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Abstract Incorporation of externalities in the Multi-Objective Network Design Problem

(MO NDP) as objectives is an important step in designing sustainable networks. In this

research the problem is defined as a bi-level optimization problem in which minimizing

externalities are the objectives and link types which are associated with certain link

characteristics are the discrete decision variables. Two distinct solution approaches for this

multi-objective optimization problem are compared. The first heuristic is the non-domi-

nated sorting genetic algorithm II (NSGA-II) and the second heuristic is the dominance

based multi objective simulated annealing (DBMO-SA). Both heuristics have been applied

on a small hypothetical test network as well as a realistic case of the city of Almelo in the

Netherlands. The results show that both heuristics are capable of solving the MO NDP.

However, the NSGA-II outperforms DBMO-SA, because it is more efficient in finding

more non-dominated optimal solutions within the same computation time and maximum

number of assessed solutions.
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Introduction

Optimization of a transport system is often viewed as a problem to find the best way to

expand or improve an existing network. This type of problem is generally referred to as the

network design problem (NDP). Traditionally, this type of optimization is focused on

improving accessibility, minimizing the total cost (e.g. travel time or travel expenses)

possibly subject to a budget constraint or some boundary conditions regarding externalities

like pollution and traffic safety. However, due to the increasing attention for these types of

externalities, it may no longer suffice to view a transport system as feasible when it meets

these conditions. Therefore we will view the NDP as an optimization problem with

multiple objectives, where externalities are incorporated in the objective functions, which

we will refer to as the multi-objective network design problem (MO NDP). In most cases

the NDP is formulated as a bi-level optimization problem, which has an upper level

representing a system optimal design and a lower level representing road users optimizing

their own objectives. Usually this lower level is operationalized as solving a stochastic or

deterministic user equilibrium problem (Chiou 2005; Gao et al. 2005; Mathew and Sharma

2006; Zhang and Lu 2007; Xu et al. 2009). This interaction results in a difficult opti-

mization problem, identified as one of the most complex optimization problems in traffic

and transport to solve (Yang and Bell 1998). To be more specific, NDPs are a NP-hard

problem (non-deterministic polynomial time hard problem). This generally means that

heuristics are needed to solve them (Johnson et al. 1978). There can be an enormous

number of possible solutions, especially for large road networks where many possible

traffic infrastructure measures can be taken, and every function evaluation requires solving

a user equilibrium problem, which means that a fast and accurate heuristic is needed. The

main objective of this paper is to formulate the introduced MO NDP and compare two

heuristics optimization techniques for this problem. Solving this MO NDP for a realistic

case provides insights in which infrastructure measures should be implemented in a road

network in order to optimize the combined objectives environment, traffic safety and

accessibility for a road network.

The NDP can be classified into two categories: discrete network design problems

(DNDP) and continuous network design problems (CNDP). The main difference between

these categories is the decision variable. In the DNDP the decision variable is an integer

and usually either 1 (‘yes’) or 0 (‘no’). This decision variable can be used for new roads

(Leblanc 1975; Poorzahedy and Turnquist 1982; Gao et al. 2005). With the CNDP, the

decision variable can be any continuous variable and this is usually the size of the

implemented traffic infrastructure measure. This decision variable can be used for the road

capacity in which the variable is the size of the extra capacity (Dantzig et al. 1978; Friesz

et al. 1993; Meng et al. 2001; Chiou 2005; Xu et al. 2009).

A different classification is the distinction of NDP considering a single objective versus

multiple objectives. Mostly single objective network design problems are studied in which

the total travel time in the traffic network (as a measure for accessibility) is used as the

objective function (LeBlanc and Abdulaal 1978; Gao et al. 2005; Zhang and Lu 2007).

Different studies incorporated the investment costs within the single objective function.

Meng et al. (2001), Chiou (2005) and Xu et al. (2009) optimized total travel time in which

the investment was translated in time using a conversion factor. Boyce and Janson (1980)

and Cantarella et al. (2006) optimized total travel cost in which the travel time was

translated into cost. The investment costs can also be added to these total travel costs

(Poorzahedy and Turnquist 1982; Drezner and Wesolowsky 2003, 2009). Occasionally
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externality costs, like environmental costs (expressed in money), are added to the travel

cost (Mathew and Sharma 2006). In these NDPs still a single objective is considered in

which the objectives are weighted in advance. In most cases the objectives are weighted by

transferring the objectives into costs. However, the size of the weights is a public policy

decision and introduces uncertainty even if costs are used and therefore less desirable in an

unbiased modeling framework. In MO NDPs the objectives are not weighted in advance,

but the separate objectives are considered during the optimization process. As a result the

outcome of the optimization process is not a single optimal solution, but several trade-off

solutions. Most existing MO NDP consider the minimization of investment cost as second

objective (Sharma et al. 2009). Friesz et al. (1993) for example, studied a MO NDP with

user costs (money), construction costs (money) and total amount of traveled kilometers as

objective functions. Relative little research is available in which all main elements of the

externalities of traffic are incorporated as objective functions. However, there are examples

in which aspects are considered. Sharma and Mathew (2011) for example used emission

and system travel time as objective functions in a MO NDP.

The outcome of a MO NDP can provide valuable information about the trade-offs

between the objectives and sensitivity for weighting the various objectives regarding the

optimal design. However this also illustrates the additional complexity performing multi-

objective optimization versus a single-objective optimization.

Figure 1 illustrates the objective space with several solutions (each mark represents a

solution with a certain value for the objectives) for an optimization problem with two

objectives. There is not one optimal solution but several optimal solutions called Pareto

optimal solutions, indicated by the hollow marks. For these solutions the corresponding

objectives cannot be improved for any objective without degradation of another. The

collection of Pareto optimal solutions is called the Pareto optimal set or Pareto optimal

front (because it forms the outer set of solutions in the objective space). The goal of multi-

Fig. 1 An illustration of dominance (Smith 2006, p. 17)
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objective optimization is to find this Pareto optimal set. Another difficulty is to determine

whether a solution is better or worse than another solution. For this purpose, Pareto

dominance can be used to rank the solutions as illustrated in Fig. 1. In this figure the

relative dominance to the point marked with an ‘X’ is shown. The points marked with a

square dominate point X. While the points marked with a triangle are dominated by the

point X. The points marked with a circle neither dominate, nor are dominated by, the point

X. The better a solution, it is less dominated. The best solutions are not dominated, i.e. the

Pareto optimal set, which is indicated by the point with a hollow mark.

To solve the MO NDP heuristic methods are used. These methods use smart search

techniques to try and find the Pareto optimal set within a bounded computation time.

However, a heuristic method can not guarantee that it finds the Pareto optimal set. Yet,

based on experiences in the literature there are several heuristics which are able to gives a

(near) Pareto optimal set or a part of it within reasonable time. The most promising

methods described in literature for the single and multi objective NDP are genetic algo-

rithms (GA) and simulated annealing (SA). However there is no consensus on which one is

best. Several studies claim that the GA performs best (Memon and Bullen 1997;

Karoonsoontawong and Waller 2006; Zhang and Lu 2007; Sharma et al. 2009; Sharma

et al. 2009), while other studies claim that the SA is best (Friesz et al. 1992, 1993; Chiou

2005; Xu et al. 2009). Furthermore, some studies state that there is little difference between

the performance of GA and SA (Cantarella et al. 2006, 2009; Zhao and Zeng 2006). An

overview of these studies is given in Table 1. In this paper two heuristics will be compared.

The first heuristic is the non-dominated sorting genetic algorithm II (NSGA-II) from Deb

et al. (2000). The second heuristic is the dominance based multi objective simulated

annealing (DBMO-SA) method from Smith (2006). The NSGA-II is used, because it is a

widely used heuristic and considered to be the leading multi-objective GA (Smith 2006).

Moreover, it is well tested and proven to be effective for multi-objective optimization

(Konak et al. 2006) and earlier successfully applied by Sharma and Mathew (2011) in a

similar study with externalities emission and system travel time in a MO NDP. The

DBMO-SA is used because it exhibits rapid convergence to the desired set for the current

popular test problems DTLZ1-DTLZ7 (Deb et al. 2001, 2002) and according to Smith

(2006) outperforms the NSGA-II and other multi-objective simulated annealing methods.

Both heuristics are used in a framework for solving the MO NDP with the externalities of

traffic as the objectives and infrastructural measures as decision variables and compared in

a hypothetical test network as well as a real network of the city of Almelo.

Problem formulations

Bi-level programming is an often used technique to represent the underlying processes of

the CNDP and DNDP (Gao et al. 2005). This approach has been primarily used for NDP

(Chiou 2005; Gao et al. 2005; Deb 2001, 2002, 2006, 2009; Zhang and Lu 2007; Xu et al.

2009; Yin 2002). Figure 2 shows the most basic form of bi-level programming. The upper

level describes the transport planner task: determine traffic measures which minimize the

objective functions given traffic flows that respond to these traffic measures. Next, the

lower level described the travelers’ behavior optimizing their individual objectives: find

the user equilibrium traffic flows which minimize the travel costs for each traveler, with

given traffic measures. This bi-level program will be used in the modeling framework.

Transportation

123



Lower level

The lower level is operationalized by solving a deterministic static user equilibrium

problem assuming fixed demand. Numerous earlier studies have also used this approach

(LeBlanc 1975; Abdulaal and LeBlanc 1979; Boyce and Janson 1980; Poorzahedy and

Turnquist 1982; Meng et al. 2001; Chiou 2005; Gao et al. 2005; Deb

2001, 2002, 2006, 2009; Poorzahedy and Rouhani 2007; Zhang and Lu 2007; Xu et al.

2009). A dynamic traffic assignment would provide more accurate results for the

Table 1 Overview of related studies

Study Objective function(s) Solution method(s) Conclusion

Friesz et al. (1992) Travel costs SA, Hooke–Jeeves algorithm (HJ),
Modular in-core nonlinear system
(MINOS)

Equilibrium decomposed
optimization (EDO), Iterative
optimization-assignment
algorithm (IOA)

SA is superior in
finding global
optimal solution

Friesz et al. (1993) User transport costs,
construction costs and
total traveled
kilometers

SA Only suitable for
small,
hypothetical
networks

Mathew and
Sharma (2009)

Travel time SA and GA GA outperforms
SA

Mathew and
Sharma (2011)

Emission and system
travel time

Non-dominated sorting GA-II
(NSGA II)

Use of NSGA-II
for NDP
recommended

Memon and Bullen
(1997)

Optimizing traffic lights
settings

GA and quasi-newton gradient
search (QNEW)

GA is the most
effective and
efficient method

Chiou (2005) Sum of total travel time
and investment costs

SA, Gradient projection method
(GP), conjugate gradient
projection method (CG) and HJ,
MINOS, EDO, IOA, QNEW

SA outperforms all
other methods in
all cases

Cantarella et al.
(2006, 2009)

Optimizing traffic lane
and traffic light
settings for urban road
networks

SA, GA, Tabu search (TB) and Hill
Climbing method (HC)

SA, GA and TB
perform very
similar and
outperform HC

Karoonsoontawong
and Waller (2006)

Total travel time SA, GA and random search (RS) GA outperforms
SA and RS

Zhao and Zeng
(2006)

Minimize transfers and
maximize service
coverage for a transit
network

SA and GA SA and GA
perform very
similar

Zhang and Lu
(2007)

Total travel time GA Use of GA for
NDP
recommended

Sharma et al. (2009) Total travel time and
expected value of the
total travel time

Non-dominated sorting GA-II
(NSGA II)

Use of NSGA-II
for NDP
recommended

Xu et al. (2009) Total travel time SA and GA SA is more
efficient than GA
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environmental objective functions. However, because the proposed infrastructure measures

have a long term effect, a static traffic assignment is deemed sufficient for this research.

Furthermore, a dynamic traffic assignment would increase the calculation time.

A traffic assignment is performed over a 24 h period, which is divided in three parts:

morning rush hour (3 h), evening rush hour (3 h) and the remaining day (18 h). Also two

vehicle classes are distinguished: light weight vehicles (LWV) and heavy weight vehicles

(HWV). First the HWV are assigned according to an all-or-nothing (AON) principle. In an

AON assignment the minimum (free flow) travel time path is determined between each

origin–destination pair and all traffic between that pair is assigned to that path. The

resulting HWV traffic flows are expressed in LWV equivalents (e.g. freight is translated in

passenger car units). These traffic flows are the starting point for the Frank-Wolfe algo-

rithm (Frank and Wolfe 1956), which is used to solve the deterministic static user equi-

librium problem for the LWV.

Upper level

In the upper level a set of infrastructure measures is determined in order to minimize the

given objective functions. The MO NDP is illustrated in Eq. (1) and the variables are

shown in Table 2.

Fig. 2 Bi-level program

Table 2 Variables used in Eq. 1 for the MO NDP

Variable Description

E x sð Þð Þ Total emission with the traffic flows x with infrastructure measures s

R x sð Þð Þ Total number of traffic accident fatalities with the traffic flows x with infrastructure measures s

T x sð Þð Þ Total travel time with the traffic flows x with infrastructure measures s

s Set of infrastructure measures

s� Pareto optimal set of infrastructure measures

xðsÞ Traffic flows with infrastructure measures s

UE sð Þ User equilibrium problem with infrastructure measures s
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MO NDP : s� ¼ min

R x sð Þð Þ
E x sð Þð Þ
T x sð Þð Þ

0
B@

1
CA

s:t: x sð Þ 2 UE sð Þ

ð1Þ

The minimization problem is a multi-objective minimization problem, which excludes

all solutions that are dominated.

Infrastructure measures

In the upper level traffic measures are implemented to optimize the objective functions. In

almost all the literature reviewed either capacity expansion is used as traffic measure

(Dantzig et al. 1978; Friesz et al. 1993; Meng et al. 2001; Chiou 2005; Xu et al. 2009) or

the construction of new roads (Leblanc 1975; Poorzahedy and Turnquist 1982; Gao et al.

2005). The traffic infrastructure measures considered in this research are capacity

expansion or reduction, adding new roads and changing the maximum speed. These

measures are a combination of discrete and continuous decision variables. In order to use

all three traffic measures, link type will be used as decision variable. This is a relative

unknown decision variable which is not used often, but has been proposed earlier by

Steenbrink (1974). Each link type represents typical road categories and has certain

attributes like maximum speed, number of lanes and capacity. When changing the link type

of a certain road these attributes are automatically changed, which is effectively the same

as implementing traffic measures. For potential new roads a specific link type can be used.

There is a ‘‘no road’’ linktype with no capacity and speed, when this linktype is changed in

a linktype with a capacity and speed this simulates the construction of a new road. The

resulting discrete NDP will be used in the proposed solution methods. Besides traffic

related attributes like maximum speed, also objective function related attributes like risk

factors can be assigned to link types. In this way changing a link type will also have a

direct influence on the objective functions. The link types are based on the Dutch guide-

lines concerning road categories (CROW 2004). Every link in the road network will be

assigned an initial link type which is the reference case. To reduce the solution space and

the calculation time traffic related knowledge is incorporated by excluding unrealistic

solutions. First of all, both directions of a link always have the same link type. Further-

more, all links will be divided over different link sets. Each link set contains links which

have initially the same link type, the same function within the network and from a traffic

engineering point of view are not allowed to change independently from each other (e.g.

preventing changing successive links respectively into a freeway and an urban link).

Finally, for each link set all possible link types will be defined and there will also be a link

set of links for which the link type can not be changed. Now, the link type for each link set

can be used as discrete decision variable reducing the number of feasible solutions

considerably.

Objective functions

Three different objective functions are formulated. The PM10 emission, the total number of

traffic accident fatalities (traffic safety) and the total travel (accessibility). The goal is to

minimize these objective functions. The input to assess the objective functions is the output

of the static traffic assignment (the number of vehicles and the travel time), link
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characteristics (length, capacity and maximum speed) and specific parameters assigned to

each link type (risk factor). Table 3 shows the variables used in the objective functions.

It is also possible to incorporate objectives like CO2 emission, NOx emission and

average sound power level. These objectives have not been used in order to keep the results

more comprehensible and easier to analyze.

Total PM10 emission For air pollution the total PM10 emission (lg) is used. To calculate

the emission an approach using aggregated emission functions is applied. The functions

used are formulated in the standard calculation method SRM. This is the prescribed method

in the Netherlands to assess air quality and is provided by the Dutch ministry of Housing,

Spatial Planning and the Environment (VROM 2006). It requires the total traffic flow per

link per vehicle class and predefined parameters for each link type. Equation (2) shows this

formula. The total 24 h period traffic flow from the static traffic assignment is determined

for each link. This is multiplied with the predefined emission factors (which depends on

link type) and summed over all modes. Finally, this is summed over all links (and mul-

tiplied with the link length).

Table 3 variables used in the objective functions

Variable Description

A Total number of links, with index a �ð Þ
M Total number of vehicle classes, with index m �ð Þ
P Total number of periods, with index p �ð Þ
la Length of link a kmð Þ
L Total length of all link in the network kmð Þ
xamp Traffic flow on link a for vehicle class m and period p (vehicles)

tamp Travel time on link a for vehicle class m in period p (hours)

E Total PM10 emission over all links, vehicle classes and periods (lg)

Eff
a

Total free flow PM10 emission on link a over all vehicle class and periods (lg/km)

Esf
a

Total stagnating flow PM10 emission on link a over all vehicle classes and periods (lg/km)

effam Free flow traffic PM10 emission factor for the link type of link a and vehicle class m (lg/km)

esfam Stagnating traffic PM10 emission factor for the link type of link a and vehicle class m (lg/km)

ua Fraction of stagnating traffic on link a �ð Þ
R Total number of traffic accident fatalities for the entire network �ð Þ
ra Risk factor for the link type of link a �ð Þ
T Total travel time over the entire network (hours)

tffam Tree flow travel time on link a for vehicle class m (hours)

ca Capacity on link a vehiclesLWV�equivalents=hour
� �

aa BPR parameter on link a �ð Þ
ba BPR parameter on link a �ð Þ
qm LWV equivalent factor for vehicle class m �ð Þ
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E ¼
X
a

la � ua � Esf
a þ 1� uað Þ � Eff

a

� �

with Eff
a ¼

X
m

effam �
X
p

xamp

 !

and Esf
a ¼

X
m

esfam �
X
p

xamp

 !

ua ¼ 0 if

P
m qm � xamp

ca
� 0:6

where ua ¼ 0:5 �
P

m qm � xamp
ca

� 0:3 if 0:6�
P

m qm � xamp
ca

� 1:0

/a ¼ 0:2 if

P
m qm � xamp

ca
� 1:0

: ð2Þ

Total number of traffic accident fatalities For traffic safety the total number of traffic

accident fatalities is used as indicator. The method used is an accident risk based model in

which accident risk figures per link type are used. The risk figures are provided by the

Dutch Institute for Road Safety Research (Loon Van 2007). Each link type has a certain

risk factor which is multiplied by the total number of traveled kilometers on a link over a

24 h period. This number is summed over all links to determine the total number of fatal

casualties. Equation 3 shows the used formula.

R ¼
X
a

ra � la �
X
p

X
m

xamp

 !
: ð3Þ

Total travel time For accessibility the most commonly used indicator within NDP is the

total travel. The BPR travel time function (Bureau of Public Roads 1964) is used within the

traffic assignment to determine the travel time on a link. In the objective function shown in

Eq. (4) the total travel time per link is calculated and multiplied by the total flow on that

link for each vehicle class and period. This is summed over all links, periods and vehicle

classes.

T ¼
X
p

X
m

X
a

tamp � xamp

with tamp ¼ tffam � 1þ aa �
P

m qm � xamp
ca

� �ba
: ð4Þ

Solution methods

In this section two different heuristics for solving the MO NDP will be presented. First, the

NSGA-II approach and second the DBMO-SA approach. Also, three performance mea-

sures for these methods are discussed.
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NSGA-II framework

Figure 3 shows the NSGA-II framework. The NSGA-II algorithm from Deb et al. (2000) is

designed to solve a multi-objective optimization problem. In this paper the NSGA-II has

been modified in order to be used in a MO NDP. First of all, the use of link types has been

Fig. 3 The NSGA-II framework
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implemented in order to make it a discrete NDP. Secondly a constraint is added to prevent

that rejected solutions are assessed again.

In this GA a population of feasible solutions is evolved into a population of Pareto

optimal solutions. The population is changed over several generations. In each generation,

solutions are replaced by better solutions. These solutions (population members) are fea-

sible solutions of the given multi-objective discrete network design problem. The size of

the population remains the same throughout the different generations, only the members of

the population are altered. Each member is a set of feasible link types for the distinguished

link sets. This set is called a chromosome and each element (link type) of this chromosome

is called a gene.

Initialization

In the first stage of the framework an initial population is chosen. The proposed framework

is a network improvement algorithm, which requires a starting traffic network, which is the

reference situation. Therefore the first member of the population is the reference situation

and consists of the starting link types of each of the link sets in the road network. For the

other members of the population a random feasible set of link types is chosen. A static

traffic assignment is performed for each member (User Equilibrium problem in the lower

level) and subsequently the values for the objective functions are determined (upper level).

This is the first parent population.

Mating selection

Offspring is created in the mating selection. In this stage, parent pairs are selected from the

parent population using the binary tournament selection method with replacement. The

parents are ranked based on Pareto dominance (non-dominance sorting). All non-domi-

nated solution get rank 1, all solutions only dominated by rank 1 solution get rank 2, etc.

Within each rank the solutions are further ranked using a crowding distance measure (Deb

et al. 2002). In the crowding distance algorithm all solutions are ranked based on the

proximity of surrounding solutions within the objective space. Solutions with a lot of other

solutions nearby will get al lower rank than solutions which stand further apart form other

solutions in order to improve the diversity of the population. Next, two population

members are randomly selected. The member with the highest rank is selected as the first

parent. The other member is returned to the population. For the second parent (and all

subsequent parent pairs) this process is repeated.

Create offspring (crossover)

Each parent pair will produce two offspring members through crossover using the uniform

crossover method (Burke and Kendall 2005). Because only link types (genes) of the same

link set (location in the chromosomes) are swapped the new offspring chromosomes

remain feasible sets of link types. They are swapped with a certain swapping probability

(qs). Figure 4 gives an example of this method. The numbers are the genes of the chro-

mosomes and represent the link types. The first set of numbers (837547) is parent 1 which

mates with parent 2, the second set of numbers (648356). They produce two offspring

through uniform crossover, child 1 (848557) and child 2 (637346).
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Mutation

After the offspring is created it can be randomly mutated in order to encourage diversity

and ensures that it is possible to explore the entire solution space. In this stage genes of the

offspring can be mutated (changed) randomly in another feasible value with a certain

mutation probability (qm).

Constraint

A checklist is used to check whether the chromosome of an offspring member has already

been assessed. If this is the case this chromosome is randomly changed in a new unique

chromosome using the repair constraint in order to improve the chance of finding the

Pareto optimal set.

This results into an offspring population. A static traffic assignment is performed for

each offspring member (User Equilibrium problem in the lower level) and subsequently the

values for the objective functions are determined (upper level).

Environmental selection

Next the parent population and the offspring population are combined in one large pop-

ulation, from which a new parent population is created. This process is called the envi-

ronmental selection which is a deterministic step preserving the good solutions (illustrated

in Fig. 5). The combined population is sorted in Pareto fronts (solutions with the same

rank) based on Pareto dominance (like in the mating selection stage). The next generation

population will be filled with the highest ranked Pareto fronts until it has the same size as

Fig. 4 Uniform crossover (Burke and Kendall 2005)

Fig. 5 Illustration of new population selection (Burke and Kendall 2005)
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the initial population. The Pareto front that doesn’t fit entirely will be ranked based on

diversity (like in the mating selection stage) in order to determine which members are

added to the next generation population.

Convergence test

The new population can either be the next generation parent population or the final pop-

ulation. The algorithm stops if the maximum number of generations has been reached or if

the new population at the end of each generation has not changed over the last n genera-

tions (convergence test). When the framework is terminated the new population contains

the (best-known) Pareto optimal set, because in the environmental selection only the best

solutions in terms of Pareto optimality are selected out of the combined population of

parents and offspring (also called elitism).

DBMO-SA framework

Figure 6 shows the second solution approach of this research. This framework uses the

dominance based DBMO-SA method presented by Smith (2006). Smith has designed the

DBMO-SA for amulti-objective optimization problem. In paper it has beenmodified in order

to be used in a MO NDP. First of all, the use of link types has been implemented in order to

make it a discrete NDP. Secondly a checklist is used to track all solutions that are determined

in the framework. Finally, a new technique is introduced to create a new solution with a

feasible set of link types that has not been determined earlier in the framework.

A SA method is performed according to an annealing schedule in a fixed number of

steps, called temperature stages, and a fixed number of iterations per temperature stage.

Each iteration starts with a single feasible solution for the multi-objective network design

problem, called the starting state. A state is a set of feasible link types for the distinguished

link sets. In each iteration a new state is created based on the starting state. This new state

is also a set of feasible link types for the distinguished link sets. The goal is to find a new

state using local search which is better than the starting state of that iteration. During the

search an archive is built to store all states found thus far that are not dominated by any

other state. Each time a new state is found, it is checked whether or not it dominates any

state in the archive. If it does, these states are replaced with the new state. Therefore the

archive has a variable size unlike the size of the population in the GA.

Initialization

The first state of the SA framework is the reference situation and consists of the starting

link types of each of the link sets in the road network. The lower level is optimized by

solving the User Equilibrium problem using a traffic assignment based on this road net-

work with these starting link types. The outcome of this assignment is used to determine

the values of the objective functions. The initial state is stored in an archive, because it is

the only and therefore best state found so far.

Annealing schedule

The annealing schedule determines how many temperature stages are preformed and the

amount of iterations per temperature stage. In each iteration a new state is created and
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compared with the starting state. The framework is terminated when all iterations in all

temperature stages have been preformed. No convergence test has been created because a

SA method is expected to need the entire annealing schedule to find a Pareto optimal set.

When the framework is terminated, the archive is the (best-known) Pareto optimal set.

Every iteration the starting state and new state are compared in order to determine with

which one to continue. This is done with Eq. (5) (the variables are explained in Table 4).

Fig. 6 The DBMO-SA framework
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e ¼ xstart � xnew

t
where continue with new state if e\0

continue with starting state if e� 0

ð5Þ

However in order to encourage the search in the entire solution space and prevent a

local convergence it is also possible that the framework continues with the new state,

although the starting state is better. If the outcome of Eq. (5) dictates that the framework

should continue with the starting state, then Eq. (6) has to be implemented (the variables

are explained in Table 4).

D ¼ min 1; exp
�e
sk

� �� �

with sk ¼ hk�1 � sstart and h ¼ sgoal
sstart

� � 1
kgoal�1

8k 2 K

where continue with new state if D� randð0; 1Þ
continue with starting state if D[ randð0; 1Þ

: ð6Þ

An important variable in this formula is the stage temperature. The SA framework has a

starting temperature in the first starting stage. Each temperature stage the temperature is

decreased. This temperature is used in all iterations within that temperature stage. The

temperature is decreased according to the annealing scheme in Eq. (6). When the tem-

perature is decreased this also decreases the probability of accepting the new state (which

is not better than the starting state). The temperature is decreased every temperature stage

until it reaches a near zero point. From this near zero point the framework effectively

becomes a greedy search algorithm in which the starting state (which is better than the new

state) is always chosen to continue the framework with.

Table 4 variables used in the DBMO-SA

Variable Description

K Number of temperature stage with index k �ð Þ
Uk Iterations at temperature stage k �ð Þ
sk Temperature at stage k �ð Þ
sstart Starting temperature of the annealing schedule �ð Þ
sgoal Near zero temperature of the annealing schedule �ð Þ
kgoal Temperature stage in which sgoal is reached �ð Þ
h Fraction with which sk is lowered per temperature stage k �ð Þ
t Number of states in the archive

xstart Number of states in the archive dominated by the starting state

xnew Number of states in the archive dominated by the new state

e Value to determine whether to continue with the starting or the new state

D Value to determine whether to continue with the new state if the starting state is better

randð0; 1Þ Random number between 0 and 1
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Create new state (neighborhood search)

Each iteration starts with finding a new state based on the starting state of that iteration. To

prevent creating states that have already been explored or creating unfeasible states, a new

method is uses in which one element (link type) of the state is randomly selected and all

possible new states that can be created by changing this element into another feasible link

type are determined. If this does not result in any new states, this step is repeated by

randomly selecting a second element and creating all possible new states by changing these

two elements. This is repeated until possible new states can be created. The new state is

randomly chosen from these possible new states. For this new state the lower level is

optimized by solving the User Equilibrium problem using a traffic assignment based on

this road network with the link types of the new state. The outcome of this assignment is

used to determine the values of the objective functions.

Compare starting state and new state

The next step is to decide whether to continue with the starting state or the new state.

However, if there are a limited number of archive members a comparison with the archive

is of little use. In this case several temporary states are added to the archive, called the

attainment surface. An attainment surface consists of points in the objective space which

do not nor are dominated by any of the archive members. The attainment surface members

have therefore the same Pareto rank as the archive members. Now the number of attain-

ment surface members that are dominated by the starting state is compared with the

number of archive and attainment surface members that are dominated by the new state. In

this case, the framework will continue with the state that dominates the most members.

After which the temporary states from the attainment surface members are removed from

the archive.

If the framework continues with the new state, the archive is updated with the new state

and the archive members that are dominated by the new state are removed from the

archive. This process is repeated over all temperature stages and iterations. When the

framework is terminated, the archive is the (best-known) Pareto optimal set.

Performance GA and SA method

In the next chapter both frameworks will be applied. In general the strength of the GA is

that it searches directly in the total solution area and will, by incorporating diversity in its

search, give a fast insight in the Pareto optimal set. However, a GA has a fixed population

size and setting the parameters can be a difficult task, because these are case dependent.

Setting parameters for the SA method is also case dependent. An advantages is that the SA

method has a variable solution size, but this is more computational expensive. Another

strength of the SA algorithm is that it searches more thorough for optimal solutions locally

and incorporates a mechanism to prevent ending up in local optima. However the SA

method can’t improve further over time because it gradually becomes a greedy search

algorithm, while the GA can still improve the solution consistently when give sufficient

time (Mathew and Sharma 2009). Three performance measures are used to compare the

outcomes of the GA and the SA method: the spacing metric, the C-metric and the S-metric

(Deb 2001; Tan et al. 2005; Wismans et al. 2011).
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Spacing metric

The spacing metric examines if the set of solutions is evenly spread in the objective space.

Equation 7 shows the function used for the spacing metric and the variables are explained

in Table 5.

SMðSÞ ¼ 1
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

dn � �dð Þ2
vuut with �d ¼ 1

N

XN
n¼1

dn: ð7Þ

The solutions in the objective space have a value for the total PM10 emission, traffic

accidents and travel time. These objectives have a different scale. In order to provide a

comparable euclidean distance, the values for all solutions are indexed based on the values

of the reference situation. If the spacing metric equals zero, the solutions are completely

evenly spread in the objective space. While a higher value of the spacing metric indicates a

less evenly spread. Therefore a small value of the spacing metric is desired. However, it is

important to keep in mind that the spacing metric only focuses on the spread across the

solutions part of the considered set, which means that a certain set which is not near the

true Pareto optimal set or only contains a specific part of this set can still perform well on

this metric.

C-metric

The C-metric measure is used to compare two sets based on the number of dominated

solutions. Equation 8 shows the function used for the spacing metric and the variables are

explained in Table 6. This equation determines the number of solutions from the second

solution set (s00 2 S00), that are weakly dominated (s0 � s00, e.g. the objective functions

values for solution s0 are equal or better compared to the objective functions values for

solution s00) by at least one solution from the first solution set (9s0 2 S0) and divides it by

Table 5 Variables used in the function for the spacing metric

Variable Description

SMðSÞ Spacing metric for set S

S S ¼ ðs1; s2; . . .; sNÞ is a set of N solutions sn, with index n

sn Solution in the objective space with values for the total PM10 emission, traffic accidents and
travel time

dn Euclidean distance between solution n and its nearest solution

Table 6 Variables used in the function for the C-metric measure

Variable Description

S0 S0 ¼ ðs01; s02; . . .; s0NÞ is the first set of N solutions s0n, with index n

S00 S00 ¼ ðs001 ; s002 ; . . .; s00NÞ is the second set of N solutions s00n , with index n

sn Solution in the objective space with values for the total PM10 emission, traffic accidents and
travel time

CMðS0; S00Þ C-metric indicating the coverage of set S0 over set S00
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the total number of solutions in the second solution set (S00). The resulting number is a

degree of coverage of the first solution set (S0) over the second solution set (S00).

CMðS0; S00Þ ¼ jfs00 2 S009 s0 2 S0; s0 � s00gj
jS00j ð8Þ

If the C-metric value equals one, all solutions in the second set are covered by the

solutions in the first set. In this case the first set is undisputable better than the second set.

However, if the value equals zero, none of the solutions in the second set are covered by

the solutions in the first set. Now, the first set is either equal or worse than the second set.

In this way the two sets from both frameworks can be compared.

S-metric

The S-metric is used in this research to measure the convergence of the solutions in both

frameworks. The S-metric equals the size of the objective space coverage by the solutions.

Because this is a minimization problem, the objective space covered objective space is

infinite. Therefore a maximum point in the objective space is chosen which is larger than

any of the solutions. Now there is a confined objective space and the S-metric is the

percentage of the confined objective space that is covered by the solutions.

The larger the value of the S-metric the better the space coverage. The S-metric also

focuses on the ability to attain the global trade-offs, which means a set of solutions

performs better if its space coverage is larger. This measure does not take into account the

number of solutions which are dominated. In general a smaller subset of the Pareto optimal

set results in a lower performance on the S-metric than a larger subset.

Application and results

Both solution approaches are applied in two case studies. The first case study is a small test

case network for which it was possible to assess all possible solutions and therefore the

actual set of Pareto optimal solutions. This case study will be used to validate both

frameworks. The second case study is a more practical scenario for the Almelo road

network. This case study is used to test the behavior of both frameworks on networks for

which it is not realistic to asses all possible solutions. In this test case the performance

measures will be used.

Case study I: small test case network

The network for the first case study is shown in Fig. 7 with the different link types. It

contains 19 links and 4 centroids. In the network a fixed traffic demand is used. Four link

sets are used, indicated by I through IV. Not all links are part of a link set. The link types

for these links remain the same. All link sets are described in Table 7. There are 360

possible combinations of link types. Because of the relative small size of this test case it

was possible to determine that there are 12 Pareto optimal solutions out of the 360 possible

solutions.

This case study is used to check whether the frameworks can find the Pareto optimal

solutions and determine which values should be used for the parameters in both frame-

works to find the most of the Pareto optimal solutions. Based on the suggested parameters
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from Deb et al. (2000) and Smith (2006) several possible values for each parameter are

determined. For each combination of these possible values the framework is preformed 10

times. The combination that finds on average the most of the Pareto optimal solutions is

considered the most promising set of parameters. Table 8 shows the sets of parameters for

both frameworks for which this is the case.

Both frameworks were applied 100 times with the best parameter sets for further

analysis. Both the GA and SA framework had a similar performance concerning the

outcome of the search, and always found more than 95 % of this Pareto optimal set (on

average respectively 96.4 and 96.8 %). In summary, both frameworks are capable of

finding the majority of the Pareto optimal solutions for this case study.

Fig. 7 Test case network for the framework validation

Table 7 Link sets with the number of possible link types

Link set Description Current link types Alternative link types Possibilities

I Inner city local roads 61 51, 71 (39)

II Highway 12 13, 22, 21 (49)

III Inner city arterial road 51 42, 41, 61, 71 (59)

IV Possible new road 00 32, 31, 42, 41, 51 (69)

Table 8 Parameters for the GA
and SA framework

GA framework SA framework

Population size I ¼ 20 Temperature stage K ¼ 20

Maximum generation G ¼ 10 Iteration per stage Uk ¼ 10

Uniform crossover qs ¼ 0:6 Starting temperature sstart ¼ 0:2

One-gen mutation qm ¼ 0:05 Near zero value sgoal ¼ 10�3

Near zero location kgoal ¼ 2=3

Minimum archive size Z ¼ 5
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Case study II: Almelo road network

In the second case study the main road network of Almelo is used. This is a medium size

city in the eastern part of the Netherlands. In the inner city of Almelo traffic causes

problems concerning traffic safety and environment. For these problems alternative link

types are used which either provides more capacity to better facilitate the traffic demand or

link types with less capacity that discourages traffic to use those roads. There are also

several congestion problems on the highway, for which several link types with more

capacity can be used. Furthermore a wide variety of possible traffic measures and many

different link types are available in Almelo. For this case study we enlarged the existing

traffic problems to increase possible conflicting objectives and all possible traffic measures

considered are fictional. The network contains 193 links, 18 centroids and 10 link sets. In

the network a fixed traffic demand is used. The link sets that are distinguished in this case

study are shown in Fig. 8 and described in Table 9.

The choice for these link sets and the subsequent available link types are based on the

earlier mentioned criteria. This means that the link sets contain links which have initially

the same link set, the same function within the network and from a traffic engineering point

of view are not allowed to change independently from each other.

This formulation results in 729,000 possible combinations of feasible link types.

Solving the lower level optimization problem performing a traffic assignment takes about

1 min, which means assessing all options would take almost 1.5 years (all calculation

where done with MatLab on one Windows 7 computer with 8 Gb RAM). Within this case

study three conflicting objectives are optimized: air quality by minimizing total PM10

emissions, traffic safety by minimizing total number of traffic accident fatalities and

accessibility by minimizing total travel time.

In the first case study several combinations of parameters have been tested. For this case

study the same parameters will be used except for the parameters concerning the maximum

number of assessed solutions (population size and maximum generation for the GA

Fig. 8 Link types and link sets in the Almelo road network
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framework and temperature stage and iterations per stage for the SA framework). In this

case study a maximum of 2000 solutions can be assessed in both frameworks. Because

solving the User Equilibrium problem in the lower level is by far the most time consuming

task in both algorithms both algorithms were given the same number of total assessed

solutions. This also ensures the comparability of both frameworks concerning the com-

putation time and percentage of the solution space that can be explored. The used

parameters are presented in Table 10.

Both frameworks are preformed 10 times with these parameters. The calculation time

for each run is 32 h. If, in order to improve the performance, more solutions should be

considered (e.g. a bigger population size or more stages) or a real-world network would be

used the calculation time would increase significantly. In these cases more and/or powerful

machines are necessary. It is also possible to improve the algorithm by programming it

more efficiently. In the next section the results will be discussed concerning the Pareto

optimal solutions. Next the chosen link types are investigated and finally the performance

measures for both frameworks will be presented.

Pareto optimal solutions

It is not possible to determine whether the Pareto optimal solutions have been found.

However, the solutions in the objective space present some interesting issues. Figure 9

shows the objective space for all three objectives. This is the objective space of the first

time the frameworks are performed in case study II. The values of the objective functions

Table 9 Link sets with the number of possible link types

Link set Description Current link types Alternative link types Possibilities

I Inner city local roads 51 71, 81 (39)

II Inner city arterial roads 51 52, 41 (39)

III Inner city ring 51 52, 41 (39)

IV Roads between the rings 51 52, 41 (39)

V Overlapping part rings 41 71, 51, 52, 42 (59)

VI Eastern part outer ring 41 71, 51, 52, 42 (59)

VII New part of outer ring 00 52, 41, 42, 31, 32 (69)

VIII Outer ring 70 km/h 41 52, 42, 31, 32 (59)

IX Outer ring 50 km/h 51 52, 41, 42, 31, 32 (69)

X Road to outer ring 52 42 (29)

Table 10 Parameters for the GA
and SA framework

GA framework SA framework

Population size I ¼ 50 Temperature stage K ¼ 50

Maximum generation G ¼ 40 Iteration per stage Uk ¼ 40

Uniform crossover qs ¼ 0:6 Starting temperature sstart ¼ 0:2

One-gen mutation qm ¼ 0:05 Near zero value sgoal ¼ 10�3

Near zero location kgoal ¼ 2=3

Minimum archive size Z ¼ 5
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of all non-dominated solutions found by both frameworks are expressed as relative values

to the reference case.

Both frameworks found solutions in the same areas of the objective space. But GA and

SA mostly found different solutions, a bigger population size (GA) or more stages (SA)

could be considered to improve the results. However, the fact that the solutions are found

in the same areas of the objective space makes it more plausible that they found the Pareto

optimal front. In the next four sections the four different figures are examined more

closely.

Traffic safety—PM10 emission figure The first figure shows a classic curve for a Pareto

optimal set in the objective space of the PM10 emission and casualties. In this figure all

solutions are clearly uniformly distributed along an optimal set.

Accessibility—PM10 emission figure The second figure shows a classic curve divided

over two clusters in the objective space of the PM10 emission and total travel time. Link set

1 causes the two clusters. For link set 1 either 15 km/h or 30 km/h local roads are used for,

which has no effect on the traffic safety, because the same risk factors are used, but which

has a serious effect on accessibility and PM10 emission. Furthermore, the links in link set 1

are mostly concentrated around the zones in the inner city of Almelo. So for the trips

originating or heading to those zones there are hardly any route choice possibilities and

thus most of those trips use these links regardless the use of either 15 km/h or 30 km/h

local roads. With a lower speed, the total travel time increases due to a higher travel time

Fig. 9 GA (?) and SA (d) results in the objective space
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and the PM10 emission increases due to a higher emission factor. If only accessibility and

PM10 emission is used as objective function, the solutions with the 15 km/h local roads

would have been dominated. But because traffic safety is also an objective function, these

solutions are not dominated.

Accessibility—Traffic safety figure A cluster can also be recognized in the third figure,

which shows the accessibility and traffic safety. However, instead of a classic curve, the

two objectives seem to be aligned. This alignment can be explained by the fact that in most

optimal solutions for accessibility all links of initial link type arterial 50 km/h have been

replaced by 70 km/h arterial roads, which in our test case have a lower risk factor.

Accessibility—Traffic safety—PM10 emission figure Finally, the fourth figure shows the

objective space for all three objective functions. In this figure both the classic curve and the

two clusters can be recognized.

Chosen link types

When investigating the solution space (the first time the frameworks are preformed), both

frameworks have explored a large variety of different solutions in the solution space,

because on average 7 link sets of the 10 distinguished of the final solutions contain

different link types than the reference case. In order to get to this outcome a lot of link

types of the initial link types had to be altered. Subsequently, this means that both

frameworks work correctly and are able to explore a large area in the solution space while

the maximum number of solutions that can be considered is relatively low (0.25 % of the

solution space). This means that a lot of different solutions have been considered widely

spread over the solution space.

Table 11 shows the link types most often used for the link sets in the final solutions.

Clearly from the available link types mostly the link types with the highest maximum

speed and capacity where most often chosen. In most of the final solutions (in which case

the link types shown in Table 10 are mostly used) the use of the inner city links is lowered

because more traffic use the outer city links (compared to the reference case). This has

mainly a positive effect on the accessibility and traffic safety. A positive effect on the

accessibility is due to the fact that link types with a higher maximum speed and capacity

(compared to the reference case) are used, resulting in lower free flow travel times. These

Table 11 Link types most often used for the link sets in the final solutions

Link set GA framework (%) SA framework (%)

I Arterial (1 lane) 50 km/h (58) Arterial (1 lane) 50 km/h (62)

II Arterial (1 lane) 70 km/h (86) Arterial (1 lane) 70 km/h (72)

III Arterial (2 lanes) 50 km/h (46) Arterial (2 lanes) 50 km/h (46)

IV Arterial (1 lane) 70 km/h (70) Arterial (1 lane) 70 km/h (84)

V Arterial (2 lanes) 70 km/h (46) Arterial (1 lane) 70 km/h (42)

VI Arterial (2 lanes) 70 km/h (74) Arterial (2 lanes) 70 km/h (40)

VII Arterial (2 lanes) 80 km/h (82) Arterial (2 lanes) 80 km/h (66)

VIII Arterial (2 lanes) 80 km/h (50) Arterial (2 lanes) 80 km/h (56)

IX Arterial (2 lanes) 80 km/h (64) Arterial (2 lanes) 80 km/h (56)

X Arterial (2 lanes) 70 km/h (100) Arterial (2 lanes) 70 km/h (100)
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link types are mainly available on the outer city links, which is why more traffic use these

links instead of the inner city links. This has also a positive effect on the traffic safety

because less 50 km/h links are used (which has the highest risk factor) and more, safer,

70 km/h or 80 km/h roads are used (which have a lower risk factor). That is why both

objective functions prefer link types with higher maximum speeds and capacity on the

outer city links, which explains why the solutions are aligned instead of opposed in the

objective space of the traffic safety and accessibility (Fig. 9). However, this is conflicting

with the objective functions for the environment, because it requires less traveled kilo-

meters and using the outer city links increases the total traveled kilometers. Environment is

therefore conflicting with accessibility and traffic safety which is clearly shown in the

objective space of traffic safety and environment as in the objective space of accessibility

and environment (Fig. 9). Overall, all objectives are improved in the final solutions

compared to the reference case. This can be explained because the reference case contained

many 50 km/h links. Both frameworks show that changing part of the 50 km/h outer city

links in 70 km/h or 80 km/h while keeping the maximum speed on other links the same

(50 km/h) will result in an improvement of all objective functions. These findings can be

used as policy recommendations for the city of Almelo.

Performance of both frameworks

Unfortunately, without determining all possible solutions, it is not possible to check

whether the Pareto optimal have been found. But with the performance measures spacing

metric, C-metric and S-metric it is possible to determine which of the frameworks performs

the best.

Both frameworks have been preformed 10 times. For each time the spacing metric is

determined. The average spacing metric is shown in Table 10. The average spacing metric

for the GA is less than the one for the SA framework. It can therefore be concluded that the

solutions of the GA are more evenly spread in the objective space than the solutions of the

SA framework.

The average C-metric is also shown Table 12. This value is determined by calculating

the C-metric for each comparison of the 10 GA framework results with all 10 results from

the SA framework (and visa versa). The average C-metric value for GA of 0.68 means that

the Pareto optimal sets of the GA framework are covered for 68 % by the SA framework

on average, while vice versa this is 84 %. This indicates that the GA framework on average

dominates more solutions of the SA framework. It can be concluded that the GA out-

performs the SA framework. This is probably because the SA searches more locally than

the GA.

Another indication that the GA outperforms the SA framework are the results for the

S-metric. The S-metric requires a maximum point. Every Pareto optimal solution found

dominates the reference situation. The reference situation is therefore chosen as the

maximum point. The average S-metric for both frameworks is illustrated in Fig. 10. For

each iteration the average percentage of the objective space that is covered by the solutions

Table 12 Average results spacing metric and C-metric

Framework Spacing metric C-metric

GA 0.26 0.68

SA 0.19 0.84
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is determined over all 10 results of each framework. Figure 10 clearly shows that the GA

framework convergences before the SA framework.

Whether or not the frameworks have produced the Pareto optimal set remains the

question. This question can of course never be answered without determining the objective

functions for all possible solutions. However, comparison the performance measures of

both frameworks indicates that the GA framework performs better, because it is more

efficient in finding more non-dominated optimal solutions within the same computation

time and maximum number of assessed solutions.

Application

The next step is for policy makers to make a decision on which solution should be

implemented. As there is no ‘one best solution’ and there are different political and legal

demands concerning traffic problems it can be very useful that a choice can be made from

different (optimal) solutions. However, 40 different solutions (like in the second test case)

still leaves to many choices. It may therefore be useful to reduce this number by deter-

mining which solutions fit within the constraints like budget for infrastructure investments

and environmental legislation or by using pruning methods. Pruning methods try to reduce

the size of the Pareto optimal set while maintaining its main characteristics. It is also

possible to incorporate constraint within the algorithms itself. Within the GA this can be

incorporated when the fitness of the solutions is determined and within the SA method

when a new state is created. To choose the final best compromise solution, multi criteria

decision making methods (Tzeng and Tsaur 1997; Wismans et al. 2014) can play an

important role. Choosing the best compromise solution is not within the scope of this

paper, but can be applied in future studies on this subject.

Conclusions

In a small test case network both the GA and SA framework were validated and tested. The

small test case network is a relative small road network for which the traffic assignment

and subsequent objective functions for all possible combinations of feasible link types can

Fig. 10 Average convergence GA framework and SA framework (S-metric)
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be determined. In this way all optimal solutions can be determined in advance and can be

used as frame of reference in the validation of both frameworks. After the validation both

frameworks performed similar in the first test case and found more than 95 % of the Pareto

optimal set.

The application of both frameworks for the Almelo road network, which is a much

larger optimization problem than the first test case network has also shown that both

modeling frameworks are capable of dealing with solving the MO DNDP. Both frame-

works explored a large variety of different solutions in the solution space, while the

maximum number of solutions that is considered is relatively low (0.25 % of the solution

space). In the Almelo test case the total travel time (accessibility) and traffic safety where

minimized by the use of higher maximum speeds and capacity on the outer city links

(which increased the total kilometers traveled), while environment was minimized by

taking the shortest route using the inner city links (which decreased the total kilometers

traveled). Due to this conflict there is not one optimal solution. However this research

shows that both presented approaches are applicable to solve such a problem and present

several solutions which where an improvement for all objective functions compared to the

reference case. These findings can be used as policy recommendations for the city of

Almelo.

In order to further compare the results of the GA and SA framework, the spacing metric,

C-metric and S-metric measure are used. The GA had a better score for all measure than

the SA framework. It can be concluded that the GA outperforms the SA framework. This is

probably because the SA framework searches more locally than the GA.

The performance could be different for other test cases, and therefore more research is

needed. Here new specifications can be taken into account such as the fact that emission in

urban areas is much less desirable than in non urban areas and that the objective functions

and used link types could be different for other specific test cases.

This research showed that both frameworks are capable of finding suitable solutions for

a MO DNDP in which the objectives are maximizing accessibility and minimizing the

externalities of traffic. These frameworks can therefore be used as a tool to design sus-

tainable networks, with a slight preference for the GA framework.
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