
 Procedia CIRP 25 (2014) 385 – 392

Available online at www.sciencedirect.com

2212-8271 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientific Committee of the 8th International Conference on Digital Enterprise Technology - DET
2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”
doi: 10.1016/j.procir.2014.10.053

ScienceDirect

8th International Conference on Digital Enterprise Technology - DET 2014 – “Disruptive Innovation in
Manufacturing Engineering towards the 4th Industrial Revolution

Evaluating a prototype approach to validating a DDS-based system
architecture for automated manufacturing environments

M.S. Essers*a, T.H.J. Vanekera

aUniversity of Twente, Enschede, Laboratory for Design, Production and Management, Department of Engineering Technology, Drienerlolaan 5 7522 NB
Enschede, The Netherlands, Tel. +31-53-489 25 20, E-mail: m.s.essers@utwente.nl

* Corresponding author. Tel.: +31-53-489-3192. E-mail address: m.s.essers@utwente.nl

Abstract

Data Distribution Services (DDS) are emerging as communication systems in manufacturing environments. One of the key features of a DDS
based system is the ability to regain performance levels after the introduction or removal of a DDS participant. In implementing a DDS
participant to an existing system, message transport speed and message latency is often sacrificed due to protection problems in OEM software.
Validity and suitability for integration of OpenDDS specifically, a manufacturing system is evaluated by defining two implementation
scenarios; a flexible approach with a dedicated DDS participant application, and a high speed approach integrating the OpenDDS API directly
in the target application. The system is validated by monitoring performance, efficiency and robustness in use and implementation. This result
is part of a system architecture, developed for project Smart Industrial Robotics (SInBot), that focuses on maximizing the efficient use of
mobile industrial robots during medium sized production runs.. This modular system architecture is based on distributed intelligence and
decentralized control to enable online reconfiguration of industrial robots in manufacturing facilities.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET
2014.

Keywords: Data Distribution Service (DDS); Industrial Robots; Manufacturing

1. Introduction

Current industrial robots play an important role in
performing repetitive production tasks. They perform their
tasks cost effectively and accurate over longer periods of time.
The European production industry is moving toward higher
added value production that must be lean and flexible in order
to survive in a competitive market [1]. Industrial robots need
to get an even higher intelligence, collaborative and
multipurpose deployment and effortless transfer of processes
by which one-off or limited series can be produced.

SInBot (or Smart Industrial RoBotics) [1] is a project that
specifically targets composite machining tasks in the
manufacturing environment. Where these tasks are now
performed by million euro lathe and milling machines, SInBot
sees an important role for industrial robots. The focus of
project SInBot is on the development of methods and tools for
simplifying definition, selection and use of intelligent,

decentralized cooperation of industrial robots for
manufacturing purposes. Work preparation for industrial
robots is still a long and tedious task, containing a multitude of
optimization iterations. When the words ‘work preparation’
are used in this paper, it is used to describe the process to
generate manufacturing data for some hardware to create a
product from its technical product data (e.g. CAD file and a
product data file) as efficient as possible.

The time consuming work preparation, complexity and
diversity of programming languages particularly present a
problem for industrial robots and their implementation in
small and medium sized manufacturing enterprises (SM/MEs).
A common need for European SM/MEs is found in flexible
(or agile) manufacturing, mass customization and a decrease
in setup and programming times. In project SInBot, the
current work preparation process is perceived as being too
complex and containing too much iterations, where possible
solutions lay in task-level programming and communication.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientifi c Committee of the 8th International Conference on Digital Enterprise
Technology - DET 2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”

386 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

Many SM/MEs already use automated manufacturing cells
with CNC Mills or Lathes. In these automated milling centres,
the automation in work preparation is far more advanced than
in current automated industrial robot cells. Milling stations are
expensive machines with relatively small work envelopes, but
ensure high accuracy and the ability to be programmed offline
for near 100%. Since programming files, product data, and
process parameters can be stored for later use, and the
machine adheres to the offline programming (OLP) almost
entirely, subsequent reorders are available for relatively low
additional (reprogramming and reconfiguration) costs.

For project SInBot to achieve the foreseen steps in
automation of work preparation, a flexible robot-based
machining cell has to be able to translate CAD files fluently
into manufacturing tasks. Until now, robots are controlled on a
low level. Although several higher level programming
languages and allow humans to give commands on a relatively
high level, are starting to emerge. SInBot will use these high
level languages as task descriptions in a distributed and
decentralized system. As task descriptions become more
abstract, specific and individual unit control is lost.
Algorithms that deal with high level tasks, should provide
ample input for the robot to perform its task efficiently, while
being robust to ensure continuity.

The lack of accuracy of industrial robots is a problem in
automating work preparation. A common method of
improving the accuracy (i.e. moving accuracy closer to the
repeatability), is to introduce external end-effector tracking
sensors. Project SInBot has also identified positioning and
trajectory accuracy as the main problem with industrial robots
in machining composites. For any piece of machinery to be
programmed offline, it must perform the planned
manufacturing program predictably. Currently, industrial
robots lack the predictability (accuracy) for efficient OLP. As
soon as the industrial robots adhere to OLP according to
industry standards (i.e. accuracy approximately as good as
their repeatability), the work preparation paradigm can be
truly addressed. Project partners are working on a short loop
for tool trajectory and position correction. The remainder of
this research is performed assuming industry standard OLP
adherence of industrial robots, and will discuss the envisioned
SInBot manufacturing system.

2. Problem Scenarios

A distributed approach to controlling manufacturing

environments with industrial robots can be beneficial when
roughly two criteria are met: 1) the manufacturing tasks
extend over the work envelope of a single industrial robot, and
2) the manufacturing tasks encompass small series of identical
products. These environments are the most interesting target
for the SInBot decentralized, distributed system. Small and
medium sized enterprises are also situated in this scenario,
since these normally produce in small to medium production
series; often specialized parts (e.g. composite car roofs for
high end sports cars). Additional factors that will impact the
suitability of the SInBot system are 1) the need for different
types of robots, featuring different performance specifications,
2) the need for communicating entities (other than industrial

robots), and 3) the need for extendibility. Also note that
manufacturing environments are evolving from mass-
production to mass-customization, and even to personalization
[2]. This evolution strengthens the position of the SInBot
system. Manufacturing environments that are considered
suitable for the SInBot system to excel, can be examined for
distributed approach compatibility by looking at these
production planning paradigms:

Paradigm 1: Two separate robots are working on different
products, at different locations (Figure 1a). There is no
interaction, nor interference between the two robots.

Paradigm 2: Two robots are working simultaneously on the
same product (Figure 1b). There is interference, but no
interaction. The current work preparation approach will take
disproportionally longer due to the interference.

Paradigm 3: Two robots are working cooperatively on the
same product, while the robots are online reconfigurable
(Figure 1c). There is both interaction and interference. In the
current work preparation approach, the interference and
interaction must be implemented manually for all
configurations of robots, for each product. The dynamic nature
of this paradigm would allow too much configuration options
for the current work preparation approach, and would render it
unfeasible.

Paradigm 4: Two mobile robots are working cooperatively
on the same product with a human worker (Figure 1d). There
is both interaction and interference, from both robots and
human workers. The inherent dynamic nature of paradigm 3
makes the current work preparation approach unfeasible, but
introduction of human workers and the ability of the robots to
co-operate, makes the current work preparation approach
simply impossible.

While the first two paradigms are relatively common in the
manufacturing industry, the latter two are not. However, both
paradigm 3 and 4 are the focus of many studies to improve the
efficiency of deploying industrial robots. For each of this
paradigms, the SInBot system compatibility is examined.

3. Solution Context

SInBot’s perspective on solving the SME problem is to

introduce a flexible, mobile, plug-and-produce system in the
manufacturing environment. Current manufacturing
environments are static, rigid and established systems,
consisting of (sub-)systems and software that is interfaced at
the moment of purchase through (e.g.) socket or bus
connections, and require extensive redesigns for each future
upgrade [3].

Important advantages in the development phase obtained
through this decentralized and distributed approach, is the
possibility to develop module-based. The major challenge is to
design, develop, and assemble a system that facilitates the
modules, performs as demanded in speed and reliability, and
supports plug-and-produce connection of both software and
hardware modules. The SInBot manufacturing system
proposal can be found in [4], and roughly consists of a
communication layer capable of plug-and-produce
connections from a variety of modules (Figure 2). The
different modules can be separated by their goals; to facilitate

387 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

Module n+1 Module 1 Module n

Communication Layer

Interface n

Device n

Interface n+1

Device n+1

and to produce. Both categories can contain hardware
(interfaces) and software. For example, facilitating hardware
can be an AGV capable of reconfiguring production lines or
cells, or a sensor network that publishes locations of known
objects in 3D space. Manufacturing software may be a CAD-
CAM software system, either automated or through manual
information insertion into the system. The top layer of Figure
2 contains processing modules that are required for the system
to function (production enablers), such as the CAD-CAM
software, a capability mapping module, and an auctioneer.
The bottom layer of Figure 2 contains hardware and software
that enable the system to perform (performance enablers).
Each module can be seen as enabling production or enabling
performance. A production enabler can for example be
swapped, as long as the replacement module produces the
same output based on similar input. The production enabler is
necessary for the system to function. A performance enabler
can for example be removed without serious consequences to
the functioning of the system, yet may influence production
speed or quality. The system is far less dependent on
performance enablers. Do note that a similar system can be
built with large function overlaps between modules,
essentially combining enablers of production and
performance, generating a more flexible yet comprehensive
and complex system.

In the envisioned system, the data-driven communication
layer is a vital piece. This layer needs an accessible and well-
performing data transport method for the flexibility and plug-
and-produce facets to emerge. Within the subgroups that were
discussed earlier, many new divisions can be perceived. There
are entities that only share their information, and entities that
only retrieve information. The more intelligent entities always
both share and retrieve data. An example of such an intelligent
entity would be an AGV from the facilitating hardware
category; it requires positional data and tasks, while sharing
status, progress and auction bids. An example of an entity that
only shares information, but not retrieves any, is a sensor
network. These subsystems share perceived data regardless of
feedback. These examples are pictured in Figure 2 as devices
that interface to the communication layer, in which new
devices should be easily added later in the system life-cycle.
The software in the communication layer should therefore be
flexible, fast, reliable, and fault tolerant. The most important
aspect, is that the system supports plug-and-produce interfaces
for (sub-) system introductions. These are the key
performance indicators on which to base the selection of a
middleware communication system for the SInBot
Manufacturing System.

Amongst the rising stars in the middleware communication
software segment are Data Distribution Service (DDS)
software providers. [5] DDS provides communication services
through the publish-subscribe protocol in real-time and
embedded systems. The general idea is that DDS participants
can publish data regardless of who is listening, while other
DDS participants can read data regardless of who is
publishing it. Specific properties of the DDS participants can
be set by changing the Quality of Service settings (QoS). QoS
settings for example, can determine whether the DDS system
will ensure that the data is either the last known published

data set, the full published set (history), or something in
between. By doing so, DDS introduces a virtual Global Data
Space where applications can share information by simply
reading and writing data-objects addressed by a topic and a
key. The primary discriminator between DDS and other data-
centric approaches is the Quality of Service (QoS) policy set,
generating a dynamic, tuneable and scalable system [6-8].
Summarized, DDS enables fault-tolerant, dynamic, high speed
complex transport of data. [3] These systems have proven to
contribute to efficiency, flexibility and robustness in military,
infrastructure, and other data-centric systems. Even though
the promises are diverse, they have been scarcely
implemented in manufacturing environments or projects that
do so. [9]

In the manufacturing sector, there is a strict division
between message-oriented and data-centric (publish
subscriber) middleware (DDS) [10], in that the loosely
coupled data-centric approach avoids complicated linking of
applications and bottleneck databases. In both message
oriented middleware [11, 12] and data-centric centric
approaches, research explains the advantages these systems
will bring to manufacturing systems, or the requirements for
these systems to benefit from such approaches. For example,
data-centric systems are valid when a) participants are
distributed, b) interactions are data-centric instead of object-
centric, c) dynamic nature of entities require predictable
delivery, d) processes may be dependent upon the
predictability of data delivery, or e) storage of data is local
[13]. If, in addition to more than one of the aforementioned
aspects, the system is in need of real-time availability of data,
DDS offers the ideal solution. [14] Since project SInBot
adheres to these aspects, DDS is chosen as the communication
layer (see Figure 3). The validity of such a system will be
proven with demonstrator systems, of which each subsequent
system increments closer to a real-world implementation of
the SInBot manufacturing system.

a) b)

Figure 1: Industrial robot production planning paradigms.

Interface 1
Device 1

Figure 2: SInBot system abstract.

388 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

DDS

DDS

OpenDDS

Performance

Application

CoreDX

Liveliness

TI Connext OpenSplic WebBased Emul ation RO

CoreDX

Liveliness

RTI Connext

e WebBased Emula tion ROS Comm CoCoreDX R OpenSplice

OpenDDS OpenDDS CoreDX

Performance Performance

Application Application Liveliness

oreDX RTI Connext OpenSplice WebBased Em

tion

CoreDX DD

S RTI Connext O

OpenDDS

Liveliness
Liveliness

penSplice W

eb-based ROS

OpenDDS

Performance

ation Application

tion

CoreDX

Liveliness

TI Connext OpenSplic WebBased Emul ation RO

CoreDX

Liveliness

RTI Connext

e WebBased Emula tion ROS Comm CoCoreDX R OpenSplice

PPeerfrformormanancece

OpenDDS OpenDDS CoreDX

Performance Performance

Applic Application Application Liveliness

Applica

oreDX RTI Connext OpenSplice WebBased Em

tion

C
C

Application
O

penDDS

Liveliness
ul
ul

a
a

OpenDDS

Performance

Application

CoreDX

Liveliness

TI Connext OpenSplic WebBased Emul ation RO

CoreDX

Liveliness

RTI Connext

e WebBased Emula tion ROS Comm CoCoreDX R OpenSplice

PPeerfrformormanancece

OpenDDS OpenDDS CoreDX

Performance Performance

Application Application Liveliness

Application Liveliness
oreDX RTI Connext OpenSplice WebBased Em

tion

CAD2CAM

Interface…

…

The hardware of these prototype systems are scaled up to
the final demonstrator. The last demonstrator will show the
validity of the system on an industrial robot and provide the
last parameters required to prove the validity of a real-world
implementation. The rule of thumb for each demonstrator,
system, subsystem, or component, is that when Open Source
(free) software and hardware can be proven to perform as is
stated in the project SInBot goals, it is agreeable to conclude
that the system would also function and perform similar or
better, with professional, industrial hardware and software.

4. DDS Evaluation

4.1. Selection of a DDS system

The SInBot Manufacturing system is proposed as

containing a data-driven DDS-based communication layer.
However, the prototype is a proof of principle; a DDS system
in the prototype would be beneficial, but not a hard
requirement. (Proprietary) DDS systems were examined and
compared to evaluate their compatibility in the framework, but
emulating the layer or using a similar (yet simpler) system that
adheres to the proof of principle is also viable. Unmistakably,
a DDS system implementation in the early stages of the
SInBot system development, specifically in the prototype,
would reduce further development costs and time.
Consequently, four major DDS players were examined on
three categories: Performance, Application, and Liveliness
(see Figure 4). At the time of writing, multiple DDS
implementations are viable contenders. OpenDDS, CoreDX
DDS, RTI Connext, and OpenSplice were selected to evaluate,
knowingly ignoring MilSoft DDS, InterCOM DDS, and ETRI
DDS due to a smaller supporting community. The selection
criteria reflect the requirement of the middleware
communication layer of the SInBot Manufacturing System,
but also the consequences of building a prototype with these
middleware solutions.

From building the SInBot Manufacturing System and the
prototype, emerged the need for either a small or nonexistent
license fee for Educational and R&D use of proprietary
software. All the categories are evaluated with the most
complete software version that have acceptable development
fees per license. In most cases the commercial fee is
unacceptable for the SInBot development phase; for these
systems, the Open Source Community or Education version
were used. The ‘Application’ category focusses on the
implementation of the software system, evaluating the level of
complexity measured in the required prior knowledge of the
implementer and the indirect support the providers offer. The

of a web-based emulation of a flexible communication layer is
prototype-only, since a real-world implementation would be
slow, unreliable, and create problems of centralized control
systems in a distributed architecture. If failure occurs in any
entity that shares information, or in the database itself, it
would translate to productions faults, safety issues, and
machine damage. Alternatively, some specific control systems
provide a communication layer also; e.g. the Robotic
Operating System (ROS). Next to multiple libraries and tools
to aid development and prototyping of robots, ROS contains a
publish/subscribe communication layer. This particular system
works with a main node, containing information about the
DDS participants, not unlike some other data-centric systems
[15]. There are extensions to auto-discover the main node
(master), maneuvering ROS’ communication method close to
DDS systems using automatic topic discovery. For its all-
round performance, OpenDDS was chosen for the SInBot
manufacturing system. DDS Interfacing

DDS software providers promise fast communication
between publishers and subscribers. However, for these
latencies to be available to subsystems in a DDS-based
system, the DDS API must be implemented directly in the
software. A DDS communication entity is set up by a
DataReader / DataWriter and a subscriber / publisher. A
publisher or subscriber can contain more DataWriters or
DataReaders. In this principle lay opportunities for fast
communication and flexibility. However, this also means that
each communication application would become unique, and
rigid in deployment. Consequently, there is a potential
problem if the publisher / subscriber application is
incompatible with existing software.

DDS DDS DDS

DDS DDS DDS

Sensor-ITF AGV-ITF

Sensor AGV

Figure 3: SInBot system proposing DDS as middleware.

 Application Liveliness

‘liveliness’ category evaluates the update policies of the
software provider (i.e. the update polices on their Open Source
or Community editions) and the size of their support
community. The speed doesn’t differ much between DDS
software providers, the OMG compliance only slightly.

Application

C

OpenDDS

Liveliness

ula

For emulation of a flexible communication layer, an easy
implementation option would be to define a central (e.g.
MySQL) database containing all information in an orderly
fashion. Interfaces to such a database are easily written in a
variety of languages from a variety of platforms. This example

CoreDX DDS RTI Connext OpenSplice Web-based ROS

Figure 4: Performance of Communication Layer Structures.

Auctioneer …

389 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

Latency per message (ms)

z)
(H
y c n e u q e
Fr

100
 tage n 80 e c r e p 60

al v i
ar 40

r
e

ssag
20

e
M 0

1 10 100 1000
Publish speed (messages / second)

60

40

20

0
1 10 100 1000

Publish speed (messages / second)

Parallel interpretation of message content

Some software is easily integrated, while others are
required to be standalone and may only use communication
protocols to ‘talk’ to DDS entities. This results in the
following proposal;

For the system to be flexible in deployment and approach
the performance of high-end DDS systems, interfaces to DDS
entities are created in independent scenarios: fast and
(possibly) unique for demanding applications, flexible and
generic for undemanding applications.

Examples of the aforementioned incompatibilities are
incompatible programming languages or protected software
environments. A programming language that is not natively
supported by the DDS entities can be shaped into an API
wrapper, e.g. ‘wrapping’ C++ functions in a .NET language to
allow the DDS API to be controlled through the wrapper [16].
Protected software and hardware require client/server type
communication, since manufacturing hardware and software
often offer communication sockets / busses. An integrated
approach in implementing the DDS API in manufacturing
entities yields the smallest message latencies, the API wrapper
will produce good results also. Navigating the messages
through a client / server connection like a socket or
communication bus is expected to be the least reliable and
increases message latencies. The message Interactive Data
Language (IDL) cannot be maintained in these cases, and is
swapped for a either a ‘structure > encode > connection >
decode > publish’ process in the case of a publisher, or a
‘encode > connection > decode > structure; process in the
case of a subscriber. In this example, the IDL is translated to
an actual ‘Structure’ in the .NET framework.

As aforementioned, manufacturing environments cannot
yet be expected to implement the DDS API directly into the
deep programming layers of PLCs or hardware controllers.

performed by which entity. Since these deliberations can be
performed during manufacturing cycles, the message latency
and frequency becomes relatively unimportant; in the order of
magnitude of a few seconds, instead of micro or milliseconds.

Initial test runs showed some unreliability and increasing
latencies at medium to high message frequency settings. The
software was optimized for higher message frequencies, and
the subsequent test runs showed enough improvement to
continue this setup. The graph in Figure 6 was achieved by
creating and publishing 500 messages of 0.5kb at 10 Hz (or 10
messages per second), with both the dedicated publisher and
subscriber application running on a local machine, and
communication event triggers for reliability (see Figure 5).
The messages were created with default Quality of Service
settings. In the flexible manufacturing environment as
envisioned in project SInBot, Automated Guided Vehicles are
required to reconfigure production cells / lines. For safety and
efficiency, these AGVs rely on both internal (inertial)
navigation, and information from external sensors. Solving a
simple math problem; an AGV traveling at 2 m/s, assuming a
required traveling accuracy of 100mm, yields a maximum
latency of 50 ms.

Publisher Subscriber

edPipe NamedPipe

Retrieve
Decode

Structure

Figure 5: Communicating Manufacturing Entities.

350

Therefore, the test software setup is based on external
applications running dedicated publisher/subscriber
applications. The main issue then becomes the communication
of data to and from publisher or subscriber and the software.
Within the Microsoft Windows environment, a variety of
communication protocols between two separate applications
exist: shared memory, NamedPipes, or a simple console-
reading / file-reading method for instance. Each
communication approach has a certain speed, complexity of
implementation and compatibility with programming

300

250

200

150

100

50

0

Local, parallel, 50Hz

Local, serial 2, 10Hz

Local, serial 1, 10Hz

10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

approaches and languages. The NamedPipe, in which a server
is started to which cross-application clients can subscribe, is
perceived as relatively fast, easy to implement in many
different languages, easy to substitute for the UNIX-based
NamedPipe definition or socket, and relatively reliable.

4.2. System Latencies

Compared to integrating the DDS API directly into the

software, the NamedPipe in combination with encoding and
decoding is slow. For that specific reason, it is ideal to test the
performance of a DDS-based communication system in
protected manufacturing (software) environments. An
interpretation of this situation can be found in the SInBot
system; the intelligent manufacturing entities deliberate
amongst each other and the task auctioneer, which task is

Figure 6: Difference in local message delay after optimization of serial 1 to
serial 2, and parallel interpretation of values.

Figure 7: Reliability of communication with parallel or serial interpretation of
message content in external applications.

60

40

20

0
1 10

Publish speed (messages / second)

Parallel interpretation of message content

 Serial interpretation of message content

Number of messages

M
es

sa
g

e
L

at
en

cy
 (

m
s)

Nam

Share

Encode

Structure

390 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

AGVs relying solely on this information would require a
direct implementation of a DDS entity in the software, as do
the external positional sensors. These assumptions provide
indicators to compare the performance of different interfaces
to the DDS system in the form of two scenarios: 1) the
flexible, non-invasive, yet relatively slow external interface,
and 2) the fast, reliable, integrated approach. The serial
approach of ‘structurize’ and ‘decode’, during message
retrieval introduces disproportional large delays in message
transport (Figure 6, serial 1). When the connection is
disproportionally faster than the serial decoding process,
buffer flooding occurs and reliability decreases. The key is the
frequency on which the serial decoding operates. When the
decoding and structurization process is placed parallel to the
communication process, both the speed and consequent
reliability go up (Figure 6, parallel). Compared to the initial
average latency, the parallel approach averages about five
times faster. Configuring the system to a speed that exceeds
the serial decoding process frequency based on the outlier
speed, yields message losses. The parallel approach yields
perfect results with message frequencies around 70Hz, while
the older configuration starts to falter above 15Hz.

It is important to note that the message is being interpreted
parallel to receiving the messages, so the total delay for
information has not been changed. By improving the initial
latency of message retrieval from client/server communication
with a dedicated subscriber, the reliability improved
significantly. Figure 7 illustrates the effect of parallel message
interpretation in terms of reliability. Next to reliability, there
are some other specific advantages to this approach, especially
when message structurization is not of vital importance to the
receiver. Separating retrieval and interpretation enables a
variable approach to interpretations, allowing some leeway to
either interpret very structurally (<70Hz, clear structure of
messages) or very rapid (>100Hz, only use most recent).

4.3. Conclusion

OpenDDS is considered suitable communication

middleware for project SInBot. The initial latency and
interface tests yield results that are within a respectable
bandwidth, and within the margins expected to be required for
the SInBot system to function. Embedding the DDS system is
relatively straightforward, and interfacing to DDS entities can
be done in multiple ways. Interpretation of communicated data
has to be done parallel where possible. For a final evaluation,
specific scenarios within the SInBot system are examined and
build to expected specifications. Evaluating the performance
of the system within these scenarios provides insight in the
specific evaluation of OpenDDS in project SInBot, and shine
some light of the applicability and performance in related
projects and systems.

5. Specifications and Results

The proposals for communication protocols with DDS

entities as mentioned in chapter 4 illustrate the possibilities for
a flexible, yet slow communication scenario, and a fast but
labor intensive scenario with low message latencies. Both

these scenarios are common cases in the industry, where
flexibility generates advantages like extendibility, ease of
implementations and a work-around for protected software
environments, latency-reduction enables the use of external
sensor networks and safety protocols. Both scenarios are
embodied in an experiment in which the latency is minimized
while maximizing flexibility in deployment.

5.1. Scenario 1: Flexibility

The flexible implementation of the DDS entity consists of a

computational application (.NET) that has been given the
protected status. A dedicated DDS application (C++) runs
simultaneously and communicates with the protected
application through a NamedPipe. The information is encoded
by sharing names and values (a String). The protected
application uses flexible .NET libraries to distinguish what
type of message has been sent through the NamedPipe, and
saves the values to a structure matching the IDL. The
protected application now owns a list of structures, in the case
of Figure 8, a list of auctions. The DDS entities are configured
to use the automated topic discovery publish/subscribe
protocol, and run on a local machine, transporting messages
through UDP via a Wi-Fi (wireless-n) network.

The serial message interpretation approach was done in a
single thread, in which a decoder and structurize function was
called following an incoming NamedPipe message. This
approach yields X~N(30,113.6) where X is the latency of any
random message, time in milliseconds. The parallel message
interpretation approach was done by using an instance of a
specific class running in its own thread, and starting the
instance with the message coming through the NamedPipe.
This approach yielded X~N(11,1.2). For flexibility, the
applications itself (VB.NET talker, VB.NET listener and
C#.NET message monitoring application), contain only
references to reusable .NET libraries (DLL). This allows for
fast reproduction of .NET applications and simple connections
to DDS participants. For protected applications that require
DDS messages in an orderly and structured fashion but have
no hard real-time requirements (maximum latency > 50 ms),
this approach is ideal.

Figure 8: Example of communicating applications through NamedPipes and
DDS Participants; the robot and auctioneer.

Figure 9: Example of integrated DDS participants in communicating
manufacturing entities; the external sensor and AGV.

DataReader

Start Auction

Prepare Auction Bid

DataWriter

Comm port Comm port Comm port Comm port

Subscriber

Publisher

Interface to Interface to
Hardware

Hardware

391 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

5.2. Scenario 2: Low latency

For the fast implementation, the setup contains a simple
publisher and subscriber application, compiled directly from
C++. Identical to scenario 1, the DDS entities are configured
to use the real-time (automated topic discovery)
publish/subscribe protocol, and run on a local machine,
transporting messages through UDP via a Wi-Fi (wireless-n)
network. This particular facet of the prototype patterns a
sensor network on the publisher’s side, and an application that
transfers positional data to an AGV on the other side. A
typical SME would have multiple individual sensor (network)
entities, against a relatively small number of AGVs. The main
difference as seen in Figure 9, is that the DDS entities are part
of the main application, minimizing message latencies. The
DDS participants are used precisely as their creator intended;
to publish data when available at the available speed, and to
retrieve information when needed in the required quantity.
The results of this setup show an increase in speed not
accurately measurable using the method from in scenario 1
(latency per message). OpenDDS published the average
latency for messages being around 0.2 - 0.5 ms [17]. Even
though the results show similar values, the time for the values
to be ready to use by the AVG locator are somewhat longer,
but remain in the <1 ms range. The time for the sensor
network to produce data from perceived input is in the range
of 10 ms. In this particular case, the sensor network is the
bottleneck, diminishing the influence of the DDS participants
on the ‘age’ of the data. In both the flexible and the low
latency approach, running multiple subscribers on a single
publisher (10:1) did not create any significant additional
latencies.

Nor did adding subscriptions during the publishing process,
although running the publishers and subscribers with default
Quality of Service meant that only messages were received
that were sent after the subscriber match. Running the same
tests over a network did not yield significant changes in the
results. These tests provide the first insight into the effects of a
fully functional SInBot system. All local machine tests were
performed on a HP EliteBook 8560w, network tests were done
in combination with an Acer Aspire 5738G. Both workstations
operate on Windows 7, .NET framework 4.0, OpenDDS 3.4.1,
ACE 5.6 with TAO 1.6 and communicate through a wireless-n
connection.

5.3. Conclusion

Building the first pieces of the SInBot system in relation to

OpenDDS prove that both the flexible and fast approach are of
considerable use in a manufacturing environment. Even
though the message latencies are largely dependent on
information generation and interpretation, rather than message
transport, the fast approach can be applied when needed.
Comparative transport speeds are set at 100 – 500 Hz for the
fast approach, less than 100 Hz for the flexible approach,
while maintaining a reliability of effectively 100%.

6. Prospects and Conclusions

Overall, the two scenarios and their software
implementation perform as expected, using a local machine
and validated over network. The flexible approach enables
developers to prepare several applications without the need for
low-level-programming or to ‘hack’ into protected OEM
software. The reliability for DDS participants and their
client/server connection to the protected applications is
adequate, as is the latency of the messages. The low latencies
approach performs close to OpenDDS specifications, and
mean unique implementations for each manufacturing entity
in a manufacturing environment; as expected. This scenario is
to be used scarcely to allow true plug-and-produce systems,
and only when hard-real-time requirements are encountered.

By evaluating the compatibility of DDS systems in a
manufacturing environments, and their suitability for the
specific problems, the production planning paradigms as
stated in the problem scenario can now be properly examined.
The first paradigm containing two separate robots without
interaction or interference will not be a likely be a candidate
for distributed and decentralized control. Paradigm 2,
containing two robots that experience interference from each
other, can benefit from the flexible and fast communication
approach. This paradigm can be addressed by introducing a
‘claimed zone’ publisher and corresponding subscriber, along
with a method to avoid the claimed zones. This would allow
the manufacturer to program the robots without having to
address possible interference. With the flexible approach,
yielding a reliability close to 100%, and a message speed of up
to 100Hz, end effectors can potentially work as close as 100
mm from each other, assuming an end-effector speed of
~5m/s. While this would be beneficial, the third paradigm
contains even more dynamic interference; the two mobile
robots that are interacting and interfering. A static work
preparation approach would be exponentially more difficult
than the first paradigm. Addressing such a setup could be done
by no longer assigning a task to a robot, but let the robot
subscribe to tasks. Next to the ‘claimed zone’ publisher and
subscriber, a simple task scheduler could publish the next task,
to which the robots can subscribe dynamically. The last
paradigm introduces a human worker, involving external
sensors to ensure safety. The advantage of a DDS system, is
that the external sensors could simply ‘claim’ and publish a
interference zone in which they detected an unknown object.
Depending on the proximity of the object, nearby machinery
could deploy a safety procedure (e.g. slow down to roughly
10% of normal speed) to ensure cooperability and safety. The
required flexibility, speed, and adaptability of the
communication layer is a perfect fit to the flexible, fast, and
robust nature of DDS systems, as explained in the previous
chapters. Finally, scaling up paradigms 2-4 increases the
suitability to distributed, decentralized control systems, and
re-establishes the need for the SInBot Manufacturing System.

392 M.S. Essers and T.H.J. Vaneker / Procedia CIRP 25 (2014) 385 – 392

7. References

[1] Intereg, SInBot. [cited Access 10-11 - 2013]; Available from:
http://www.smartbot.eu/project-information/sinbot/.

[2] Hu, S.J., Evolving Paradigms of Manufacturing: From Mass Production
to Mass Customization and Personalization. Procedia CIRP 2013; 7(0):
3-8

[3] Pardo-Castellote, G., OMG Data-Distribution Service: architectural
overview. Proceedings 23rd International Conference on Distributed
Computing Systems Workshops. 2003

[4] Essers, M.S. and T.H.J. Vaneker, Developing Concepts for Improved
Efficiency of Robot Work Preparation. Procedia CIRP 2013; 7(0): 515-
520

[5] Dianes, J.A., M. Díaz, and B. Rubio, Using standards to integrate soft
real-time components into dynamic distributed architectures. Computer
Standards & Interfaces 2012; 34(2): 238-262

[6] Schlesselman, J.M., G. Pardo-Castellote, and B. Farabaugh, OMG data-
distribution service (DDS): architectural update. Military
Communications Conference, 2004. MILCOM 2004. 2004 IEEE. 2004

[7] OMG Data Distribution Service for Real-time Systems. OMG
Specification, 2007. 1.2, 260.

[8] Corsaro, A. and D.C. Schmidt, The Data Distribution Service–The
Communication Middleware Fabric for Scalable and Extensible
Systems-of-Systems. System of Systems 2012; 19

[9] Ryll, M. and S. Ratchev, Application of the data distribution service for
flexible manufacturing automation. International Journal of Mechanical,
Industrial and Aerospace Engineering 2008; 23

[10] Joshi, R., Data-Oriented Architecture: A Loosely-Coupled Real-Time
SOA. Real-Time Innovations, Inc, CA, Tech. Rep 2007;

[11] Delamer, I.M. and J.L.M. Lastra, Service-Oriented Architecture for
Distributed Publish/Subscribe Middleware in Electronics Production.
Industrial Informatics, IEEE Transactions on 2006; 2(4): 281-294

[12] Delamer, I.M. and J.L. Martinez Lastra, Evolutionary multi-objective
optimization of QoS-Aware Publish/Subscribe Middleware in electronics
production. Engineering Applications of Artificial Intelligence 2006;
19(6): 593-607

[13] Guesmi, T., et al., Design and performance of DDS-based middleware
for real-time control systems. IJCSNS 2007; 7(12): 188-200

[14] Woochul, K., K. Kapitanova, and S. Sang Hyuk, RDDS: A Real-Time
Data Distribution Service for Cyber-Physical Systems. Industrial
Informatics, IEEE Transactions on 2012; 8(2): 393-405

[15] Riquier, C., et al., DES (Data Exchange System), a publish/subscribe
architecture for robotics. 1th National Conference on Control
Architecture of Robots, April. 2006

[16] Calkins, C. Code Generation with OpenDDS, Part II. 2010.
[17] OpenDDS OpenDDS - Performance Testing Results. 2010.

