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Abstract 

 

Data Distribution Services (DDS) are emerging as communication systems in manufacturing environments. One of the key features of a DDS 
based system is the ability to regain performance levels after the introduction or removal of a DDS participant. In implementing a DDS 
participant to an existing system, message transport speed and message latency is often sacrificed due to protection problems in OEM software. 
Validity and suitability for integration of OpenDDS specifically, a manufacturing system is evaluated by defining two implementation 
scenarios; a flexible approach with a dedicated DDS participant application, and a high speed approach integrating the OpenDDS API directly 
in the target application. The system is validated by monitoring performance, efficiency and robustness in use and implementation. This result 
is part of a system architecture, developed for project Smart Industrial Robotics (SInBot), that focuses on maximizing the efficient use of 
mobile industrial robots during medium sized production runs.. This modular system architecture is based on distributed intelligence and 
decentralized control to enable online reconfiguration of industrial robots in manufacturing facilities. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET 
2014. 

 
Keywords: Data Distribution Service (DDS); Industrial Robots; Manufacturing 

 
 

 

1. Introduction 
 

Current industrial robots play an important role in 
performing repetitive production tasks. They perform their 
tasks cost effectively and accurate over longer periods of time. 
The European production industry is moving toward higher 
added value production that must be lean and flexible in order 
to survive in a competitive market [1]. Industrial robots need 
to get an even higher intelligence, collaborative and 
multipurpose deployment and effortless transfer of processes 
by which one-off or limited series can be produced. 

SInBot (or Smart Industrial RoBotics) [1] is a project that 
specifically targets composite machining tasks in the 
manufacturing environment. Where these tasks are now 
performed by million euro lathe and milling machines, SInBot 
sees an important role for industrial robots. The focus of 
project SInBot is on the development of methods and tools for 
simplifying   definition,   selection   and   use   of   intelligent, 

decentralized cooperation of industrial robots for 
manufacturing purposes. Work preparation  for  industrial 
robots is still a long and tedious task, containing a multitude of 
optimization iterations. When the words ‘work preparation’ 
are used in this paper, it is used to describe the process to 
generate manufacturing data for some hardware to create a 
product from its technical product data (e.g. CAD file and a 
product data file) as efficient as possible. 

The time consuming work preparation, complexity and 
diversity of programming languages particularly present a 
problem for industrial robots and their implementation in 
small and medium sized manufacturing enterprises (SM/MEs). 
A common need for European SM/MEs is found in flexible 
(or agile) manufacturing, mass customization and a decrease 
in setup and programming times. In project SInBot, the 
current work preparation process is perceived as being too 
complex and containing too much iterations, where possible 
solutions lay in task-level programming and communication. 

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientifi c Committee of the 8th International Conference on Digital Enterprise 
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Many SM/MEs already use automated manufacturing cells 
with CNC Mills or Lathes. In these automated milling centres, 
the automation in work preparation is far more advanced than 
in current automated industrial robot cells. Milling stations are 
expensive machines with relatively small work envelopes, but 
ensure high accuracy and the ability to be programmed offline 
for near 100%. Since programming files, product data, and 
process parameters can be stored for later use, and the 
machine adheres to the offline programming (OLP) almost 
entirely, subsequent reorders are available for relatively low 
additional (reprogramming and reconfiguration) costs. 

For project SInBot to achieve the foreseen steps in 
automation of work preparation, a flexible robot-based 
machining cell has to be able to translate CAD files fluently 
into manufacturing tasks. Until now, robots are controlled on a 
low level. Although several higher level programming 
languages and allow humans to give commands on a relatively 
high level, are starting to emerge. SInBot will use these high 
level languages as task descriptions in a distributed and 
decentralized system. As task descriptions become more 
abstract, specific and individual unit control is lost. 
Algorithms that deal with high level tasks, should provide 
ample input for the robot to perform its task efficiently, while 
being robust to ensure continuity. 

The lack of accuracy of industrial robots is a problem in 
automating work preparation. A common method of 
improving the accuracy (i.e. moving accuracy closer to the 
repeatability), is to introduce external end-effector tracking 
sensors. Project SInBot has also identified positioning and 
trajectory accuracy as the main problem with industrial robots 
in machining composites. For any piece of machinery to be 
programmed offline, it must perform the planned 
manufacturing program predictably. Currently, industrial 
robots lack the predictability (accuracy) for efficient OLP. As 
soon as the industrial robots adhere to OLP according to 
industry standards (i.e. accuracy approximately as good  as 
their repeatability), the work preparation paradigm can  be 
truly addressed. Project partners are working on a short loop 
for tool trajectory and position correction. The remainder of 
this research is performed assuming industry standard OLP 
adherence of industrial robots, and will discuss the envisioned 
SInBot manufacturing system. 

 
2. Problem Scenarios 

 
A distributed approach to controlling manufacturing 

environments with industrial robots can be beneficial when 
roughly two criteria are met: 1) the manufacturing tasks 
extend over the work envelope of a single industrial robot, and 
2) the manufacturing tasks encompass small series of identical 
products. These environments are the most interesting target 
for the SInBot decentralized, distributed system. Small and 
medium sized enterprises are also situated in this scenario, 
since these normally produce in small to medium production 
series; often specialized parts (e.g. composite car roofs for 
high end sports cars). Additional factors that will impact the 
suitability of the SInBot system are 1) the need for different 
types of robots, featuring different performance specifications, 
2) the need for communicating entities (other than industrial 

robots), and 3) the need for extendibility. Also note that 
manufacturing environments are evolving from mass- 
production to mass-customization, and even to personalization 
[2]. This evolution strengthens the position of the SInBot 
system. Manufacturing environments that are considered 
suitable for the SInBot system to excel, can be examined for 
distributed approach compatibility by looking at these 
production planning paradigms: 

Paradigm 1: Two separate robots are working on different 
products, at different locations (Figure 1a). There is no 
interaction, nor interference between the two robots. 

Paradigm 2: Two robots are working simultaneously on the 
same product (Figure 1b). There is interference, but no 
interaction. The current work preparation approach will take 
disproportionally longer due to the interference. 

Paradigm 3: Two robots are working cooperatively on the 
same product, while the robots are online reconfigurable 
(Figure 1c). There is both interaction and interference. In the 
current work preparation approach, the interference and 
interaction must be implemented manually for all 
configurations of robots, for each product. The dynamic nature 
of this paradigm would allow too much configuration options 
for the current work preparation approach, and would render it 
unfeasible. 

Paradigm 4: Two mobile robots are working cooperatively 
on the same product with a human worker (Figure 1d). There 
is both interaction and interference, from both robots and 
human workers. The inherent dynamic nature of paradigm 3 
makes the current work preparation approach unfeasible, but 
introduction of human workers and the ability of the robots to 
co-operate, makes the current work preparation approach 
simply impossible. 

While the first two paradigms are relatively common in the 
manufacturing industry, the latter two are not. However, both 
paradigm 3 and 4 are the focus of many studies to improve the 
efficiency of deploying industrial robots. For each of this 
paradigms, the SInBot system compatibility is examined. 

 
3. Solution Context 

 
SInBot’s perspective on solving the SME problem is to 

introduce a flexible, mobile, plug-and-produce system in the 
manufacturing environment. Current manufacturing 
environments are static, rigid and established systems, 
consisting of (sub-)systems and software that is interfaced at 
the moment of purchase through (e.g.) socket or bus 
connections, and require extensive redesigns for each future 
upgrade [3]. 

Important advantages in the development phase obtained 
through this decentralized and distributed approach, is the 
possibility to develop module-based. The major challenge is to 
design, develop, and assemble a system that facilitates the 
modules, performs as demanded in speed and reliability, and 
supports plug-and-produce connection of both software and 
hardware modules. The SInBot manufacturing system 
proposal can be found in [4], and roughly consists of a 
communication layer capable of plug-and-produce 
connections from a variety of modules (Figure 2). The 
different modules can be separated by their goals; to facilitate 
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and to produce. Both categories can contain hardware 
(interfaces) and software. For example, facilitating hardware 
can be an AGV capable of reconfiguring production lines or 
cells, or a sensor network that publishes locations of known 
objects in 3D space. Manufacturing software may be a CAD- 
CAM software system, either automated or through manual 
information insertion into the system. The top layer of Figure 
2 contains processing modules that are required for the system 
to function (production enablers), such as the CAD-CAM 
software, a capability mapping module, and  an  auctioneer. 
The bottom layer of Figure 2 contains hardware and software 
that enable the system to perform (performance  enablers). 
Each module can be seen as enabling production or enabling 
performance. A production enabler can for example be 
swapped, as long as the replacement module produces the 
same output based on similar input. The production enabler is 
necessary for the system to function. A performance enabler 
can for example be removed without serious consequences to 
the functioning of the system, yet may influence production 
speed or quality. The system is far less dependent on 
performance enablers. Do note that a similar system can be 
built with large function overlaps between modules, 
essentially combining enablers of production and 
performance, generating a more flexible yet comprehensive 
and complex system. 

In the envisioned system, the data-driven communication 
layer is a vital piece. This layer needs an accessible and well- 
performing data transport method for the flexibility and plug- 
and-produce facets to emerge. Within the subgroups that were 
discussed earlier, many new divisions can be perceived. There 
are entities that only share their information, and entities that 
only retrieve information. The more intelligent entities always 
both share and retrieve data. An example of such an intelligent 
entity would be an AGV from the facilitating hardware 
category; it requires positional data and tasks, while sharing 
status, progress and auction bids. An example of an entity that 
only shares information, but not retrieves any, is a sensor 
network. These subsystems share perceived data regardless of 
feedback. These examples are pictured in Figure 2 as devices 
that interface to the communication layer, in which new 
devices should be easily added later in the system life-cycle. 
The software in the communication layer should therefore be 
flexible, fast, reliable, and fault tolerant. The most important 
aspect, is that the system supports plug-and-produce interfaces 
for (sub-) system introductions. These are the key 
performance indicators on which to base the selection of a 
middleware communication system for the SInBot 
Manufacturing System. 

Amongst the rising stars in the middleware communication 
software segment are Data Distribution Service (DDS) 
software providers. [5] DDS provides communication services 
through the publish-subscribe protocol in real-time and 
embedded systems. The general idea is that DDS participants 
can publish data regardless of who is listening, while other 
DDS participants can read data regardless of who  is 
publishing it. Specific properties of the DDS participants can 
be set by changing the Quality of Service settings (QoS). QoS 
settings for example, can determine whether the DDS system 
will ensure that the data is either the last known published 

data set, the full published set (history), or something in 
between. By doing so, DDS introduces a virtual Global Data 
Space where applications can share information by simply 
reading and writing data-objects addressed by a topic and a 
key. The primary discriminator between DDS and other data- 
centric approaches is the Quality of Service (QoS) policy set, 
generating a dynamic, tuneable and scalable system [6-8]. 
Summarized, DDS enables fault-tolerant, dynamic, high speed 
complex transport of data. [3] These systems have proven to 
contribute to efficiency, flexibility and robustness in military, 
infrastructure, and other data-centric systems. Even though 
the promises are diverse, they have  been  scarcely 
implemented in manufacturing environments or projects that 
do so. [9] 

In the manufacturing sector, there is a strict division 
between message-oriented and data-centric (publish 
subscriber) middleware (DDS) [10], in that the loosely 
coupled data-centric approach avoids complicated linking of 
applications and bottleneck databases. In both  message 
oriented middleware [11, 12] and data-centric centric 
approaches, research explains the advantages these systems 
will bring to manufacturing systems, or the requirements for 
these systems to benefit from such approaches. For example, 
data-centric systems are valid when a) participants are 
distributed, b) interactions are data-centric instead of object- 
centric, c) dynamic nature of entities require predictable 
delivery, d) processes may be dependent upon the 
predictability of data delivery, or e) storage of data is local 
[13]. If, in addition to more than one of the aforementioned 
aspects, the system is in need of real-time availability of data, 
DDS offers the ideal solution. [14] Since project SInBot 
adheres to these aspects, DDS is chosen as the communication 
layer (see Figure 3). The validity of such a system will be 
proven with demonstrator systems, of which each subsequent 
system increments closer to a real-world implementation of 
the SInBot manufacturing system. 

a)  b) 

 

  
 

Figure 1: Industrial robot production planning paradigms. 
 
 
 
 
 

Interface 1  
Device 1  

 

Figure 2: SInBot system abstract. 
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The hardware of these prototype systems are scaled up to 
the final demonstrator. The last demonstrator will show the 
validity of the system on an industrial robot and provide the 
last parameters required to prove the validity of a real-world 
implementation. The rule of thumb for each demonstrator, 
system, subsystem, or component, is that when Open Source 
(free) software and hardware can be proven to perform as is 
stated in the project SInBot goals, it is agreeable to conclude 
that the system would also function and perform similar or 
better, with professional, industrial hardware and software. 

 
4. DDS Evaluation 

 
4.1. Selection of a DDS system 

 
The SInBot Manufacturing system is proposed as 

containing a data-driven DDS-based communication layer. 
However, the prototype is a proof of principle; a DDS system 
in the prototype would be beneficial, but not a hard 
requirement. (Proprietary) DDS systems were examined and 
compared to evaluate their compatibility in the framework, but 
emulating the layer or using a similar (yet simpler) system that 
adheres to the proof of principle is also viable. Unmistakably, 
a DDS system implementation in the early stages of the 
SInBot system development, specifically in the prototype, 
would reduce further development costs and time. 
Consequently, four major DDS players were examined on 
three categories: Performance, Application, and Liveliness 
(see Figure 4). At the time of writing, multiple DDS 
implementations are viable contenders. OpenDDS, CoreDX 
DDS, RTI Connext, and OpenSplice were selected to evaluate, 
knowingly ignoring MilSoft DDS, InterCOM DDS, and ETRI 
DDS due to a smaller supporting community. The selection 
criteria reflect the requirement of the middleware 
communication layer of the SInBot Manufacturing System, 
but also the consequences of building a prototype with these 
middleware solutions. 

From building the SInBot Manufacturing System and the 
prototype, emerged the need for either a small or nonexistent 
license fee for Educational and R&D use of proprietary 
software. All the categories are evaluated with the most 
complete software version that have acceptable development 
fees per license. In most cases the commercial fee is 
unacceptable for the SInBot development phase; for these 
systems, the Open Source Community or Education version 
were used. The ‘Application’ category focusses on the 
implementation of the software system, evaluating the level of 
complexity measured in the required prior knowledge of the 
implementer and the indirect support the providers offer.  The 

of a web-based emulation of a flexible communication layer is 
prototype-only, since a real-world implementation would be 
slow, unreliable, and create problems of centralized control 
systems in a distributed architecture. If failure occurs in any 
entity that shares information, or in the database itself, it 
would translate to productions faults, safety issues, and 
machine damage. Alternatively, some specific control systems 
provide a communication layer also; e.g. the Robotic 
Operating System (ROS). Next to multiple libraries and tools 
to aid development and prototyping of robots, ROS contains a 
publish/subscribe communication layer. This particular system 
works with a main node, containing information about the 
DDS participants, not unlike some other data-centric systems 
[15]. There are extensions to auto-discover the main node 
(master), maneuvering ROS’ communication method close to 
DDS systems using automatic topic discovery. For its all- 
round performance, OpenDDS was chosen for the SInBot 
manufacturing system. DDS Interfacing 

DDS software providers promise fast communication 
between publishers and subscribers. However, for these 
latencies to be available to subsystems in a DDS-based 
system, the DDS API must be implemented directly in the 
software. A DDS communication entity is set up by a 
DataReader / DataWriter and a subscriber / publisher. A 
publisher or subscriber can contain more DataWriters or 
DataReaders. In this principle lay opportunities for fast 
communication and flexibility. However, this also means that 
each communication application would become unique, and 
rigid in deployment. Consequently, there is a potential 
problem if the publisher / subscriber application is 
incompatible with existing software. 

 
   

 
DDS DDS DDS 

DDS DDS DDS 
 

Sensor-ITF  AGV-ITF 

Sensor  AGV 

 
Figure 3: SInBot system proposing DDS as middleware. 

 
 
 
 
 
 
 
 
 Application Liveliness 

‘liveliness’  category  evaluates  the  update  policies  of  the 
software provider (i.e. the update polices on their Open Source 
or Community editions) and the size of their support 
community. The speed doesn’t differ much between DDS 
software providers, the OMG compliance only slightly. 

Application 

C 

 
OpenDDS 

Liveliness  
 

ula 

For emulation of a flexible communication layer, an easy 
implementation option would be to define a central (e.g. 
MySQL) database containing all information in an orderly 
fashion. Interfaces to such a database are easily written in a 
variety of languages from a variety of platforms. This example 

CoreDX DDS  RTI Connext    OpenSplice   Web-based ROS 

 
Figure 4: Performance of Communication Layer Structures. 
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Parallel interpretation of message content 

Some software is easily integrated, while others are 
required to be standalone and may only use communication 
protocols to ‘talk’ to DDS entities. This results in the 
following proposal; 

For the system to be flexible in deployment and approach 
the performance of high-end DDS systems, interfaces to DDS 
entities are created in independent scenarios: fast and 
(possibly) unique for demanding applications, flexible and 
generic for undemanding applications. 

Examples of the aforementioned incompatibilities are 
incompatible programming languages or protected software 
environments. A programming language that is not natively 
supported by the DDS entities can be shaped into an API 
wrapper, e.g. ‘wrapping’ C++ functions in a .NET language to 
allow the DDS API to be controlled through the wrapper [16]. 
Protected software and hardware require client/server type 
communication, since manufacturing hardware and software 
often offer communication sockets / busses. An integrated 
approach in implementing the DDS API in manufacturing 
entities yields the smallest message latencies, the API wrapper 
will produce good results also. Navigating the messages 
through a client / server connection like a socket or 
communication bus is expected to be the least reliable and 
increases message latencies. The message Interactive Data 
Language (IDL) cannot be maintained in these cases, and is 
swapped for a either a ‘structure > encode > connection > 
decode > publish’ process in the case of a publisher, or a 
‘encode > connection > decode > structure; process in the 
case of a subscriber. In this example, the IDL is translated to 
an actual ‘Structure’ in the .NET framework. 

As aforementioned, manufacturing environments  cannot 
yet be expected to implement the DDS API directly into the 
deep programming layers of PLCs or hardware controllers. 

performed by which entity. Since these deliberations can be 
performed during manufacturing cycles, the message latency 
and frequency becomes relatively unimportant; in the order of 
magnitude of a few seconds, instead of micro or milliseconds. 

Initial test runs showed some unreliability and increasing 
latencies at medium to high message frequency settings. The 
software was optimized for higher message frequencies, and 
the subsequent test runs showed enough improvement to 
continue this setup. The graph in Figure 6 was achieved by 
creating and publishing 500 messages of 0.5kb at 10 Hz (or 10 
messages per second), with both the dedicated publisher and 
subscriber application running on a local machine, and 
communication event triggers for reliability (see Figure 5). 
The messages were created with default Quality of Service 
settings. In the flexible manufacturing environment as 
envisioned in project SInBot, Automated Guided Vehicles are 
required to reconfigure production cells / lines. For safety and 
efficiency, these AGVs rely on both internal (inertial) 
navigation, and information from external sensors. Solving a 
simple math problem; an AGV traveling at 2 m/s, assuming a 
required traveling accuracy of 100mm, yields a maximum 
latency of 50 ms. 

Publisher Subscriber 

edPipe NamedPipe 
 

Retrieve  
Decode 

Structure 

 
Figure 5: Communicating Manufacturing Entities. 
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applications. The main issue then becomes the communication 
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Within the Microsoft Windows environment, a variety of 
communication protocols between two separate applications 
exist: shared memory, NamedPipes, or a simple console- 
reading / file-reading method for instance.  Each 
communication approach has a certain speed, complexity of 
implementation    and    compatibility    with    programming 
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approaches and languages. The NamedPipe, in which a server 
is started to which cross-application clients can subscribe, is 
perceived as relatively fast, easy to implement in many 
different languages, easy to substitute for the UNIX-based 
NamedPipe definition or socket, and relatively reliable. 

 
4.2. System Latencies 

 
Compared to integrating the DDS API directly into the 

software, the NamedPipe in combination with encoding and 
decoding is slow. For that specific reason, it is ideal to test the 
performance of a DDS-based communication system in 
protected manufacturing (software) environments. An 
interpretation of this situation can be found in the SInBot 
system; the intelligent manufacturing entities deliberate 
amongst each  other  and  the task  auctioneer,  which  task  is 

Figure 6: Difference in local message delay after optimization of serial 1 to 
serial 2, and parallel interpretation of values. 
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AGVs relying solely on this information would require a 
direct implementation of a DDS entity in the software, as do 
the external positional sensors. These assumptions provide 
indicators to compare the performance of different interfaces 
to the DDS system in the form of two scenarios: 1) the 
flexible, non-invasive, yet relatively slow external interface, 
and 2) the fast, reliable, integrated approach. The serial 
approach of ‘structurize’ and ‘decode’, during message 
retrieval introduces disproportional large delays in message 
transport (Figure 6, serial 1). When the connection is 
disproportionally faster than the serial decoding process, 
buffer flooding occurs and reliability decreases. The key is the 
frequency on which the serial decoding operates. When the 
decoding and structurization process is placed parallel to the 
communication process, both the speed and consequent 
reliability go up (Figure 6, parallel). Compared to the initial 
average latency, the parallel approach averages about five 
times faster. Configuring the system to a speed that exceeds 
the serial decoding process frequency based on the outlier 
speed, yields message losses. The parallel approach yields 
perfect results with message frequencies around 70Hz, while 
the older configuration starts to falter above 15Hz. 

It is important to note that the message is being interpreted 
parallel to receiving the messages, so the total delay for 
information has not been changed. By improving the initial 
latency of message retrieval from client/server communication 
with a dedicated subscriber, the reliability improved 
significantly. Figure 7 illustrates the effect of parallel message 
interpretation in terms of reliability. Next to reliability, there 
are some other specific advantages to this approach, especially 
when message structurization is not of vital importance to the 
receiver. Separating retrieval and interpretation enables a 
variable approach to interpretations, allowing some leeway to 
either interpret very structurally (<70Hz, clear structure of 
messages) or very rapid (>100Hz, only use most recent). 

 
4.3. Conclusion 

 
OpenDDS is considered suitable communication 

middleware for project SInBot. The initial latency and 
interface tests yield results that are within a respectable 
bandwidth, and within the margins expected to be required for 
the SInBot system to function. Embedding the DDS system is 
relatively straightforward, and interfacing to DDS entities can 
be done in multiple ways. Interpretation of communicated data 
has to be done parallel where possible. For a final evaluation, 
specific scenarios within the SInBot system are examined and 
build to expected specifications. Evaluating the performance 
of the system within these scenarios provides insight in the 
specific evaluation of OpenDDS in project SInBot, and shine 
some light of the applicability and performance in related 
projects and systems. 

 
5. Specifications and Results 

 
The proposals for communication protocols with DDS 

entities as mentioned in chapter 4 illustrate the possibilities for 
a flexible, yet slow communication scenario, and a fast but 
labor  intensive  scenario  with  low  message  latencies.  Both 

these scenarios are common cases in the industry, where 
flexibility generates advantages like extendibility, ease of 
implementations and a work-around for protected software 
environments, latency-reduction enables the use of external 
sensor networks and safety protocols. Both scenarios are 
embodied in an experiment in which the latency is minimized 
while maximizing flexibility in deployment. 

 
5.1. Scenario 1: Flexibility 

 
The flexible implementation of the DDS entity consists of a 

computational application (.NET) that has been given the 
protected status. A dedicated DDS application (C++) runs 
simultaneously and communicates with the protected 
application through a NamedPipe. The information is encoded 
by sharing names and values (a String). The protected 
application uses flexible .NET libraries to distinguish what 
type of message has been sent through the NamedPipe, and 
saves the values to a structure matching the IDL. The 
protected application now owns a list of structures, in the case 
of Figure 8, a list of auctions. The DDS entities are configured 
to use the automated topic discovery publish/subscribe 
protocol, and run on a local machine, transporting messages 
through UDP via a Wi-Fi (wireless-n) network. 

The serial message interpretation approach was done in a 
single thread, in which a decoder and structurize function was 
called following an incoming NamedPipe message. This 
approach yields X~N(30,113.6) where X is the latency of any 
random message, time in milliseconds. The parallel message 
interpretation approach was done by using an instance of a 
specific class running in its own thread, and starting the 
instance with the message coming through the NamedPipe. 
This approach yielded X~N(11,1.2). For flexibility, the 
applications itself (VB.NET talker, VB.NET listener and 
C#.NET message monitoring application), contain only 
references to reusable .NET libraries (DLL). This allows for 
fast reproduction of .NET applications and simple connections 
to DDS participants. For protected applications that require 
DDS messages in an orderly and structured fashion but have 
no hard real-time requirements (maximum latency > 50 ms), 
this approach is ideal. 

 
 

Figure 8: Example of communicating applications through NamedPipes and 
DDS Participants; the robot and auctioneer. 

 

 
 

Figure 9: Example of integrated DDS participants in communicating 
manufacturing entities; the external sensor and AGV. 
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5.2. Scenario 2: Low latency 
 

For the fast implementation, the setup contains a simple 
publisher and subscriber application, compiled directly from 
C++. Identical to scenario 1, the DDS entities are configured 
to use the real-time (automated topic discovery) 
publish/subscribe protocol, and run on a local machine, 
transporting messages through UDP via a Wi-Fi (wireless-n) 
network. This particular facet of the prototype patterns a 
sensor network on the publisher’s side, and an application that 
transfers positional data to an AGV on the other side.  A 
typical SME would have multiple individual sensor (network) 
entities, against a relatively small number of AGVs. The main 
difference as seen in Figure 9, is that the DDS entities are part 
of the main application, minimizing message latencies. The 
DDS participants are used precisely as their creator intended; 
to publish data when available at the available speed, and to 
retrieve information when needed in the  required  quantity. 
The results of this setup show an increase in speed not 
accurately measurable using the method from in scenario 1 
(latency per message). OpenDDS published the average 
latency for messages being around 0.2 - 0.5 ms [17]. Even 
though the results show similar values, the time for the values 
to be ready to use by the AVG locator are somewhat longer, 
but remain in the <1 ms range. The time for the sensor 
network to produce data from perceived input is in the range 
of 10 ms. In this particular case, the sensor network is the 
bottleneck, diminishing the influence of the DDS participants 
on the ‘age’ of the data. In both the flexible and the low 
latency approach, running multiple subscribers on a single 
publisher (10:1) did not create any significant additional 
latencies. 

Nor did adding subscriptions during the publishing process, 
although running the publishers and subscribers with default 
Quality of Service meant that only messages were received 
that were sent after the subscriber match. Running the same 
tests over a network did not yield significant changes in the 
results. These tests provide the first insight into the effects of a 
fully functional SInBot system. All local machine tests were 
performed on a HP EliteBook 8560w, network tests were done 
in combination with an Acer Aspire 5738G. Both workstations 
operate on Windows 7, .NET framework 4.0, OpenDDS 3.4.1, 
ACE 5.6 with TAO 1.6 and communicate through a wireless-n 
connection. 

 
5.3. Conclusion 

 
Building the first pieces of the SInBot system in relation to 

OpenDDS prove that both the flexible and fast approach are of 
considerable use in a manufacturing environment. Even 
though the message latencies are largely dependent on 
information generation and interpretation, rather than message 
transport, the fast approach can be applied when needed. 
Comparative transport speeds are set at 100 – 500 Hz for the 
fast approach, less than 100 Hz for the flexible  approach, 
while maintaining a reliability of effectively 100%. 

6. Prospects and Conclusions 
 

Overall, the two scenarios and their software 
implementation perform as expected, using a local machine 
and validated over network. The flexible approach enables 
developers to prepare several applications without the need for 
low-level-programming or to ‘hack’ into protected OEM 
software. The reliability for DDS participants and their 
client/server connection to the protected applications is 
adequate, as is the latency of the messages. The low latencies 
approach performs close to OpenDDS specifications, and 
mean unique implementations for each manufacturing entity 
in a manufacturing environment; as expected. This scenario is 
to be used scarcely to allow true plug-and-produce systems, 
and only when hard-real-time requirements are encountered. 

By evaluating the compatibility of DDS systems in a 
manufacturing environments, and their suitability for the 
specific problems, the production planning paradigms as 
stated in the problem scenario can now be properly examined. 
The first paradigm containing two separate robots without 
interaction or interference will not be a likely be a candidate 
for distributed and decentralized control. Paradigm 2, 
containing two robots that experience interference from each 
other, can benefit from the flexible and fast communication 
approach. This paradigm can be addressed by introducing a 
‘claimed zone’ publisher and corresponding subscriber, along 
with a method to avoid the claimed zones. This would allow 
the manufacturer to program the robots without having to 
address possible interference. With the flexible approach, 
yielding a reliability close to 100%, and a message speed of up 
to 100Hz, end effectors can potentially work as close as 100 
mm  from  each  other,  assuming  an  end-effector  speed  of 
~5m/s. While this would be beneficial, the third paradigm 
contains even more dynamic interference; the two mobile 
robots that are interacting and interfering. A static work 
preparation approach would be exponentially more difficult 
than the first paradigm. Addressing such a setup could be done 
by no longer assigning a task to a robot, but let the robot 
subscribe to tasks. Next to the ‘claimed zone’ publisher and 
subscriber, a simple task scheduler could publish the next task, 
to which the robots can subscribe dynamically. The last 
paradigm introduces a human worker, involving external 
sensors to ensure safety. The advantage of a DDS system, is 
that the external sensors could simply ‘claim’ and publish a 
interference zone in which they detected an unknown object. 
Depending on the proximity of the object, nearby machinery 
could deploy a safety procedure (e.g. slow down to roughly 
10% of normal speed) to ensure cooperability and safety. The 
required flexibility, speed, and adaptability of the 
communication layer is a perfect fit to the flexible, fast, and 
robust nature of DDS systems, as explained in the previous 
chapters. Finally, scaling up paradigms 2-4 increases the 
suitability to distributed, decentralized control systems, and 
re-establishes the need for the SInBot Manufacturing System. 
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