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1. INTRODUCTION

Nanomedicine is defined as “the application of nanotechnology
to medicine, including the use of nanometer-sized carrier
materials for facilitating disease diagnosis, disease treatment and
treatment monitoring”." Examples of carrier materials routinely
used for nanomedicine applications are liposomes, polymers,
micelles, dendrimers, nanoparticles, and antibodies (Figure

1).>”° Nanomedicines have several advantages over standard
low molecular weight agents. They are, for instance, able (I) to
protect the payload from premature clearance, enzymatic
degradation, and/or exposure to potentially harmful physio-
logical conditions; (II) to improve the biodistribution and
target site accumulation of drugs and imaging agents; (III) to
improve the in vivo efficacy of diagnostic and therapeutic
interventions; (IV) to attenuate drug and imaging agent
accumulation in healthy, nontarget tlssues, and (V) to reduce
the incidence and intensity of side effects.”® Nanomedicines
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can overcome several of the biological, physical, chemical, and
clinical barriers associated with ineffective drug delivery to
pathological sites,'"""®> and they have been shown to be
valuable tools for improving the therapeutic index of low
molecular weight agents in cancer, inflammatory disorders,
infections, and other life-threatening diseases. Several nano-
medicines are nowadays routinely used in the clinic, including
Doxil/Caelyx (PEGylated liposomes containing doxorubicin),
Abraxane (paclitaxel-loaded albumin nanoparticles), Oncaspar
(PEG-L-asparaginase), Depocyt (liposomal cytarabine), and
Genexol-PM (polymeric micelles containing paclitaxel). A
significant number of additional nanomedicine formulations
are in clinical trials, in particular, for the treatment of cancer,
and many more are currently being evaluated at the preclinical
level.

To better understand and to optimize drug delivery to
pathological sites, it is important to quantitatively monitor
various different aspects of the drug delivery process, including
pharmacokinetics, biodistribution, target site accumulation,
local distribution at the target site, localization in healthy
tissues, kinetics of drug release, and therapeutic efficacy.
Therefore, in recent years, there has been an increasing focus
on the use of noninvasive imaging techniques, such as positron
emission tomography (PET), single photon emission com-
puted tomography (SPECT), computed tomography (CT),
magnetic resonance imaging (MRI), optical imaging (OI), and
ultrasound (US), for monitoring drug delivery, drug release,
and drug efficacy."*~

Among these techniques, CT, MR, and US can be used both
with and without contrast agents. In case of the former, ie.,
when contrast agents are used, these modalities require
prescans, to determine the background level of CT, MRI, and
US signal prior to contrast agent administration. Such baseline
measurements are needed to quantify the functional or
molecular imaging information. Conversely, in the case of
“hot-spot” techniques, such as PET and SPECT (and certain
forms of OI), no background signals are detected in the
absence of contrast agents, and prescans are not needed. Hot-
spot imaging techniques consequently do not provide any
anatomical information, and they need to be combined with
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Figure 1. Examples of routinely used drug delivery systems and drug targeting strategies.
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Figure 2. Schematic depiction of noninvasive imaging techniques routinely used in nanomedicine research, as well as an overview of their specific

applications, advantages, and limitations.

modalities such as CT or MRI, which are highly useful for
anatomical and morphological imaging. This results in hybrid
imaging techniques, such PET—CT, SPECT—CT, and PET—
MR, in which the anatomical information obtained using CT
or MRI is used to assist in allocating the functional and
molecular hot-spot information to the correct organ or tissue.

It is important to take into account in this regard that each of
the above-introduced imaging modalities is employed for a
different purpose, based on its specific capabilities, its
sensitivity, and its specificity. Figure 2 provides an overview
of the most important applications of noninvasive imaging
techniques in nanomedicine and drug delivery research. Since
each of these modalities conveys a different type of anatomical,
functional, or molecular imaging information and since each of
them has its own specific pros and cons, it is imperative to have
a proper understanding of the properties, specific uses, and
clinical translatability of each of these imaging techniques, in
order to properly assess their suitability for nanomedicine-based
diagnostic, therapeutic, and theranostic interventions. Here, we
therefore summarize the basic properties of these techniques,
we describe selected examples from the literature demonstrat-
ing the specific suitability of each of these modalities for drug
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delivery purposes, and we provide a framework for the rational
use of noninvasive imaging in nanomedicine research.

2. POSITRON EMISSION TOMOGRAPHY

Positron emission tomography (PET) is an imaging technique
in which positron-emitting radionuclides are visualized and
quantified. The emitted positrons annihilate nearby electrons,
thereby generating two 511 keV photons, which are detected by
detectors embedded in PET scanners. Examples of routinely
used positron-emitting isotopes are e BN, 150, 18F, #gc,
2Cu, *Cu, ®*Ga, "*As, "*As, "Br, *Rb, %Y, ¥Zr, and 24,2673
Given the exquisite sensitivity of PET scanners and the
excellent tissue-penetrating properties of photons, radionuclide
concentrations in the (sub)picomolar range generally suffice to
generate high signal-to-noise-ratios and render useful images
and quantitative information. Therefore, PET is routinely used
in the clinic for disease diagnosis, disease staging, and therapy
monitoring. 26:34-37

Because of its high sensitivity, unlimited penetration depth,
quantifiable results, and the broad range of available radio-
nuclides, PET 1is highly suitable for monitoring the
pharmacokinetics, biodistribution, and target site accumulation
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Figure 3. Noninvasive imaging of nanomedicines using PET. (Panel A) Left: Schematic structure of a liposomal nanomedicine formulation
composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] ammonium salt (DSPE—PEG) and 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), labeled with '*F-FDP. Right: Whole-body maximum intensity projections (MIP) of free '*F-FDP
(left) and '8F-FDP-containing (right) liposomes in rats at 90 min after iv administration. The left panel exemplifies uptake of free '*F-FDP in liver
(L), spleen (S) and lungs (Lu), while the right panel clearly shows that 'SF-FDP-containing liposomes are still primarily present in systemic
circulation at this time point. (Panel B) Schematic depiction of BAT-containing (for **Cu-labeling) solid lipid nanoparticles. Coronal micro-PET
images obtained at 0.5, 3, 20, and 48 h after the iv injection of *Cu-labeled solid lipid nanoparticles are shown on the right. Initially, strong signals
were detected in the heart (H) and carotid arteries (C), whereas at later time points, signals were localized in the liver (L), intestine (I), and spleen
(S). (Panel C) Schematic depiction of iron oxide-based nanocarriers cofunctionalized with PET tracers and integrin-specific RGD peptides. Coronal
PET images obtained at 1, 4, and 24 h after the iv injection of ®Cu-labeled control iron oxide nanoparticles (**Cu—DOTA~IO; top row), RGD-
targeted nanoparticles after preblocking with excess free RGD (**Cu—DOTA~IO—RGD; middle row), and RGD-targeted iron oxide nanoparticles
(**Cu—DOTA~IO—RGD; bottom row) exemplifying efficient and specific targeting to integrins in U87MG xenografts (arrowheads). (Panel D)
PET imaging of sentinel lymph node identification in a 4T1 metastatic mouse model. Metastatic sentinel lymph nodes (dotted circles, left) and
normal contralateral lymph nodes (solid circles, right) were visualized at 1, 6, 24, and 48 h after the injection of multimodal %Cu-labeled mesoporous
silica nanoparticles (MSN—Dye—Gd—%*Cu) into the foot soles of the mice, indicating localization to sentinel lymph nodes. Arrows indicate probe
accumulation in the bladder. Images are reprinted and adapted with permission from refs 51 (copyright 2007 Elsevier), 52 (copyright 2011 American
Chemical Society), 53 (copyright 2008 Society of Nuclear Medicine and Molecular Imaging), 54 (copyright 2003 Lippincott Williams & Wilkins),
and 62 (copyright 2012 Elsevier).

of nanomedicine formulations. PET probes can be conjugated or nanomedicine components can be incorporated for

to or encapsulated within nanomedicines, e.g, via chelating
groups such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-
acetic acid (DOTA), 2-[Bis[2-[bis(carboxymethyl)amino]-
ethyl]amino Jacetic acid (DTPA), or hydrazinonicotinic acid
(HYNIC). In addition, ''C- or '®F-containing drug molecules
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quantitative in vivo analyses.**™*® An advantage of this is that
the physicochemical and pharmacokinetic properties of the
drugs and nanoformulations can be preserved, as no additional
chelating groups have to be introduced for radiolabeling.
Disadvantages associated with PET include the lack of

DOI: 10.1021/cr500314d
Chem. Rev. 2015, 115, 10907—10937


http://dx.doi.org/10.1021/cr500314d

Chemical Reviews

REVIEW

18

T,,= 110 min

68Ga

\, = 68 min

PBS pH 7.1
30°C, 16 h

P 89Zr-S
\(Ko {? Zr-SCL

89Zr-oxalate

—_—
PBS pH 7.1
40°C, 4h

8Zr-SCL 24h

%ID/g

Epichlorhydrin

Dextran

89Zr-DNB PET/MR

Cine MRI

Figure 4. Noninvasive imaging of nanomedicines labeled with long-lived PET nuclides. (A) Overview of shorter to longer-lived PET radionuclides
commonly employed in nuclear medicine and nanomedicine research. (B) PEGylated liposomes were labeled with *Zr using two different labeling
strategies: “click labeling” and “surface chelation”. For click labeling, DBCO was used, while for surface chelation, DFO was employed. Due to the
higher labeling efficiency and stability, only surface-chelated liposomes (*Zr—SCL) were used for in vivo studies. (C) NCr nude mice bearing 4T1
breast cancer tumors were used to evaluate the biodistribution and the target site accumulation of ¥Zr—SCL. PET—CT imaging was performed at 24
h after iv injection, showing prominent accumulation in tumor (upper left), liver (central), and spleen (lower right). (D) ®Zr-labeled polymeric
nanoparticles based on dextran (¥Zr—DNP) were generated for macrophage imaging in atherosclerotic plaques. Polymeric dextran chains were
cross-linked with epichlorhydrin and functionalized with DFO for ¥Zr chelation. (E) PET—MR imaging of ®Zr—DNP showing strong accumulation
in the aortic root of atherogenic ApoE ™~ mice at 48 h p.i. Images are reprinted and adapted with permission from refs 63 (copyright 2014 MDPI
AG), 76 (copyright 2014 Society of Nuclear Medicine and Molecular Imaging), and 77 (copyright 2013 Wolters Kluwer Health, Inc).

anatomical information, the relatively low spatial resolution,
and the necessity for using radioactive probes. The former two
can be overcome by using hybrid imaging techniques, such as
PET—CT and PET—MRI. Via appropriate coregistration tools,
fused PET—CT and PET—MRI images can be generated,
which can much more clearly depict the anatomical and spatial
distribution of the probe in the tissue or organ of interest,
providing more detailed and more meaningful information on
the overall levels of probe accumulation.*’ >

Among the many examples available in the literature, a
representative study in which PET was used to analyze the
biodistribution of nanomedicine formulations has been
published by Ferrara and colleagues, who prepared long-
circulating PEGylated liposomes carrying '*F-containing lipids
(Figure 3A).>" Free '®F-fluorodipalmitine (FDP) and liposome-
incorporated 'F-FDP were intravenously (iv) injected into
male Fisher rats via the tail vein. A continuous bed motion scan
was performed at 90 min after iv injection (p.i.), to enable PET
scanning of the entire animal. Maximum intensity projections
(MIP) were acquired, and the biodistribution of free '*F-FDP
versus liposome-incorporated '*F-FDP was analyzed. Figure 3A

shows the overall distribution pattern of free and of liposome-
associated '®F-FDP. As can be clearly seen, for free *F-FDP,
there was substantial accumulation in the liver (6% ID/cm?®) at
90 min p.i. and somewhat less accumulation in spleen (4% ID/
cm?) and lungs (2% ID/cm?®). PEGylated liposomes
encapsulating '®F-FDP, on the other hand, were retained in
systemic circulation much more efliciently, as exemplified by
the almost exclusive visualization of the heart and large blood
vessels, confirming their prolonged circulation times (Figure
3A).3!

Another exemplary study illustrating the suitability of PET-
based imaging for whole-body pharmacokinetic and biodistribu-
tional analyses was published by Andreozzi et al,, who studied
the in vivo behavior of solid lipid nanoparticles (SLN)
containing bovine serum albumin (BSA) radiolabeled with
$%Cu via the chelator 6-[p-(bromoacetamido)benzyl]-1,4,8,11-
tetraazacyclotetradecane-N,N’,N”,N” -tetraacetic acid (BAT) 32
Static PET scans were acquired at 0.5, 3, 20, and 48 h after iv
injection. The scans were reconstructed to yield 3D structures,
and the intensity of radioactivity was measured for several
organs of interest. These organs were later excised to quantify

DOI: 10.1021/cr500314d
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the overall amounts of radioactivity using a y-counter. As shown
in Figure 3B, the PET images displayed signals in the carotid
(C) and in the heart (H) at 0.5 and 3 h p.i, indicating the
presence of SLN in the systemic circulation. At later time
points, SLN were cleared from the blood and accumulated in
liver (L), spleen (S), and intestine (I). The noninvasive imaging
results were validated at ~52 h p.i, using ex vivo y-counting,
showing the highest levels of accumulation in the liver (6.6 +
0.7% ID/g), followed by spleen (2.9 + 1.1% ID/g), right (2.2 +
0.2% ID/g) and left (1.7 + 1.1% ID/g) kidney, intestine (1.7 +
0.9% ID/g), lungs (1.2 + 0.5% ID/g), and heart (1.1 + 0.4%
ID/g). The results obtained using in vivo PET imaging and ex
vivo y-counting were correlated and were found to match very
well, exemplifying the high suitability of PET for noninvasive
and quantitative biodistribution monitoring.

Focusing on tumor-targeted drug delivery, Lee and
colleagues used PET to determine the difference between
RGD-targeted vs nontargeted nanomedicines.>> To this end,
they functionalized iron oxide (I0) nanoparticles with arginine-
glycine-aspartic acid (RGD) peptides to target tumor blood
vessels (via a.ff;, afs, and ayf; integrin receptors overex-
pressed by activated endothelial cells), and they modified them
with DOTA to enable *Cu complexation and simultaneous
PET—MRI monitoring (Figure 3C). The biodistribution of the
constructs was evaluated in nude mice bearing human U87MG
tumors, and as exemplified in Figure 3C, the obtained PET
images clearly demonstrated a difference in tumor uptake for
RGD-targeted vs nontargeted nanoparticles. Accumulation of
the tumor-angiogenesis-specific *Cu—DOTA—-IO—RGD
probe was found to start at around 1 h p.i. and became
prominent at 4 h p.i. In the case of nontargeted probes and in
blocking experiment (upon preadministration of excess free
RGD), on the other hand, hardly any accumulation in tumors
could be visualized (Figure 3C). In order to confirm the
findings obtained using PET, the targeted and nontargeted 10
particles were also examined using MRL>® These results
confirmed the high and specific tumor uptake of the RGD-
targeted constructs at 4 h p.i. It is important to note in this
regard that imaging (RGD-targeted) nanomedicine formula-
tions is not restricted to oncology but is also increasingly
employed in inflammatory disorders, in particular in the case of
cardiovascular pathologies, for instance, for monitoring early
stage atherosclerosis.>*~°"

Sentinel lymph nodes are the sites first reached by metastatic
cancer cells in the body, and are the main channels for
metastatic spread. Consequently, sensitively and specifically
identifying sentinel lymph nodes is highly important for tumor
staging and is decisive in deciphering appropriate therapeutic
regimens for treating metastatic cancers. The high sensitivity of
PET might be very helpful for visualizing and identifying
sentinel lymph nodes, using, for example, radioactively labeled
nanomedicine formulations. An example of this is provided in
Figure 3D, showing mice bearing highly metastatic 4T 1-murine
breast carcinoma tumors (N.B., 4T1 cells were injected into the
ankle region of the left hind limb) upon the administration of
multimodal **Cu-labeled mesoporous silica nanoparticles
containing, besides 4Cuy, also gadolinium and a near-infrared
optical imaging agent (see section 6 and Figure 10C for more
details).®* PET imaging was carried out at four different time
points after the administration of the particles into the foot
sole, ie., at 1, 6, 24, and 48 h p.i, to visualize drainage via the
sentinel lymph nodes. Figure 3D shows a very strong signal,
indicating high probe accumulation, in the tumor sentinel

lymph node at 1 h p.i. (as high as 80% ID/g). From 6 h p.i.
onward, some accumulation of nanoparticles was observed in
the liver, which reached a maximum at 48 h after iv injection.
There was a very clear demarcation of the tumor sentinel
lymph node as compared to the normal contralateral lymph
node: PET signals in the former were 35- and 7-fold higher
than in the latter, on day 1 and 2 p.i, respectively.

Given the prolonged circulation time of nanomedicines, as
well as their gradual enhanced permeability and retention
(EPR) mediated accumulation in pathological tissues over time,
PET tracers with long radioactive half-lives are preferred. As
exemplified by Figure 4A, the half-life time of PET radio-
nuclides varies significantly, from several minutes to several
days. For nanomedicine research, besides *Cu (t,,, = 13 h),
radionuclides such as *#Zr, 7%7*As, and '**I are therefore of
particular interest.”> In this context, ¥Zr (t, 5, = 78 h) has
already been relatively extensively employed for monitoring
tumor targeting,*"®® for detecting tumor-associated macro-
phages,* and for visualizing and quantifying the biodistribution
and the target site accumulation of monoclonal antibodies.®”~”*
As an example, in a recently published study by Pérez-Medina
and colleagues, PEGylated liposomal nanomedicines were
labeled with ®Zr to enable prolonged PET—CT imaging.”®
The authors used two different liposome labeling strategies, i.e.,
click labeling and surface chelation [based on dibenzoazacy-
clooctyne (DBCO) and deferoxamine (DFO), respectively] to
track their formulations (Figure 4B). The two different types of
liposomes, i.e., click-labeled liposomes (CLL) and surface
chelation liposomes (SCL), were evaluated in NCr nude mice
bearing 4T1 breast cancer xenografts. It was found that *Zr-
labeled SCL enabled a more realistic reflection of liposome
biodistribution than %Zr-labeled CLL, with a blood half-life
time of ~7 vs ~1 h, respectively, and with significantly higher
levels of tumor accumulation (up to 14% ID; Figure 4C).
These differences were attributed to differences in the labeling
efficiency and labeling stability of SCL vs CLL. ¥Zr-based PET
imaging has also already been employed to monitor nano-
medicine targeting to cardiovascular pathologies. An interesting
example of this has recently been reported by Majmudar et al,,
who aimed to specifically detect macrophages in atherosclerotic
plaques.”” In this study, dextran nanoparticles (DNP) were
functionalized with DFO to enable hybrid PET—MR imaging
(Figure 4D,E). As in the case of liposomes (cf. Figure 4C),
$7r—DNP primarily accumulated in liver and spleen, but it also
showed prominent localization in macrophages in plaques in
the aortic root of atherogenic ApoE™'~ mice. These efforts
exemplify that ever more efforts in this area of research are
moving toward the labeling of long-circulating nanomedicines
with long-lived PET nuclides, and they illustrate the usefulness
of PET for visualizing and quantifying the biodistribution and
the target site accumulation of nanomedicines.

3. SINGLE PHOTON EMISSION COMPUTED
TOMOGRAPHY

Single photon emission computed tomography (SPECT) is
similar to PET from a nanomedicine point of view. As opposed
to the coincident y-rays used to reconstruct PET images,
however, SPECT is based on noncoincident y-rays generated
by radionuclides. Consequently, the sensitivity of SPECT is
about an order of magnitude lower than that of PET and its
quantification is somewhat more difficult. Prototypic examples
of radioisotopes used in SPECT are 99me Ly 1237 and 20T,

DOI: 10.1021/cr500314d
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Figure S. Noninvasive imaging of nanomedicines using SPECT. (A) Transaxial and coronal SPECT—CT images of rats bearing head-and-neck
squamous cell carcinoma tumors on either side of the skull base. Rats were iv injected with **™Tc-labeled liposomal doxorubicin, and probe
accumulation was visualized and quantified in RFA-treated tumors (right; arrow) and sham-treated tumors (left; arrowhead). (B) Hybrid SPECT—
CT imaging of drug targeting to the lung using '**I-labeled APP2 antibody-modified GS-PAMAM dendrimers versus control dendrimers. Images
were obtained 1 h after iv injection. 3D volumetric SPECT with isosurface CT images and corresponding 2D coronal slices are shown. (C) SPECT—
CT imaging of mice bearing PC3 (EphB4R-positive) or A549 (EphB4R-negative) tumors 24 h after the iv administration of '''In-labeled EPhB4R-
targeted core-cross-linked polymeric micelles (TNYL-RAW—CCPM) and control CCPM. To confirm probe specificity, PC3 tumor-bearing mice
were also pretreated with excess free TNYL-RAW peptide, for blocking purposes. Images are reprinted and adapted with permission from refs 78
(copyright 2010 Radiological Society of North America), 79 (copyright 2011 Wiley Intersciences), and 80 (copyright 2011 Elsevier).

In contrast to PET, where all emitted y-photons have an energy
of 511 keV, energies routinely used in SPECT are different, and
energy-dependent imaging enables the assessment of different
radiotracers and thus of different radiolabeled (nano)probes at
the same time. Analogous to PET, the most important
advantages of SPECT are high sensitivity, highly quantitative
results, and high penetration depth. Disadvantages include lack
of anatomical information, the relatively low spatial resolution,
and the need for using radioactive probes. The former can be
overcome by resorting to hybrid imaging techniques, in which
SPECT is generally combined with CT (and to a lesser extent
with MRI).

A nice example illustrating the suitability of SPECT—CT-
based hybrid imaging for monitoring nanomedicine-mediated
drug targeting has been reported by Head and colleagues, who
used a synergistic therapeutic approach, ie. radiofrequency
ablation (RFA) plus iv-administered liposomal doxorubicin, to
visualize and quantify drug delivery to tumors and to analyze its
therapeutic effects.”® Nude rats bearing head-and-neck
squamous cell carcinoma (SCC) xenografts on both sides of
the skull base were employed to analyze the effect of RFA on
drug delivery and efficacy. RFA treatment was performed S min
after the iv injection of **™Tc-labeled liposomal doxorubicin.
One of the two tumors (indicated by the arrow in Figure SA)
was subjected to RFA, whereas the other one (indicated by the
arrowhead) was used as an intraindividual control. Both the
transaxial and the coronal images obtained in these analyses
demonstrated that RFA is able to substantially increase the
tumor accumulation of radiolabeled liposomal doxorubicin
(likely both by direct (i.e, thermal) and by indirect (i.e.,
inflammation-related) effects],”® and they also convincingly

showed that SPECT is able to depict these differences with
high sensitivity and high specificity.

In another interesting study, Chrastina et al. reported on the
applicability of hybrid SPECT—CT for the noninvasive
monitoring of nanomedicine-based drug targeting to the
lungs.”” To this end, generation-5 poly(amidoamine) den-
drimers (GS-PAMAM; Figure SB) were functionalized with
antibodies targeted to aminopeptidase P2 (APP2), to mediate
specific lung homing. Upon radiolabeling with '*I, the
dendrimers were iv administered to healthy mice, followed by
whole body SPECT—CT imaging 1 h after iv injection. As
shown in the right panels in Figure SB, in case of nontargeted
GS-PAMAM-dendrimers, the vast majority of the administered
dose accumulated in organs of the mononuclear phagocytic
system (MPS), such as liver and spleen. APP2-antibody-
targeted nanoformulations, on the other hand, displayed a very
strong affinity toward lung tissue (left panels in Figure SB),
thereby nicely exemplifying the possibility of combining
molecular SPECT with anatomical CT for noninvasively
imaging the in vivo distribution of passively vs actively targeted
nanomedicine formulations.

Using a similar experimental setup, Zhang and colleagues
employed SPECT—CT to assess the potential of targeting the
Ephrin B4 receptor (EphB4R) for specific homing of
nanomedicines to prostate cancer xenografts."” An EphB4R-
specific peptide (TNYL-RAW) was developed and coupled to
PEG-coated and core-cross-linked polymeric micelles (CCPM),
which were double-labeled with "'In and the near-infrared dye
Cy7 (Figure SC). The TNYL-RAW-targeted CCPM were iv
injected into nude mice bearing EphB4R-positive PC3 and
EphB4R-negative A549 tumor xenografts, and tumor accumu-
lation was visualized and quantified. In addition, preblocking

DOI: 10.1021/cr500314d
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projections (MIP) of a VX2-sarcoma-bearing rabbit at 30 min and 24 and 48 h after the iv administration of iodine-containing liposomes. Arrows
highlight the VX2 tumor, and EPR-mediated passive drug targeting can be visualized via the gradual opacification of the tumor area. Bottom panels
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2009 American Chemical Society), and 83 (copyright 2011 Elsevier).

experiments with free TNYL-RAW were performed, and
peptide-free control CCPM were evaluated, to substantiate
target-specific binding. As shown in Figure SC, using hybrid
SPECT—CT, efficient target site accumulation at 24 h p.i. was
only observed for TNYL-RAW—CCPM. Scintillation counting
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and histological evaluation were carried out to validate the
tumor-specific accumulation of these CCPM in EphB4R-
positive tumors, confirming efficient binding and tumor
targeting only for peptide-modified micelles and exemplifying
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the usefulness of SPECT for noninvasively visualizing and
quantifying the biodistribution of nanomedicine formulations.

4. COMPUTED TOMOGRAPHY

Computed tomography (CT) is an X-ray-based imaging
technique that allows the cross-sectional 3D visualization of
organs and tissues of interest. CT generates high-resolution
anatomical images using highly electron dense contrast agents,
such as iodine and barium, and aids in the assessment of disease
differentiation, in perfusion analyses, and in angiography. CT
has decent soft versus hard tissue contrast when contrast agents
are used; this contrast is poor, however, when no contrast
agents are administered. Without contrast agents, CT is
nonetheless highly suitable for visualizing highly electron
dense (hard) tissues, such as bone. Consequently, it is widely
used for orthopedic applications, as well as for hybrid imaging
purposes, providing high-resolution anatomical information to
aid in the assessment of PET-, SPECT- and OI-based protocols.
Low contrast agent sensitivity, the (consequent) need for high
contrast agent doses, and potential contrast-agent-related
toxicities are some of the primary points of concern associated
with CT. To overcome these shortcomings, as will be outlined
below, several nanomedicine-based constructs and concepts
have been designed and evaluated.

To facilitate angiography and perfusion monitoring, de Vries
and colleagues prepared iodine-containing polymeric nano-
emulsions and evaluated their retention in systemic circulation
(as well as their organ accumulation) using high-resolution
micro-CT imaging.®’ Todine-loaded poly(butadiene)-b-poly-
(ethylene glycol) (PBD—PEG) block copolymer self-assemblies
(Figure 6A) were iv injected into healthy mice, and the signal
changes due to the presence of contrast agent were determined
in blood, urine, heart, liver, spleen, and kidney. Transversal and
coronal CT scans acquired at 12 min p.i. convincingly showed
that the probe is detectable in the heart (as indicated by the
arrows in Figure 6A), showing its reasonable retention within
systemic circulation. Circulation times followed first-order
kinetics, with a half-life time of ~1 h. As expected, over time,
the formulation gradually accumulated in organs of the
mononuclear phagocytic system (MPS), most notably in the
spleen. On the basis of these findings, the authors concluded
that such relatively long-circulating iodine-containing nano-
emulsions are suitable contrast agents for CT angiography and
perfusion analyses.

In spite of its relatively low sensitivity toward contrast agents,
CT imaging has in a number of studies been employed for
analyzing the biodistribution of nanomedicines. Zheng and
colleagues, for instance, prepared liposomes containing iohexol
and performed quantitative CT imaging to assess their
distribution in a rabbit tumor model.¥* In this study, healthy
male rabbits bearing VX2 sarcoma tumors in the left lateral
quadriceps were injected with liposomal contrast agent via an
ear vein catheter. CT images of the animals were acquired pre-
and post-administration of the liposomal formulation (at 30
min and at 1,2, 3, S, 7, 10, and 14 d p.i.). Figure 6B shows axial
images of several organs and tissues of interest (left panel).
After an initial retention phase within the systemic circulation,
liposomes eventually accumulated in tumor, liver, and spleen.
The developed formulation exhibited a very long circulation
time, with a half-life time of ~65 h. Seven days after iv injection,
a tumor concentration of ~1.1% of the injected dose and a
tumor-to-muscle ratio of ~12 were observed, indicating
efficient passive drug targeting to tumors. This study therefore

demonstrates that in spite of relatively low contrast agent
sensitivity, CT imaging does enable the longitudinal assessment
of nanomedicine biodistribution and target site accumulation.
Similarly, the whole-body CT images of the rabbits at 30 min
and 24 and 48 h p.i. clearly showed a gradual opacification of
the tumor region, confirming the accumulation of iohexol-
containing liposomes (Figure 6B, right panel). The lower
panels in Figure 6B depict the accumulation of liposomes in
tumors over time, up until day 14. The occupancy peaked at 72
+ 5% at 48 h p.i, likely coinciding with the peak in EPR, and
from then onward, the liposomes were gradually cleared from
the tumor. This study therefore nicely demonstrates that in
spite of the relatively low contrast agent sensitivity of CT, it can
still be used to visualize and quantify EPR-mediated passive
drug targeting.

In a similarly interesting study from the same laboratory,
Dunne and colleagues used CT imaging to evaluate the tumor-
targeting potential of iohexol-loaded PEGylated liposomes
functionalized with NGR peptides, which target the tumor
vasculature.*> Nude mice bearing subcutaneous HS520 xeno-
grafts in their right hind flanks were used for this study.
Standard and NGR-targeted PEGylated iohexol-containing
liposomes were administered as an iv bolus injection via the
lateral tail vein. Anatomical whole-body micro-CT scans were
performed at several different time points p.i. (ie., 0.17, 8, 24,
48, 72, 96, and 144 h). The increase in signal intensity was
recorded, converted to Hounsfield units (HU), and compared
to preinjection values. Iodine concentrations in a particular 3D
region of interest were determined via the mean increase in
HU. Figure 6C shows coronal sections of the whole body
biodistribution of the probes. The tumor accumulation
(arrows) of several different formulations, with varying NGR
density and PEG length, was visualized and quantified. Image
analysis revealed that the formulation containing 0.64 mol % of
NGR—PEG,(4—DSPE displayed the highest degree of tumor
accumulation, which was about a 2-fold higher as compared to
nontargeted liposomes. The transversal tumor sections in the
bottom panels in Figure 6C furthermore provide insights into
the heterogeneity of liposome accumulation and distribution
within the tumor. Even though the dynamic range of signal
intensities is relatively low (because of the relatively poor
contrast agent sensitivity of CT), differences between the
different formulations can be visualized, confirming the notion
that CT-based biodistribution and tumor accumulation
monitoring is in principle feasible.

5. MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is based on a principle
similar to that used in chemical nuclear magnetic resonance
(NMR) analysis, in which the spins of specific atomic nuclei are
visualized within the body. Despite its common use in disease
differentiation, disease diagnosis, and therapy monitoring, MRI
is also widely used for nanomedicine research, to perform
pharmacokinetic and biodistribution analyses, to monitor drug
release, and to enable cell-tracking studies. MRI encompasses
relaxivity-based analyses (with and without contrast agents),
diffusion-weighted imaging (DWI), and endogenous/exoge-
nous magnetic resonance spectroscopy (MRS). Several reports
and reviews have extensively described the physicochemical
basis of MRI and of (nanoparticle-based) MR contrast
agents.’>* " In general, MRI serves as a highly useful and
broadly applicable platform for (pre)clinical diagnosis and
therapy monitoring. There are, however, several disadvantages
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Wiley-VCH Verlag GmbH & Co. KGaA), and 96 (copyright 2008 Future Medicine).

associated with MRI, such as relatively low contrast agent In principle, MRI can be used relatively well for monitoring
sensitivity, relatively difficult quantification procedures, and the the biodistribution and target site accumulation of nano-
time and cost involved. medicines. PET and SPECT imaging, however, are generally
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and adapted with permission from refs 97, 98, and 99 (copyright 2011, 2010, and 2010 Elsevier, respectively).

preferred for such purposes, because of their higher contrast outside of a nanocarrier, thereby providing optimal conditions

agent sensitivity and easier quantification procedures. On the
other hand, MRI is exquisitely suitable for monitoring drug
release and drug efficacy. The former relates to the fact that T,-
MR contrast agents, as opposed to radionuclides, depend on
access to freely diffusing water molecules to generate contrast
and, therefore, render different signals when present within vs
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for assessing drug release.” The latter relates to the excellent
soft-tissue contrast of MRI, which enables the noninvasive and
highly accurate detection of, for example, tumors and sites of
inflammation, which make it highly useful for longitudinally
monitoring therapeutic responses. MRI is furthermore highly
suited for multimodal imaging approaches, e.g,, as in case of
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PET—MRY], in which it is used to provide the anatomical (and
potentially also functional) information needed to more
accurately assess the biodistribution and target site accumu-
lation of radionuclide-labeled nanomedicines.

A representative example of a study in which MRI is used to
monitor the target site accumulation of nanomedicine
formulations has been published by Huang and colleagues.”*
They synthesized generation-3 poly-L-lysine-based dendrimers
coupled to chlorotoxin (CTX) and evaluated their tumor-
targeting potential in a rat model of glioblastoma. C6 glioma
cells were injected into the right frontal hemisphere of the rats,
and CTX was used as a targeting ligand, because of its high
affinity for glioma cells (as well as for other tumor cells of
neuroectodermal origin, such as medulloblastoma, prostate
cancer, sarcoma and intestinal carcinoma). Three different
formulations were injected intravenously, ie., low molecular
weight Gd—DTPA, Gd—DTPA-D3—PEG and actively tar-
geted DTPA—D3—PEG—CTX (CTX = chlorotoxin) where D3
is a dendrigraft poly-L-lysine (generation-3) conjugate. As
exemplified by Figure 7A, using all three formulations, signals
corresponding to the tumor could be visualized as early as S
min after iv injection. From then onward, the tumor-specific
signal started to fade for Gd—DTPA, whereas for Gd—DTPA—
D3—PEQG, the signal persisted up until 3 h. For DTPA—-D3—
PEG—CTX, the signal persisted even up until 24 h, illustrating
that active targeting can improve the retention of nanomedicine
formulations at the target site. This study nicely shows that, in
spite of the relatively low contrast agent sensitivity of MR, it
can still be used to visualize (and quantify) tumor accumulation
and to discriminate between formulations with different tumor
localization kinetics.

A similar approach has been published by Sun et al, who
evaluated the ability of CTX-targeted iron oxide-based
nanoparticles for visualizing tumor targeting using MRL> In
this study, standard amine-modified PEGylated iron oxide
nanoparticles (NP—PEG-NH,), succinimidyl iodoacetate-
modified PEGylated iron oxide nanoparticles (NP—PEG—
SIA) and chlorotoxin-targeted PEGylated iron oxide nano-
particles (NP—PEG—CTX) were synthesized, and they were iv
injected into 9L-gliosarcoma-bearing nude mice. As shown in
Figure 7B, R,-relaxivity maps were generated for the various
nanoformulations, and the benefit of CTX-mediated tumor
targeting could be clearly visualized 3 h after iv injection. The
authors were able to demonstrate that the tumor accumulation
of both passively and actively targeted iron oxide nanoparticles
was relatively heterogeneous, likely reflecting the nonuniform
perfusion of tumors, which tend to be more extensively
vascularized in their periphery than in their core.

In a follow-up study, CTX-targeted iron oxide-based
nanoparticles containing a drug (methotrexate; MTX) to
treat 9L-gliosarcoma-bearing mice were developed.”® Intra-
venously injected MTX-containing NP with (NP—-MTX-—
CTX) and without chlorotoxin (NP—MTX) were compared.
Figure 7C gives an overview of the efficacy of active vs passive
targeting, visualized using MRI: the effective accumulation of
the targeted probe over time can be clearly delineated using the
color-coded T, maps. On day 1 p.i, there is a considerable
decrease in signal intensity in the case of both NP—MTX and
NP—-MTX—CTYX, indicating accumulation of the probes in the
tumor. On day 3 p.i,, however, T, times were only found to be
significantly shortened for actively targeted probe, indicating
more efficient retention at the pathological site upon CTX-
mediated active targeting. In this regard, it is important to take

into account that the initial accumulation of both the passively
and the actively targeted nanoparticles in the tumor can be
attributed to the EPR effect, in particular to enhanced
permeability, and that the incorporation of targeting moieties
likely only increases the retention of the probes within tumors.
Together, these studies exemplify that even though the contrast
agent sensitivity of MRI is relatively low, it can still be used for
visualizing and quantifying drug targeting to pathological sites.

The imaging of drug release from nanomedicine formula-
tions, as opposed to the monitoring of their biodistribution and
target site accumulation, is arguably the most important
application for using MRI in drug delivery research. Since T;-
MR contrast agents depend on access to surrounding water
molecules for generating signals, their entrapment in and their
release from drug delivery systems can be visualized and
quantified using MRIL. This is a major difference to radio-
nuclides, which generate similarly strong signals before and
after the release from carrier materials. This specific ability of
MR contrast agents to be used for visualizing and quantifying
drug release was elegantly exploited by de Smet and colleagues,
who set out to monitor content release from temperature-
sensitive liposomes (TSL) upon high-intensity focused ultra-
sound (HIFU)-mediated hyperthermia (Figure 8A).”” TSL
coencapsulating doxorubicin and a gadolinium-based T,
contrast agent (Gd—HPDO3A) were synthesized and iv
injected into Fisher rats bearing 9L gliosarcoma tumors on
their hind limbs. In this study, three animals received a
combination of hyperthermia and TSL, and three control
animals received TSL without HIFU-mediated hyperthermia.
MR T, maps were acquired during HIFU treatment, and as
shown in Figure 8A, significant T, shortening was observed
upon TSL administration and HIFU treatment, indicative of
content release. In rat 1, there was a distinct decrease in T,
signal in the whole tumor region, indicating highly efficient
release in the whole tumor area. In rat 2, the T, decrease was
prominent in the periphery and absent in the rim, which was
explained (and confirmed via post-mortem histopathological
analysis) on the basis on central tumor necrosis. In the absence
of HIFU treatment, drug delivery and release were found to be
minimal under these conditions (rat 4; Figure 8A). The results
obtained for gadolinium release correlated very well with those
obtained for doxorubicin release, both intra- and interindivid-
ually: for rat 1, for instance, the intratumoral accumulation of
doxorubicin (1.9 + 0.2% ID/g) and gadolinium (1.7 = 0.1%
ID/g) was significantly higher than in rat 2 (0.4 + 0.04 and 0.4
+ 0.02% ID/g, respectively). In line with previous studies on
the MR monitoring of hyperthermia-mediated drug delivery
using TSL, this study therefore nicely exemplifies the potential
of using MRI for temporally and spatially analyzing drug
release.

Onuki and colleagues recently reported a similarly elegant
approach to simultaneously visualize both drug delivery and
drug release using multifunctional nanomedicines and a
combination of MRI and magnetic resonance spectroscopy
(MRS).”® Poly(lactic-co-glycolic acid) (PLGA)-based nano-
particles carrying S-fluorouracil (5-FU), gadolinium—DTPA
(Gd—DTPA), and superparamagnetic iron oxide nanoparticles
(SPIO) (Figure 8B) were prepared, and their properties were
evaluated in SCID mice bearing MCF-7 breast cancer
xenografts. Upon iv injection, the particles exhibited a strong
T,* contrast, generated by the encapsulated SPIO (Figure 8B,
top row), which corresponds to their in vivo localization in the
tumors. This dark contrast (note that SPIO result in
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Figure 9. Noninvasive imaging of cell tracking and magnetic drug targeting using MRI. (Panel A) Magnetic resonance imaging of dendritic cell (DC)
localization and migration in melanoma patients. Gradient echo (&, ¢) and turbo spin echo (b) MR images show the localization of DCs (colabeled
with SPIO and '"'In) before and after injection in patient 1. In the gradient echo images (a), a hyperintense signal area (1) can be found near the
right inguinal lymph node. In the spin echo image (b), which is less sensitive to SPIO, the corresponding lymph node (1) after vaccination could also
be seen. Tracking the in vivo migration of DC: (d) in vivo scintigraphy image showing the migration of SPIO- and '''In-colabeled DCs from the
injection lymph node site (1) to several other lymph nodes (2—4) at 48 h after DC administration; coronal gradient echo and spin echo images
illustrating the migration of DCs from lymph node 1 (e and f) to other lymph nodes (g—n). Open and closed arrows represent SPIO-negative and
SPIO-positive lymph nodes. (Panel B) Initial proof-of-concept for '*F-based magnetic resonance imaging of intradermally injected DCs labeled with
a perfluorocarbon-based nanoemulsion into the leg of three different colorectal adenocarcinoma patients. The pseudocolor images of ’F—DC are
overlaid onto "H MR anatomical images (F = femur, RF = rectus femoris, SFA = superficial femoral artery, LN = lymph node). On the right, the in
vivo data from two patients were quantified at 4 h (and not at 2 h, as indicated in the legend) and 24 h postinjection, showing that more than
approximately half of the DCs migrate away from the injection site within 24 h. (Panel C) Top: Schematic depiction of in vivo MR cell tracking of
inactivated B16 melanoma cell vaccines labeled with SPIO, which after injection into the footpad of mice and drainage via dendritic cells eventually
accumulate in the popliteal lymph node (PLN). Bottom: Multigradient T,-weighted MR images showing gradual vaccine/dendritic cell migration
into the PLN (see insets). Closed arrows indicate SPIO-labeled vaccines, and open arrows depict unlabeled cell vaccines. (Panel D) MR imaging and
magnetic drug targeting to tumors using iv injected maghemite-nanocrystal-containing magnetoliposomes (ML). Tumors on the right were exposed
to a magnet. (A) T,-weighted spin echo, (B and B’) density-weighted spin echo, (B”) strongly T,-weighted spin echo, (C) gradient echo, and (D)
3D-spoiled gradient echo. An oil phantom (bright spot on the bottom of the images) was placed on the back of the animals for reference purposes.
The tumor on the right clearly appeared darker than the control tumor on the left, exemplifying efficient magnetic drug targeting. Images adapted
with permission from refs 100 (copyright 2005 Nature Publishing Group), 101 (copyright 2014 Wiley-Blackwell), 102 (copyright 2009 American
Association for Cancer Research), and 103 (copyright 2006 Radiological Society of North America).

hypointense signals) remained unaltered over time, and both at formulations could be observed at 30 min p.i. (note that the T,
30 min and at 2.5 h pi, the T,*-weighted images clearly shortening by Gd in this case results in black spots in the T
demonstrated the presence of PLGA—SPIO nanoparticles maps). This gadolinium-related signal disappeared at 2.5 h,
within tumors. At the same time, using T, mapping, the indicating that the release of gadolinium (and also of S-FU,
release of Gd—DTPA from the multifunctional nanomedicine which because of its size and hydrophilicity is assumed to be

10918 DOL: 10.1021/cr500314d

Chem. Rev. 2015, 115, 10907—10937


http://dx.doi.org/10.1021/cr500314d

Chemical Reviews

REVIEW

released with similar kinetics as Gd—DTPA) occurred relatively
early on after iv administration, i.e., already within 30 min, and
that after this, released Gd—DTPA rapidly diffuses away from
the SPIO-containing PLGA particles, as evidenced by the fact
that the signal has already completely disappeared 2.5 h after iv
injection. This is further exemplified in the bottom right panels
in Figure 8B, which simultaneously show nanoparticle local-
ization and Gd—DTPA (and S-FU) release and provide
quantitative feedback (in M) on the overall amount of Gd—
DTPA released from this multimodal formulation. These
observations, together with the fact that 5-FU release from
SPIO-containing nanoparticles can be visualized using MRS
(because of SPIO-induced resonance line broadening; see left
panel in Figure 8B), exemplify that MRI is highly suited for
noninvasively assessing (the kinetics of) drug localization and
drug release.”®

Taking these efforts one step further, Delli Castelli and
colleagues monitored and modeled both the release and the
intratumoral and intracellular trafficking of contrast-agent-
labeled liposomes using MRL” To this end, they synthesized
two different paramagnetic liposomes. The first formulation
contained Gd—HPDO3A and was used to visualize differences
in (sub)cellular localization and content release using T; and T,
contrast. In this setup, T, contrast indicates changes in
magnetic susceptibility due to the localization of high amounts
of paramagnetic Gd-containing complexes within small
volumes, ie., within liposomes. The translocation of Gd—
HPDO3A from the small volumes within the liposomes to
much larger intracellular volumes (e.g,, endosomes, lysosomes,
and cytoplasm) decreases the T, signal and, conversely,
increases T contrast. Consequently, the changes in T vs T,
contrast can be used to detect content release from liposomes.
The second liposomal formulation contained the paramagnetic
shift agent Tm—DOTMA, which can simultaneously act as a T,
and as a chemical exchange saturation transfer (CEST) agent.
The rationale behind the use of such so-called lipoCEST
agents” relies on the fact that these formulations behave
differently depending on differences in water exchange, thereby
enabling the assessment of cellular uptake and intracellular
processing of CEST-agent-containing liposomes. When intact
liposomes are present in the extracellular fluid, the CEST signal
is maximal. Upon endocytosis, it substantially decreases, and
upon intracellular degradation, it completely vanishes. By using
both of these liposome formulations and three different MR
imaging protocols (ie, Ty, T, and CEST), the authors
elegantly demonstrated the exquisite suitability of MRI for
analyzing the cellular uptake, trafficking, and processing of
liposomes (Figure 8C). In the actual experiments, they injected
both liposomal formulations, containing Gd—HPDO3A and
Tm—DOTMA, directly into B16 melanoma tumors in mice and
acquired T, -weighted images (for Gd—HPDO3A), saturation
transfer maps (for Tm—DOTMA), and T, maps (for both) at
several different time points after intratumoral injection. On the
basis of the results obtained, mathematical modeling and
quantitative image analysis of six consecutive cellular processing
steps (i.e., step a, cellular internalization; step b, uptake into
endocytic vesicles; step c, release of the MR contrast agents in
endo- and lyosomes; step d, cytosolic entry of the contrast
agents; step e, efflux of contrast agents out of the tumor cells;
and step f, washout of the agents out of the tumor region, via
the vascular system; see the left panel in Figure 8C). Using this
experimental setup, the authors convincingly showed that it is
possible not only to assess noninvasively content release from

liposomes using multicontrast MRI but also to visualize and to
quantify (the kinetics of) cellular uptake, cellular trafficking, and
intracellular processing.”

Recapitulating the above insights and efforts, it can be
concluded that MRI is moderately suitable for assessing the
biodistribution and the target accumulation of nanomedicines
and highly suitable for monitoring drug release. When taking
the official definition of nanomedicine into account, however,
i.e. “the application of nanotechnology to medicine, including
the use of nanometer-sized carrier materials for facilitating
disease diagnosis, disease treatment and treatment monitor-
ing”," it seems important to also briefly discuss the potential
usefulness of diagnostic nanomedicine materials and non-
invasive imaging techniques for assessing the potential of
cellular therapies.

MRI has been relatively extensively employed for imaging
cell-based vaccination therapies. A pioneering clinical study in
this regard has been published De Vries and colleagues, who
treated melanoma patients with dendritic cell (DC) vaccines
that were labeled both with superparama%netic iron oxide
(SPIO) nanoparticles and with '''In—oxine."™ Using MRI and
scintigraphic imaging, the localization and migration of the DC
vaccines in lymph nodes were monitored prior to and 2 days
after lymph node injection. Localization and retention within
the primary lymph node as well as migration to several
neighboring lymph nodes could be observed (Figure 9A). As
DCs need to accumulate in lymph nodes for antigen cross-
presentation and activation of the immune system, such MR
imaging strategies are considered to be useful for validating that
the DCs are correctly injected into the lymph node and also for
visualizing and quantifying their retention and their migration
to (neighboring) lymph nodes.

The versatility of MRI also allows for the monitoring of
nuclei other than protons, such as fluorine-19. PE.MRI is
highly attractive, as there is hardly any fluor present in the body
(except, e.g, in teeth), enabling background-free hot-spot
imaging.'”" Ahrens and colleagues recently for the first time
showed that '"F-MRI can be used to monitor DC-based
vaccines in patients suffering from colorectal adenocarcino-
ma.'”" The DCs were labeled ex vivo with a perfluorocarbon-
based nanoemulsion. The nanoemulsion was well-tolerated and
efficiently internalized, with each individual DC containing
10"2—10" fluorine molecules, sufficient for proper '’F-MRI
detection. The labeled DCs were intradermally injected into the
right leg (near the inguinal lymph node), and MRI was
performed at 4 and 24 h after the administration of 10° and 10’
DCs. As shown in Figure 9B, 4 h after the injection of 10’
labeled DCs, fluorine hot spots could be clearly visualized at the
injection site. Coregistration with simultaneously acquired 'H-
MR images was performed to obtain anatomical information.
Quantification of the '"F-MRI signals illustrated that, at 4 h
after injection, almost all of the 10" DCs were still present at
the site of administration, while at 24 h after injection,
approximately half of the DCs had migrated away from the site
of administration.

Also at the preclinical level, MRI has been employed for cell-
tracking purposes. A nice example of this has been published by
Long and colleagues, who monitored the migration of
inactivated melanoma cancer cell based vaccines from the site
of injection, via afferent lymphatics, to cytotoxic T cells, for
antitumor immunotherapy.'® To this end, irradiated and
inactivated B16 melanoma cells were preincubated with SPIO
and combined with B78H1-GM-CSF cells (producing the
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Figure 10. Noninvasive optical imaging of nanomedicines. (A) Left: Schematic depiction of an HDL nanoparticle targeted to tumor blood vessels
using RGD. Right: 2D FRI of mice bearing subcutaneous EW7 Ewing’s sarcoma xenografts iv injected with NIRF-labeled rHDL, rHDL—RGD, and
rHDL—RAD nanoparticles, showing rapid binding and tumor targeting of RGD-modified rHDL. Arrows highlight the tumor. (B) Left: Schematic
depiction of cyanine- and hydrocyanine-containing nanochitosan (NC). Right: 2D FRI of nude mice bearing SCC7 tumors after the iv injection of
hydrocyanine—NC and cyanine—NC. Background signals from the abdominal and liver region were evident in case of cyanine-conjugated NC,
whereas tumor-specific signals were prominent in the case of hydrocyanine-conjugated NC. (C) Left: Schematic depiction of a mesoporous silica
nanoparticle (MSN) containing the fluorophore ZW800. Right: 2D FRI of sentinel lymph nodes (SLN) after the food pad injection of MSN
nanoparticles. Dotted circle: Tumor SLN. Solid line: Normal SLN. Images reprinted and adapted with permission from refs 62 (copyright 2012
Elsevier), 117 (copyright 2010 Federation of American Societies for Experimental Biology), and 118 (copyright 2011 Elsevier).

granulocyte macrophage colony stimulating factor) in a ratio of
10:1. As depicted schematically in Figure 9C, the mixed cell
suspension was intradermally injected into the hind footpads of
B16-tumor-bearing CS7BL/6 mice. T,-weighted MRI was
performed on a 94T scanner equipped with an actively rf-
decoupled coil system on a daily basis for eight consecutive
days (Figure 9C). Rapid acquisition with refocused echo
(RARE) spin-echo images were captured at selected locations,
showing that the cell vaccines gradually drained into the
popliteal lymph node (PLN). The localization of the SPIO-
labeled cells in the PLN could be clearly visualized (closed
arrows in Figure 9C), while in the case of nonlabeled cells, no
MR signal changes were detected (open arrows in Figure 9C).
Hypointense lymph nodes could be detected from day 3
onward, hinting toward DC-mediated transport of the vaccines
from the site of injection to the lymph node. Such
magnetovaccination strategies, together with advanced MRI
detection methods, are considered to be useful for individualiz-
ing and improving cell immunotherapies.
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A final interesting application of SPIO-containing nano-
medicines is based on magnetic drug targeting, in which
magnetic fields are used to guide iron oxide-containing
nanomaterials to the target site and/or to retain them there
more efficiently. A nice example of this has been reported by
Fortin-Ripoche and colleagues, who synthesized PEGylated
magnetoliposomes (ML) and assessed their accumulation in
mice bearing tumors on their left and their right flank.'®® ML
were intravenously injected via the tail vein and a magnet was
placed just besides the tumor on the right flank. T,-weighted
spin echo, T,-weighted spin echo, T,-weighted gradient echo,
and 3D spoiled gradient echo sequences were applied. A
significantly improved accumulation (and/or retention) of ML
in the right tumor, which was exposed to the magnet, was
observed (Figure 9D).'” In the gradient echo images, the
difference between the magnetically targeted (right) and the
contralateral (left) control tumors could be detected more
sensitively than in the spin echo images. These findings confirm
the usefulness of iron oxide-containing nanomedicines for
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magnetic drug targeting, and they illustrate the suitability of
MRI for noninvasively and quantitatively monitoring target site
accumulation.

6. OPTICAL IMAGING

In recent years, optical imaging (OI) has been increasingly used
for evaluating the biodistribution of nanomedicine formula-
tions. Due to its ease of use (as compared to, for example, PET
and SPECT, which involve radiolabeling) and its excellent
contrast agent sensitivity, OI is highly suitable for monitoring
the target site accumulation of near-infrared-fluorophore
(NIRF)-labeled nanomedicines, in particular in case of
subcutaneous tumors and other superficial lesions, such as
inflamed paws in rheumatoid arthritis.'**~"'%

Fluorescence reflectance imaging (FRI) is by far the most
extensively used OI technique employed in drug delivery
research. FRI provides reasonably representative information
on the localization of NIRF-labeled nanomedicines in super-
ficial lesions and, for example, enables a semiquantitative
comparison of the accumulation of free vs nanomedicine-
associated fluorophores at the target site or of different
fluorophore-labeled nanomedicine formulations. However, an
absolute quantification of probe accumulation [in percent
injected dose per gram tissue (% ID/g)] is impossible using 2D
FRI, as is the noninvasive assessment of the overall
biodistribution of NIRF-labeled nanomedicines (due to limited
light penetration). To overcome these shortcomings, at least to
some extent, a 3D OI technique known as fluorescence
molecular tomography (FMT) has been developed, which
enables a more in-depth and more quantitative assessment of
the biodistribution and target site accumulation of NIRF-
labeled (nano)probes.'””~'* However, in spite of the progress
made in FMT, a fundamental limitation that applies to all OI
techniques is that the fluorescence signals detected often
cannot be correctly assigned to specific anatomical regions.
This is due to the diffusive scattering of fluorescence signals in
the body, as well as to strong light absorption by highly
perfused organs and tissues. This inability of OI and in
particular of FMT has resulted in the development of hybrid
imaging techniques, such as CT—FMT, in which high-
resolution micro-CT is used to provide the anatomical
information that is otherwise lacking in OI, and this anatomical
information is used to better reconstruct the fluorescence data
obtained using FMT, to more accurately and more
representatively visualize and quantify probe accumula-
tion.>”*1%" 112 Therefore, as in case of PET and SPECT,
anatomical CT-based imaging information assists FMT in
assigning probe accumulation to certain organs and tissues, and
it thereby substantially facilitates probe quantification in
nonsuperficial tissues.

The ease, the versatility, and the sensitivity of OI, together
with its ability to image multiple fluorophores at the same in
the same animal, are the most important pros of this technique.
Problems associated with autofluorescence, poor penetration
depth, and lacking anatomical information are the most
important cons. The majority of OI applications relate to
preclinical research, but in certain specific cases, e.g., in the case
of intraoperative imaging, endoscopic imaging, and optical
mammography, clear evidence has been obtained that this
technique can also be translated to the clinic, for facilitating
disease diagnosis and for assisting surgeons in removing as
much malignant tissue as necessary, but as little healthy tissue
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as possible (e.g., from the geritoneal cavity, in case of metastatic
ovarian carcinoma).''?"!!

As mentioned above, OI has excellent sensitivity for
monitoring NIRF-labeled nanomedicines in superficial lesions
but has problems detecting probe accumulation in deeper-
seated tissues. It should be realized, however, that the sensitivity
of OI narrows down to the order of a few nanomoles
(depending upon the type of optical instrument used). Because
of this, Ol is highly suitable for noninvasively visualizing passive
and active drug targeting in the case of superficial/
subcutaneous tumors. An appealing example has been
published by Chen and colleagues,""” who used NIRF-labeled
high-density lipoprotein (HDL) nanoparticles to image both
tumor-vasculature-directed active targeting and EPR-mediated
passive targeting (Figure 10A). Specific targeting to blood
vessels in tumors was studied using HDL nanoparticles
functionalized with RGD peptides, while EPR-mediated passive
tumor targeting was assessed using nonmodified and RAD-
functionalized HDL nanoparticles. The three different NIRF-
labeled nanomedicine formulations were iv injected into EW7
Ewing’s sarcoma-bearing nude mice, and whole-body OI was
performed at several different time points after iv injection.
From these longitudinal studies, as shown in Figure 104, it was
concluded that in case of RGD—HDL, active targeting to tumor
vasculature was evident from 30 min p.. onward and
progressed up until 24 h p.i, whereas in the case of both
controls, ie., peptide-free and RAD-targeted HDL, accumu-
lation was slower and significantly lower at initial time points.
Interestingly, however, at 24 h p.i, somewhat higher overall
levels of tumor accumulation were observed for both
nonspecific probes, indicating that, over time, passive targeting
dominates over active vascular targeting (at least in this
particular tumor model). This study exemplifies the ability of
OI to (semi)quantitatively compare the kinetics of specific
probe accumulation in subcutaneous tumors.

Kim and colleagues reported on the use of OI to visualize the
accumulation of (hydro)cyanine-containing chitosan-based
nanocarriers in subcutaneous SCC7 xenografts.''® The ration-
ale behind this study was that tumors generally possess a strong
inflammatory component and that tumor-associated immune
responses are characterized by the presence of increased
numbers of reactive oxygen species (ROS). The image-guided
nanomedicines used in this study contained both cyanine and
hydrocyanine, the latter being the reduced form of cyanine. In
the presence of ROS, hydrocyanine undergoes an oxidation
reaction to yield cyanine, and as exemplified by Figure 10B, this
transition could be sensitively detected using OI. Both cyanine-
and hydrocyanine-conjugated nanoparticles displayed signifi-
cant tumor accumulation, but the signal-to-background ratio
was clearly better for the ROS-responsive hydrocyanine-
containing probes, especially at later time points after iv
injection. These efforts illustrate the ability of OI to relatively
sensitively detect differences in tumor-physiology-dependent
target site accumulation.

The potential of OI for tumor sentinel lymph node (T-SLN)
imaging has been evaluated by Huang et al.>> Analogous to one
of the PET studies mentioned above (cf. Figure 3D),
mesoporous silica particles (MSN) were loaded with the
NIRF ZW800, and upon the injection of ZW800—MSN into
the footpad of mice bearing metastatic 4T1 tumors, 2D FRI
was performed at several times points after iv injection. As
exemplified by Figure 10C, it was found that there were strong
OI signals generated in tumor-associated SLN from 1 h p..
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Figure 11. Noninvasive optical imaging of nanomedicines. (A) Schematic depiction of a NIRF (Dy750)-labeled pHPMA-based polymeric drug
carrier. (B) 2D FRI of the biodistribution of pHPMA—Dy750 in CT26-tumor-bearing mice, confirming prolonged circulation times (heart
highlighted within a square, large blood vessels with arrows) and efficient EPR-mediated drug targeting to tumors over time (encircled). (C) Hybrid
CT—FMT imaging of nanomedicine biodistribution. Left: 3D FMT images fused with high-resolution micro-CT, demonstrating biodistribution of
pHPMA—Dy750 in mice bearing CT26 tumors at 1 and 72 h. Middle: Principle of whole-body CT—FMT, which relies on CT-based organ
segmentation and subsequent fusion with FMT-based probe accumulation. Right: 2D CT planes fused with FMT signals representing pHPMA—
Dy750 accumulation in tumor, heart, lung, liver, kidney, and bladder are shown. Images are reproduced and adapted with permission from ref 120

(copyright 2013 American Chemical Society).

onward, which persisted up until 21 d postinjection. In case of
normal contralateral SLN, on the other hand, the signal was
much weaker and faded much more rapidly. On the basis of
this, the authors concluded that OI is suitable for visualizing T-
SLN, and they reasoned that this high accumulation of NIRF-
labeled MSN in T-SLN can be mainly attributed to strong
uptake by tumor-associated inflammatory macrophages.®”
Importantly, however, in Figure 10C, it can also be observed
that these whole-body OI analyses showed very low levels of
ZW800—MSN accumulation in the liver, whereas identical
studies performed in the same animals using PET revealed very
high levels of liver localization (cf. Figure 3D). Besides
demonstrating that OI can be used to detect T-SLN, this
study, therefore, also nicely highlights one of the main
shortcomings of whole-body OI, ie., the poor penetration
depth of 2D FRI and the consequent underestimation of NIRF
probe accumulation in nonsuperficial (healthy) organs and
tissues.' '

Kunjachan et al. have recently set out to evaluate the
potential of using FRI and FMT for visualizing the
biodistribution and target site accumulation of a NIRF-labeled
passively tumor targeted polymeric drug carrier.'*® To this end,
CD-1 nude mice bearing CT26 colon carcinoma xenografts
were iv injected with a ~70 kDa-sized pHPMA-based

copolymer carrying Dy750 (Figure 11A). 2D FRI was carried
out at several early time points after iv injection, showing
localization in the heart and large blood vessels, thereby
confirming the long-circulating properties of this polymeric
drug delivery system (Figure 11B)."*"'*> These signals
decreased over time, while at 24 h p.i, prominent EPR-
mediated tumor accumulation could be observed. In addition, a
relatively strong accumulation could be observed in the bladder,
indicating kidney clearance (animals were under continuous
anesthesia during the first hour, leading to progressive probe
accumulation in the bladder) and illustrating that even such
relatively large polymeric drug carriers, with an average size
above the renal clearance threshold, can be excreted
renally, 120123

To overcome some of the shortcomings associated with 2D
FRI for whole-body biodistribution analysis, in particular
localization in deeper-seated healthy organs, the authors then
established a hybrid imaging approach, in which 3D FMT
information was fused with micro-CT images, to enable a
quantitative assessment of probe accumulation also in tissues
other than superficial tumors. FMT-based optical imaging, in
which lasers are used to excite fluorescence in small animals at
up to 120 spatial locations for which detectors record diffuse
excitation and emission images and advanced algorithms
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Figure 12. Noninvasive optical imaging of nucleic acid-containing nanomedicines. (A) Left: Schematic depiction of iron oxide-based magnetic
nanoparticles (MN) containing a NIRF (CyS.S) and siRNA directed against GFP. Right: Optical imaging of GFP- and RFP-transfected 9L-
gliosarcoma-bearing nude mice treated with MN—NIRF—siGFP. High NIRF signals in both GFP- and RFP-transfected tumors (indicated by arrows)
and low accumulation in muscle tissue confirm relatively efficient tumor targeting. (B) In vivo (left) and ex vivo (right) optical imaging of the gene-
silencing efficacy of MN—NIRF—siGFP, showing strong and selective GFP silencing in GFP-transfected tumors, but not in RFP-transfected control
tumors. (C) Optical imaging of DNA delivery using bioluminescence imaging. N2A-tumor-bearing mice were treated with linear polyethyleneimine
(PEI) polyplexes (left) and GS-PAMAM polyplexes (right) containing plasmid DNA encoding for luciferase, and gene delivery and transfection
efficacy were assessed at 24 h p.i., showing that L-PEI mainly delivered DNA to the lung, whereas G5-PAMAM enabled relatively selective delivery to
tumors (arrowheads). Images reprinted and adapted with permission from refs 163 (copyright 2007 Nature Publishing Group) and 164 (copyright

2009 Elsevier).

volumetrically reconstruct the accumulation of NIRF, is
generally considered to enable more quantitative and in-depth
analyses of OI agents in nonsuperficial tissues. The major
shortcoming of FMT, however, relates to its inability to
accurately assign the reconstructed probe accumulation to a
given anatomical region and/or organ of interest." 124125 This
is considered to be one of the main reasons why 3D FMT has
thus far not yet been extensively used to noninvasively visualize
and quantify the whole-body biodistribution of NIRF-labeled
nanomedicines.

Extending several pioneering efforts with regard to the
combination of FMT with micro-CT for molecular and
functional imaging purposes, 11126127 using NIRF-labeled
polymeric nanomedicines known to accumulate in tumors both
effectively and selectively by means of EPR, Kunjachan et al.
showed that hybrid CT—FMT imaging can be employed to
assess noninvasively, more accurately, and more meaningfully
the accumulation of nanomedicine formulations also in tissues
other than subcutaneous tumors.'””® To provide proof-of-
principle for this, analogous to the efforts mentioned above,
pHPMA—Dy750 was administered to CT26—tumor-bearing
mice, CT and FMT scans were performed at several different
time points p.i, and the CT images were subsequently fused
with the respective FMT signals, to obtain fused CT—FMT
images. In line with the kinetics of EPR-mediated tumor

targeting, the tumor accumulation of pHPMA—Dy750 was very
low at 1 h p.i, but very prominent at 72 h (as shown by the
circles in the left panel of Figure 11C). To enable at the same
time analyses on probe accumulation in healthy organs, several
physiologically relevant organs were 3D segmented on the basis
of the CT scans, and the pHPMA—Dy750-based FMT signals
were fused with these images (middle and right panels in Figure
11C). The robustness of the methodology for 3D organ
segmentation was validated, and in vivo CT—FMT quantifica-
tion of the healthy organ accumulation indicated that the
results were well in line with previous studies using similarly
sized radiolabeled pHPMA-based nanocarriers.'*'*® Conse-
quently, these efforts convincingly demonstrate that combining
micro-CT with FMT enables more informative, more realistic,
and more meaningful OI studies on the biodistribution of
NIRF-labeled nanomedicine formulations.

Another “hybrid” optical imaging technique that has attracted
increasing attention in recent years is photoacoustic imaging
(PAID)."~"3! PAI is based on the illumination of (light-
absorbing molecules and nanoprobes in) tissues using pulsed
laser light, their energy absorption and heat generation, and the
resulting thermoelastic expansion of tissues. The latter can be
picked up using ultrasound detectors. PAI combines the
multispectral possibilities of pulsed laser light illumination with
the enhanced penetration depth and the high sensitivity of
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ultrasound imaging. Several recent studies have reported on the
potential of PAI, e.g., for detecting tumors and monitoring
antitumor responses,'>>~"*® for sentinel lymph node detec-
tion,"*”™"*° and for imaging inflammation'**™'** and vascula-
rization."**'* PAI setups such as multispectral optoacoustic
tomography (MSOT) allow for the discrimination of probe-
specific signals from those of background signals, and they
enable the quantitative assessment of endogenous (e.g.,
hemoglobin, desoxyhemoglobin, and melanin) and exogenous
(e.g, indocyanine green, methylene blue, and porphyrin)
contrast agents."**"*® Several different nanomedicine for-
mulations have also already been employed for PAI These
include gold nanoparticles (e.lg., nanospheres, nanoshells,
nanorods, nanocages, etc.),"*~">> carbon nanotubes,"**"'%*
and melanin-based polymers and nanoparticles."**~'¢" An
interesting example in this regard has recently been reported
by Kircher and colleagues, who showed that nanoparticles
consisting of a gold core (for PAI), a Raman-active layer (for
surface-enhanced Raman-spectroscopy; SERS), and a gadoli-
nium-based coating (for MRI) can be employed for trimodal
tumor imaging and image-guided tumor resection.'®” These so-
called MPR (magnetic resonance—photoacoustic—Raman)
nanoparticles were used macroscopically to identify tumors
using MRI, to localize more accurately deep-seated tumors
using PAI, and to perform microscopical fine margin tumor
resection using SERS. Such studies, alongside efforts to further
improve and establish PAI as a clinically useful noninvasive
imaging modality, will surely lead to many more publications in
which (hybrid) nanoparticles are employed for photoacoustic
imaging purposes in the next couple of years.

Besides for monitoring the biodistribution and the target site
accumulation of fluorophore-labeled nanocarriers using CT—
FMT and for facilitating fine-margin tumor resection using gold
nanoparticles and PAI, Ol is also highly useful for assessing the
potential of nucleic acid-containing nanomedicine formulations,
employed, for example, in gene therapy or for siRNA delivery
purposes. An example of the latter has been reported by
Medarova and colleagues, who used Cy5.5-labeled iron oxide-
based magnetic nanoparticles (MN) containing siRNA directed
against GFP (Figure 12A) and tested them in nude mice
bearing subcutaneous GFP- and RFP-transfected tumors, to
monitor both tumor-directed drug delivery and gene-silencing
efficacy.'® Initially, the delivery of MN—NIRF—siGFP to
tumors was evaluated, by means of both MRI and O], showing
relatively efficient EPR-mediated drug targeting, which occurs
at much higher levels in tumors than in healthy muscle tissue
(Figure 12A). The efficacy and specificity of gene silencing
were analyzed at 48 h p., showing that MN—NIRF—siGFP
substantially suppressed GFP expression in GFP-transfected
tumors but did not affect REP-transfected tumors (lower left
panels in Figure 12B). These findings were validated using ex
vivo OI, confirming not only significant tumor accumulation of
MN-NIRF—siGFP (independent of tumor type; right panels
in Figure 12A) but also effective and selective GFP silencing
(dependent on tumor type; right panels in Figure 12B). This
study therefore nicely illustrates the suitability of OI for
noninvasively assessing the potential of siRNA-containing
nanomedicine formulations.

Using bioluminescence (BLI)-based OI to assess the
efficiency of gene delivery, Navarro and de Ilarduya compared
generation-5 PAMAM dendrimers to linear PEI polymers.164
Both gene delivery systems contained plasmid DNA encoding
for luciferase. Effective transfection of (tumor) cells with

luciferase enables the local activation of luciferin (which is
coinjected intraperitoneally), generating a luminescent signal
that can be sensitively detected using BLI-based OI To assess
the potential of GS-PAMAM dendrimers vs L-PEI polymers for
DNA delivery and cancer cell transfection, the formulations
were iv injected into mice bearing subcutaneous Neuro 2A
tumors. As shown in Figure 12C, consistent with many
previous reports, iv injected L-PEI resulted in very high
transgene expression levels in the lungs of mice, whereas the
luminescent signal generated in tumors was relatively low. GS-
PAMAM dendrimers, on the other hand, resulted in much
lower levels of off-target gene expression in the lung and in
much higher levels of gene expression in tumors. These
exemplary efforts, together with the large number of similar
studies in which plasmid DNA encoding for luciferase was used
to assess the efficacy of gene therapy, demonstrate the
suitability of BLI-based OI for noninvasively monitoring of
nucleic acid delivery.

7. ULTRASOUND IMAGING

Ultrasound (US) imaging is based on the principle that
backscattered signals from acoustic waves vary depending on
reflection by different tissues (as well as by US contrast agents).
US can convey a clear anatomical depiction of the tissue or area
of interest, with high temporal and spatial resolution. US is a
very versatile technique, which is inexpensive, fast, well-
established, and routinely used in the clinic. Some of the
drawbacks associated with US include operator dependency,
inability to perform whole-body imaging, and limitations with
regard to the versatility of the contrast agents that can be used
(ie, 1-S-um-sized gas- or air-filled microbubbles, which
remain exclusively intravascular).

In recent years, more and more studies have been reported in
which US is used for drug delivery purposes. These primarily
include combinations of US with microbubble (MB)- and
nanobubble (NB)-based formulations, which can be either
coloaded with drugs or administered separately, to enhance
extravasation, penetration, and/or cellular internaliza-
tion.'%>71%7 The latter process, ie., cell membrane permeation
and increased internalization, is generally referred to as
sonoporation and has been extensively used for gene delivery
purposes.'®*'®® The principle for sonoporation, as well as for
enhanced extravasation and penetration, relies on stably
oscillating MBs, as well as on the jet streams and shock
waves resulting from the destruction of MBs. Depending on
their composition and on the applied US powers and
frequencies, MBs can either cavitate stably (i.e, nondestruc-
tively) or inertially (i.e., destructively). Both types of cavitation
can lead to vascular and cellular membrane disruption, via the
oscillation-dependent opening of tight junctions, acoustic
microstreaming, and shock wave generation.83’86 Furthermore,
MB- and NB-based formulations have been shown to be useful
for perfusion monitoring, which enables noninvasive imaging of
the circulating properties of these formulations, as well as the
longitudinal assessment of the efficacy of pro- or antiangiogenic
therapies.'”°

An exemplary study showing that nanoformulations and US
can be used for perfusion imaging was published by Wheatley
and colleagues, who developed nanobubbles termed ST-68N,
composed of a Span 60 and TWEEN 80 surfactant shell, and
monitored their fate in white New Zealand rabbits.'”" In vivo
power Doppler US images were obtained before and after
injection (upper panels in Figure 13A), showing significant
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Figure 13. Noninvasive imaging of nanomedicines using US. (A) Power Doppler US imaging of the right rabbit kidney before (panel 1) and after
(panel 2) the iv administration of ST-68N-based nanobubbles, illustrating high perfusion. Arrows indicate the kidney capsule. Pulse inversion
harmonic images of the right kidney before and after ST-68N administration are shown in panels 3 and 4, respectively. (B) B-mode US imaging of
MDA-MB-231 xenografts upon the intratumoral injection of PEG—PLLA—PFP-based nanobubbles loaded with doxorubicin. US images were taken
before (upper left panel) and at 4 h after i.t. administration, in longitudinal (middle left panel) and transversal (lower lower panel) planes. The upper
right panel exemplifies tumor localization of iv administered nano/microbubbles at 4.5 h p.i. The lower right panel depicts a transtorso image of the
same mouse, illustrating accumulation in tumor (designated as “mass”), kidneys, and spine. Images reprinted and adapted with permission from refs
171 (copyright 2006 Elsevier) and 172 (copyright 2007 Oxford University Press).

signal enhancement in the kidneys at 1.5 min p.i, because of
the presence of NB in renal blood vessels. This notion was
confirmed via pulse-inversion harmonic images (lower panels in
Figure 13A), demonstrating the suitability of US plus NB for
noninvasive perfusion monitoring.

In another study, reported by Rapoport and colleagues, US
was used to noninvasively visualize doxorubicin- and
perfluoropentane-containing PEG—PLLA nanobubbles.'”* Cav-
itation analyses, based on their oscillation, growth, and collapse,
were performed, as well as studies in nude mice bearing MDA-
MB-231 breast cancer and A2780 ovarian cancer xenografts
that were intratumorally (it.) and intravenously injected with
these so-called nanodroplets. The left panels in Figure 13B
show the US images generated in an MDA-MB-231 tumor
prior to and at 4 h after it. injection. As expected, strong echo
signals were generated immediately after injection, and they
persisted within the tumors for days. The size of echo-
producing entities was found to be much larger than the size of
the injected NBs, indicating intratumoral coalescence into MBs.
Coalescence was confirmed by tumor imaging upon iv
administration of the nanodroplets. As shown in the right
panels in Figure 13B, at 4.5 h after injection, highly echogenic
signals were observed in tumors, as a result of the extravasation
of the NBs through leaky vessels and subsequent coalescence
into MBs. In healthy tissues with an intact endothelial lining, on
the other hand, such as the kidney, no echogenicity could be
detected (bottom right panel in Figure 13B). Results were
validated in A2780 ovarian carcinoma xenografts and extended
by therapeutic analyses showing that doxorubicin-loaded nano/
microbubbles were much more effective when combined with
US,'” thereby exemplifying the ability of using US for drug
delivery applications.

Using MBs loaded with model drugs within their shell and
targeted to tumor blood vessels via anti-VEGFR2 antibodies,
Fokong et al. confirmed the suitability of US for simultaneously
monitoring tumor accumulation and enhancing drug deliv-
ery.'”® To this end, as exemplified by Figure 14A/B, they

evaluated one- and two-step loading strategies to entrap the
model drugs Rhodamine-B and Coumarin-6 into the shell of
poly(n-butyl cyanoacrylate) (PBCA) MBs. The MBs were then
surface-hydrolyzed, conjugated to streptavidin, and function-
alized with biotinylated antibodies directed toward VEGFR2,
which is highly overexpressed on angiogenic tumor blood
vessels. Fluorophore entrapment was validated using two-
photon laser scanning microscopy and quantified using
TECAN measurements, which showed that up to 2 X 10°
model drug molecules can be entrapped within the shell of a
single MB. The authors furthermore demonstrated that upon
US-mediated MB destruction, ~80% of the shell-incorporated
models drugs is released. Upon injecting these MBs iv, US
imaging showed that they efficiently localized to tumors via
VEGFR2 binding (Figure 14C), and exposure to destructive
US pulses resulted in efficient content release within tumors
and tumor blood vessels. Fluorescence microscopy analyses
also hinted toward enhanced extravasation and penetration of
the model drugs (Figure 14D). Consequently, such theranostic
MBs are considered to hold significant potential for image-
guided, targeted, and triggered drug delivery, in particular of
highly toxic compounds, for which prolonged and systemic
exposure should be prevented.

As already pointed out above, the combination of MBs plus
US is more and more implemented to improve drug delivery
across biological barriers. Upon US-mediated MB oscillation
and destruction, acoustic forces and microjets are generated,
resulting in the loosening of the endothelial lining and/or the
permeation of cellular membranes, thereby facilitating the
transport of drugs (and contrast agents) from the intravascular
compartment into the interstitial and/or intracellular compart-
ment. This phenomenon, coined sonoporation, is not only used
to enhance the efficacy of poorly internalized agents, such as
nucleic acids, into cells but also to promote drug delivery across
the blood brain barrier (BBB) and (deeper) into tu-
mors. 171747182 4f yeed as such, US is only employed for
interventional purposes, ie., not for imaging, indicating that
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Figure 14. Image-guided, targeted, and triggered (model) drug delivery to tumors using US plus MBs. (A) Schematic depiction of the synthesis of
VEGFR2-antibody-targeted polymeric MBs loaded with (model) drugs via a one- or two-step procedure. (B) Two-photon laser scanning microscopy
images of MBs loaded with the model drugs Rhodamine-B (red) and Coumarin-6 (green). (C) US imaging of CT26 tumors prior to and 7 min after
the iv administration of Rhodamine-B-loaded and VEGFR2-targeted MBs, showing efficient binding to angiogenic blood vessels. (D) Fluorescence
microscopy analysis of model drug delivery to tumors upon the iv injection of Rhodamine-B-loaded and VEGFR2-targeted MBs without exposure to
US (panel 1), with exposure to three destructive US pulses at 7 min p.i. (panel 2), and with continuous exposure to US for 7 min (panel 3),
exemplifying significant Rhodamine-B release in tumors upon combining MBs and US. Images reprinted and adapted with permission from ref 173

(copyright 2012 Elsevier).

other noninvasive imaging techniques, such as SPECT, MR,
and O], are necessary to noninvasively and longitudinally assess
the in vivo efficacy of sonoporation. A nice example of this has
been provided by Deckers and Moonen, who used 2D FRI to
monitor the impact of MB-plus-US-mediated sonoporation on
the uptake and retention of the fluorescent model drug TOTO-
3 in subcutaneous mouse tumors.'”’” TOTO-3 is a cell-
impermeable and nucleus-specific near-infrared fluorophore
and is dubbed to be a “smart” agent because it shows a 100—
1000-fold enhancement in signal intensity upon DNA binding.
Mice bearing tumors on both hind limbs were coinjected with
TOTO-3 and MBs (both administered i.t. into both tumors),
and US was subsequently applied only to the right tumor (i.e.,
the lower tumor in Figure 15A). Before and at several different
time points after the treatment with destructive US pulses,

TOTO-3-associated fluorescence was visualized and quantified.
As shown in the longitudinal FRI scans in Figure 15A, no signal
was observed before probe administration and US treatment
(panel 1), whereas immediately after probe injection, a very
strong signal was obtained for both tumors (panel 2). Two and
4 h later, however, a strong signal only persisted in the US-
treated tumors, indicative of a substantially enhanced internal-
ization of TOTO-3 (panels 3 and 4). These findings
convincingly demonstrate that sonoporation, i.e., the combina-
tion of US and MB, can be used to improve the cellular uptake
of poorly internalized (model) drugs.

Besides for imaging, US can also be used for therapeutic
purposes. Such applications mainly include thrombolysis and
hyperthermia treatment. The latter can either refer to high-
intensity focused ultrasound (HIFU) (resulting in temperature
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Figure 15. US-based enhancement of (model) drug delivery. (A) 2D FRI images of mice intratumorally injected with MBs plus TOTO-3 (a cell-
membrane-impermeable model drug) and treated with US (lower tumor) or left untreated (upper tumor). Optical imaging of TOTO-3
internalization and retention in tumors was carried out before US (1), immediately afterward (2), and 2 h (3) and 4 h (4) later. (B) Accumulation of
iv administered, fluorescently labeled lectin and nanospheres in HIFU-pretreated and control muscle tissue in mice at 0.5 and 24 h. Both probes
showed significantly more extravasation upon HIFU treatment. Bar: 50 ym. (C) MR monitoring of US-induced and hyperthermia-mediated T -
contrast agent release from temperature-sensitive liposome. Immediately after liposome administration, the perfusion of tumor blood vessels can be
visualized (panel 2). Subsequently, US-mediated mild hyperthermia is applied to the tumor, which can be monitored via real-time MR—thermometry
(panel 3), and leads to efficient Gd—HPDO3A (model drug) release from the temperature-sensitive liposomes only in the heated area (panel 4).
Images are reprinted and adapted from refs 167 (copyright 2010 Elsevier), 189 (copyright 2009 Pergamon), and 186 (copyright 2011 Informa

Healthcare).

increases up to 70 °C, for ablation purposes) or to low-intensity
US (for mild hyperthermia and drug release from temperature-
sensitive liposomes). HIFU is clinically used for the ablation of
benign tumors, such as uterine fibroids, and trials are currently
ongoing in cancer patients, e.g., for breast tumors and for the
palliative treatment of bone metastases.'*>~'® Recently, it has
been shown that pulsed HIFU can also be employed to
noninvasively enhance the delivery of various diagnostic and
therapeutic agents via nonthermal mechanisms.'**'*” Acoustic
cavitation is one such nonthermal mechanism for inducing
temporary changes in biological tissues or vessels to enhance
drug delivery.'® Hancock and colleagues recently reported a
setup in which pulsed HIFU was used to enhance the systemic
delivery of fluorescently labeled lectin and polystyrene
nanospheres.'®” Immediately upon HIFU exposure (ie., 10—
15 min afterward), both probes were iv injected, and 30 min
later, the mice were sacrificed, and the skin covering treated and
control muscle regions was removed. The animals were then
analyzed under an inverted fluorescence microscope, and digital
images were captured. As shown in Figure 15B, HIFU-treated
muscle tissue showed much broader and much more intense
signals than control muscle tissue, with clear extravascular
signals both for fluorescently labeled lectin and for fluorescent
nanospheres, indicative of efficient US-mediated sonoporation.

These findings illustrate the applicability of HIFU-based
techniques for enabling and/or enhancing the extravasation
and/or retention of nanomedicine formulations at the target
site.

A final interesting application of US relates to its ability to
generate heat in deep-seated tissues. In such setups, focused US
can be used to induce mild hyperthermia and thereby dru%
release from the temperature-sensitive nanocarriers.'®”'*!”
Negussie and colleagues, for instance, prepared low-temper-
ature-sensitive liposomes (TSL) (responsive at 40—41 °C)
coloaded with doxorubicin and with the MR contrast agent
Gd—HPDO3A and demonstrated that MR-guided US can be
used to mediate and monitor temperature-triggered drug and
contrast agent release in rabbits bearing VX2 sarcoma
tumors'*® (Figure 15C). MR images were obtained before
(panel 1) and after (panel 2) the injection of the TSL. The
perfusion of TSL through large blood vessels in the periphery
and core of the tumor could be clearly visualized (panel 2). As
shown in panel 3, upon applying US-mediated hyperthermia, a
temperature map for the tumor region can be obtained using
MR~—thermometry, which provides valuable feedback on the
efficiency of heating. After four 10-min heating intervals, Gd—
HPDO3A release in the tumor tissue was evident from the T-
weighted MR image (panel 4), and the spatial location of this
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Figure 16. Translational imaging of nanomedicines. (A) Monitoring passive drug targeting. The tumor accumulation of '''In-labeled PEGylated
liposomes was evaluated in patients suffering from squamous cell lung carcinoma, head and neck cancer, and breast cancer. y-Camera images were
captured 72 h after iv injection, showing clear contrast enhancement in tumors (Tu). Head and neck cancers and squamous lung carcinomas showed
high accumulation of the liposomes in the tumor, while breast cancers showed relatively low accumulation. CP represents the cardiac pool (i.e.,
liposomes in circulation), and L and Spl illustrate accumulation of the liposomes in liver and spleen, respectively. Ln indicates a metastatic lymph
node, which also accumulates liposomes fairly efficiently. In the right panel, the longitudinal biodistribution of liposomes in a patient suffering from
AIDS-related Kaposi sarcoma is presented, showing strong accumulation in primary tumors (upper and lower leg region), as well as in metastatic
lesions (shoulder and facial region). (B) Monitoring active drug targeting. Left panels: y-Camera imaging upon the administration of '**I-labeled Gal-
pHPMA-GFLG—doxorubicin (PK2), targeting asialoglycoprotein receptors overexpressed by hepatocytes via incorporated galactosamine moieties,
as well as of "*’I-labeled PK1 (similar polymer—drug conjugate, but without the liver-specific targeting ligand). Anterior and posterior images at 4
and 24 h exemplify efficient targeting of PK2 to the liver. Right panels: hybrid SPECT—CT imaging of PK2, illustrating accumulation in the
peripheral (healthy) regions of the liver, rather than in the central tumor mass (dark area in the middle of the CT image). (C) Monitoring treatment
efficacy. Left panels: Contrast-enhanced CT scans obtained in a cholangiosarcoma patient with lung metastases treated with PSMA-targeted and
docetaxel-loaded PLGA nanoparticles (DTXL—TNP). The red circles indicate metastatic lesions observed prior to treatment, which disappeared at
day 42 after treatment initiation. Right panels: Contrast-enhanced CT scans obtained in a patient suffering from tonsillar cancer (red circle) treated
with DTXL—TNP, showing significant tumor shrinkage at day 42 after treatment initiation. Images are adapted and reproduced with permission
from refs '%> (copyright 2001 American Association for Cancer Research), 193 (copyright 2012 American Society of Clinical Oncology), and 194
(copyright 2012 American Association for the Advancement of Science).

nicely corresponded to the most intensely heated area (cf.
panels 3 and 4). This study elegantly exemplifies the potential
of using MR-guided US for inducing and imaging drug release
from temperature-sensitive nanomedicine formulations.

to respond to nanomedicine-based chemotherapeutic inter-
ventions (and to exclude those unlikely to respond).”>'”' In
addition, it can be used to visualize the off-target localization of
nanomedicines, e.g, in potentially endangered healthy tissues,
which under certain circumstances might lead to exclusion from

8. TRANSLATIONAL IMAGING

Besides for preclinical purposes, noninvasive imaging is also
highly useful for facilitating the clinical translation of nano-
medicines. It can, for example, be employed to visualize and

(further) targeted treatment. Moreover, by systematically
integrating imaging also during follow-up and by closely
monitoring therapeutic responses upon nanomedicine treat-

quantify how efficient passive or active drug targeting is in
individual patients and, on this basis, to preselect patients likely

ment, clinical decision making can be facilitated and improved,
as decisions on whether or not to (dis)continue treatment and
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Informa Healthcare).

on whether or not to adjust drug doses can be made relatively
early on.

Consequently, combining drug targeting and imaging might
be very valuable for individualizing nanochemotherapeutic
treatments, and it provides a rational basis for personalized
nanomedicine.'”" A pioneering study in this regard has been
published by Harrington and colleagues, who visualized and
quantified EPR-mediated passive tumor targeting using '''In-
labeled PEGylated liposomes in patients suffering from
different types of tumors.'”> The liposomes were administered

10929

to patients with squamous lung carcinoma, head and neck
cancer, and breast cancer, using whole-body y-camera imaging
and SPECT. As shown in Figure 16A, relatively efficient passive
drug targeting was observed for the former two malignancies.
Overall, the levels of accumulation varied from 2.7 to 53.0%
ID/kg of tumor. The highest accumulation was observed in
head and neck cancer (33 + 16% ID/kg), intermediate
accumulation was noted in lung carcinoma (18 + 6% ID/kg),
and relatively low levels were detected in breast cancer (5+3%
ID/kg). These numbers indicate that there was a relatively high
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degree of heterogeneity in the tumor uptake of liposomes, both
between patients with different types of tumors and also
between patients with the same type of tumor. Besides in
tumors, significant accumulation was also observed in liver and
spleen, with values being approximately S-fold higher for the
former than for the latter (34 = 15% vs 7 = 2% ID/kg,
respectively). The authors finally also carried out longitudinal y-
camera imaging in a single patient affected by AIDS-related
Kaposi sarcoma, exemplifying very strong accumulation in both
primary and metastatic KS lesions (right panel in Figure 16A).
In good agreement with this, PEGylated liposomes containing
doxorubicin are known to be highly eftective for treating Kaposi
sarcoma.'””

At about the same time, Seymour and colleagues for the first
time visualized active nanomedicine-mediated drug targeting in
patients.'”® They prepared pHPMA-based polymeric drug
carrier functionalized with doxorubicin, tyrosinamide (for
radiolabeling), and galactosamine (for targeting to asialoglyco-
protein receptors, which are overexpressed by hepatocytes) and
used planar y-camera and SPECT imaging to monitor drug
targeting to hepatocellular carcinomas. The biodistribution of
this actively targeted polymer—drug conjugate, which was
termed PK2, was compared to PK1, which lacks galactosamine,
showing highly efficient liver targeting in the case of the former
(left panels in Figure 16B). However, upon imaging the
intrahepatic distribution of PK2, it was found that most of the
conjugate accumulated in healthy liver tissue, rather than in
tumors (right panels in Figure 16B), explaining—at least in
part—why PK2 treatment resulted in relatively disappointing
response rates.

Recently, in a bench-to-bedside approach, Hrkach and
colleagues prepared actively targeted PLGA-based nano-
particles (TNP) containing docetaxel (DTXL) and evaluated
the efficacy of the most optimal formulation(s) in vitro, in vivo,
and in patients.”* DTXL—TNP was targeted to the prostate-
specific membrane antigen (PSMA), using the targeting ligand
ACUPA, and its clinical efficacy was monitored using contrast-
enhanced CT imaging. As evidenced by Figure 16C, in a
patient suffering from cholangiocarcinoma with metastatic lung
lesions, as well as in a patient suffering from tonsillar cancer,
noninvasive imaging provided relatively early insights on the
efficacy of the intervention, with there being already within 1.5
months after the start of the therapy clear indications for
efficient disease treatment. This study illustrates that besides for
monitoring nanomedicine biodistribution and target site
accumulation, noninvasive imaging is also highly useful for
longitudinal treatment monitoring,

The above efforts exemplify the potential of combining drug
targeting and imaging in the clinical situation. By labeling
nanomedicines and by subjecting patients to y-camera, PET,
and SPECT imaging, noninvasive and quantitative information
on the pharmacokinetics, biodistribution, target site accumu-
lation, and off-target localization of the formulations can be
obtained. As depicted schematically in Figure 17, this
noninvasive imaging information can be used to decide
whether or not to treat patients with nanomedicines, and it
might thereby provide a rational framework for personalizing
nanomedicine treatments. It is reasonable to assume, in this
regard, that if the amounts accumulating in tumors (and/or
metastases) are high, then targeted treatments would then be
more efficient than if hardly any fraction of the iv administered
dose accumulates at the target site (first patient selection step;
Figure 17A). In case of the former, patients can then be

confidently treated with the nanomedicine formulation in
question, whereas in the latter case, it might be wise to treat
them with other chemotherapeutic agents already from day 2
onward. In addition, if whole-body imaging shows that, besides
in tumors, high levels of the nanomedicine formulation also
(unexpectedly) strongly accumulate in potentially endangered
healthy tissues, e.g, because of comorbidities, then such
patients can be excluded from nanomedicine treatment, to
minimize the risk of developing severe or even life-threatening
side effects. Furthermore, by at the same time also including
“standard” imaging-based diagnostic procedures during follow-
up, important information on potential treatment responses can
be obtained (second patient selection step; Figure 17A), which
can be useful for relatively rapid decision making with regard to
whether or not to continue nanotherapy and whether or not to
adjust drug doses.

Finally, it is important to keep in mind in this regard that
noninvasive imaging may be particularly useful in the case of
metastatic disease.”” Using, for example, fluorodeoxyglucose
(FDG)-based PET scans, metastases can be sensitively and
accurately localized in patients. By subsequently performing
PET or SPECT scans with radionuclide-labeled nanomedicines,
information can be obtained on the accumulation of these
formulations in both primary tumors and metastases, and
treatment protocols can be adapted accordingly. As exemplified
by Figure 17B, in such setups, it seems obvious that if all lesions
show significant nanomedicine uptake, then patients should be
treated with the nanomedicine formulation in question.
Conversely, if all—or the vast majority of—lesions do not
accumulate nanocarriers efficiently, it seems logical not to treat
patients with nanomedicines but with alternative therapies, such
as surgery, radiotherapy, standard chemotherapy, experimental
chemotherapy, and/or immunotherapy. Consequently, in spite
of the fact that not much is known yet about the potential of
nanomedicines for targeting and treating metastasis,'*® non-
invasive imaging appears to be very valuable for individualizing
and improving the therapy of metastatic cancers. Taken
together, we believe that theranostic concepts, in which drug
targeting and imaging are intimately combined, are highly
useful for personalizing nanomedicine-based (chemo)-
therapeutic interventions, facilitating both clinical translation
and clinical practice and ensuring that the right (nano)drug is
given to the right patient at the right dose and at the right time.

9. CONCLUSION

Noninvasive imaging is used for many different (pre)clinical
purposes, ranging from disease diagnosis, disease staging, and
treatment monitoring to the visualization and quantification of
nanomedicine-mediated drug targeting and (triggered) drug
release. Several different imaging techniques, such as PET,
SPECT, CT, MR, O], and US, are available for monitoring the
biodistribution, the target site accumulation, and the off-target
localization of nanomedicines, and each of these modalities has
its own specific pros and cons. The successful use of
noninvasive imaging techniques to a large extent depends on
choosing the right imaging modality and the right contrast
agent for the right application. Several (bio)medical questions
can be accurately and quantitatively resolved using only one
imaging modality, while others require a combination of two
different imaging techniques (e.g, hybrid PET—CT, PET—
MRI, SPECT—CT, and CT—FMT). Consequently, in order to
optimally integrate noninvasive imaging in drug delivery
research and to facilitate the combination of drug targeting
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and imaging to individualize and improve nanomedicine
treatments, it is important to keep the specific advantages,
limitations, and applications of each of these imaging
techniques in mind.
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