × N y × Nz Pr Nuuzθ Nuθw Nuεν Nuεθ

96 × 96 × 192 1 66.8 67.2 71.0 59.7

128 × 128 × 256 1 64.9 64.6 67.1 60.5

192 × 192 × 384 1 63.2 63.2 64.1 61.3

256 × 256 × 512 1 63.8 63.6 64.6 62.5

384 × 384 × 768 1 64.0 63.6 64.3 63.2

96 × 96 × 192 10 68.4 67.9 68.6 60.8

128 × 128 × 256 10 65.5 65.2 65.7 61.0

192 × 192 × 384 10 63.2 63.0 63.1 61.0

256 × 256 × 512 10 63.6 63.9 63.6 62.4

384 × 384 × 768 10 63.4 63.9 63.4 63.3
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Table A.2
Details of grid resolution used for multiple resolutions runs. Simulations were run until Nuuzθ achieved 1% temporal convergence. All the simulations are 
performed at Ra = 109 and � = 1. The first column shows resolution, the second shows the refinement of the scalar grid in all directions, the third shows
Pr, while the other four show the results for the different definitions of Nu. For all simulations L =M.

Nx × N y × Nz M Pr Nuuzθ Nuθw Nuεν Nuεθ

96 × 96 × 192 2 1 65.5 65.4 68.4 63.0
96 × 96 × 192 3 1 65.6 65.3 69.3 69.5
96 × 96 × 192 4 1 65.4 65.4 66.0 64.9
128 × 128 × 256 2 1 64.4 64.4 66.7 66.7
128 × 128 × 256 3 1 64.4 64.4 66.9 66.9
192 × 192 × 384 2 1 63.5 63.4 62.6 64.5

96 × 96 × 192 2 10 66.6 64.8 60.0 66.0
96 × 96 × 192 3 10 64.5 64.5 63.5 63.5
96 × 96 × 192 4 10 65.4 65.0 64.2 64.2
128 × 128 × 256 2 10 64.3 64.2 64.7 63.0
128 × 128 × 256 3 10 64.6 64.1 62.2 64.8

Table A.3
Details of the testing for the temporal multiple resolutions. Simulations were run until Nuuzθ achieved 1% temporal convergence. All the simulations are 
performed at Ra = 109 and � = 1 on a grid 128 × 128 × 256 with M = 2. The first column shows the time refinement level L, the second shows the 
maximum CFL computed on the momentum grid, while the last four show the results of the different definitions of Nu.

L CCFL Nuuzθ Nuθw Nuεν Nuεθ

1 0.6 64.5 64.6 67.3 64.0
2 1.2 64.4 64.4 66.8 63.5
3 1.2 64.6 64.3 67.2 63.5
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