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Fast Estimation of Outage Probabilities in MIMO Channels
Rajan Srinivasan and George Tiba

Abstract—Fast estimation methods for small outage probabili-
ties of signaling in fading multiple-input multiple-output (MIMO)
channels are developed. Communication over such channels is
of much current interest, and quick and accurate methods for
estimating outage capacities are needed. The methods described
herein use adaptive importance sampling (IS) techniques as
developed in a series of recent publications. Fast algorithms
are provided for evaluating “nonergodic” capacities of Rayleigh
fading MIMO channels. The methodology can be extended to
more general models. Numerical results on outage capacity are
provided, and these extend and complement known results in the
literature.

Index Terms—Fast simulation, information rates, multiple-input
multiple-output (MIMO) systems, Monte Carlo methods, outage
probabilities.

I. INTRODUCTION

I N THIS LETTER, we consider the problem of estimating
channel capacities in multiple-input multiple-output

(MIMO) communication systems operating over random
channels. Such systems are of great technical and economic im-
portance for wireless applications, as the signaling techniques
that underlie them promise hugely enhanced information
transmission rates [1]–[3]. For signal transmission formats
wherein the MIMO channel can be considered “nonergodic,”
mutual information is presented as a random variable, and
its probability of falling below a certain “outage capacity”
is referred to as the outage probability. Estimation of outage
probabilities and capacities for channel models usually em-
ployed is analytically difficult, [3], and researchers resort to
Monte Carlo (MC) simulation. For the low outage probabilities
desirable in practice, MC simulations are long, as amply
evidenced by results in the by-now almost classic publication
[1]. The situation is exacerbated when very small probabilities
are of interest. In such cases, the usual considerations that
necessitate invoking special simulation procedures [such as
importance sampling (IS)] in rare-event simulations apply.
These fast procedures have been in use for several years and
have found a range of employment. A good review article on IS
in communication systems is [4]. A recent comprehensive text
dealing with system simulation is [5], whereas [8] is concerned
with adaptive IS methods for detection and communications.
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The literature on IS is large, and the above references provide a
path to available important results.

Herein, we briefly describe and use adaptive IS methods for
the application stated above. Whereas a form of adaptive IS
has been studied in [6], the methods used here rely entirely
on the results in [7], [9], and [10]. A brief introduction to the
standard (idealized) fading channel model used and the expres-
sion for outage probability is given, followed by description
of estimation techniques. The inverse problem, that of deter-
mining an outage capacity for specified outage probability and
signal-to-noise ratio (SNR), is then studied, also using IS. Nu-
merical results are presented, together with some brief conclu-
sions.

II. MIMO OUTAGE PROBABILITY

Consider a single-user point-to-point digital communication
system consisting of transmitting and receiving antennas
operating over a linear Gaussian channel. The transmitted signal
is denoted by the -dimensional vector , and the received
signal by the -dimensional vector . The total transmitted
power is constrained to , irrespective of the value of , and
the average power at the output of each receiving antenna is de-
noted by . The additive channel noise, denoted by the -di-
mensional vector , is zero-mean complex Gaussian with inde-
pendent real and imaginary components and having covariance
matrix , where denotes the noise power at each receiver
branch, and the identity matrix. The average SNR
at each receiver antenna is denoted by . The channel is
represented by the complex input–output matrix . A
normalized channel matrix is defined by .
The channel can be deterministic and fixed, or it can be random.
In the latter case, it is assumed that it remains unchanged for the
entire duration of a communication, but can randomly change
to another realization for another channel use. This is the non-
ergodic case. It is further assumed that the channel realization

is known at the receiver, possibly through channel estimation
procedures. With this formulation, the maximum mutual infor-
mation between and the channel output has
been shown in [1] to be given by

bits
s

Hz
(1)

where “det” denotes determinant and conjugate transpose.
The usual ergodic (or Shannon) capacity is just computed
over the fading channel statistics, available in [3].

With the channel modeled as random, capacity is treated as
a stochastic variable with a certain probability distribution. The
outage probability is defined as

(2)
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where is a given transmission rate. The simulation problem is
then one of estimating, for given values of SNR , and numbers
of transmitting and receiving elements and , small values
of . It is also of interest to determine the rate for given

, , and to meet a desired (small) value of . Using (1),
(2) can be rewritten as

(3)

Using MC simulation, capacity results have been obtained in [1]
typically down to values of 0.01. Estimating lower values
can entail prohibitively long computations.

III. FAST ESTIMATION OF

To estimate using IS, we make a few observations. An
estimator of (3) has to be implemented, which causes the event
therein to occur frequently, thereby ensuring shorter simulation
lengths than would be possible with an MC procedure. This can
be done by suitably biasing the random variables that make up

. From the form of (3), it is clear that biasing should compress
the probability density of the determinant, which has support in
( ). The compression is toward unity. It follows, therefore,
that a simple scaling down of the variables in with a real
positive number will achieve this. While this may not be the
best possible method of biasing, it is effective, as shown in the
following. The chief problem then centers around determining
good values of the scaling constant for given sets of parame-
ters of the MIMO system. An optimum value of scaling is that
which provides an unbiased IS estimator with minimum vari-
ance. Equivalently, it minimizes the simulation length required
to achieve the same variance as a conventional MC estimator,
resulting in simulation gain.

In adopting a model for the channel matrix, it is usually as-
sumed [1], [3], that the entries are independent and complex
Gaussian, with independent and identically distributed (i.i.d.)
real and imaginary components, each with variance 1/2. This
is the Rayleigh fading channel model. Symmetry suggests that
each random variable in contributes equally to the determi-
nant. Therefore, a single scaling parameter is used for biasing
all the component random variables. Assume that each variable
is scaled by the quantity , where . The IS esti-
mator of the outage probability in (3) can then be written
as

(4)
where denotes a complex vector containing all the
elements of in any order, is an indicator function which
is one if the event in parentheses occurs and zero otherwise, and

is the length of the IS simulation. It is an unbiased and con-
sistent estimator. Throughout, hats on quantities indicate esti-
mates. The weighting function is defined by

(5)

where and are density functions of with and without
biasing; the density of a complex vector being that of

the real vector composed of its real and imaginary parts. The
notation indicates that vector is drawn from the dis-
tribution corresponding to density . Note that this scaling-
based IS estimator is applicable to channels characterized by
any probability distribution. For the Rayleigh fading channel,
the weighting function takes the simple form

The estimator in (4) has variance

(6)

with denoting expectation with respect to the biased distri-
bution. In (6) and below, denotes the event in (4). Minimizing
this variance is equivalent to minimizing the expectation term,
which we denote as and rewrite as

(7)

using (5). A stochastic Newton optimization algorithm that min-
imizes an estimate of is described by

(8)

and used for the minimization. This algorithm determines esti-
mates of optimum scaling factors. Here, is a recursion index
and a step-size parameter used to achieve a tradeoff between
speed and noisiness of convergence. Primes indicate derivatives
with respect to . These estimators can be set up by differenti-
ating in (7) twice, with respect to , to obtain

where

As is typical of stochastic approximation procedures, conver-
gence of the -algorithm in (8) is characterized by a small
random vibration around the optimum value. It may be noted
that a choice of that minimizes need not necessarily
minimize the variances of and . The two IS algorithms
(4) and (8) are implemented simultaneously. This method of
adaptive IS was proposed in [9] in the context of tail probability
estimation of sums of random variables, and also applied
therein to detection problems.
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IV. FAST ESTIMATION OF

The inverse problem, namely, that of determining an that
achieves a specified outage probability for given SNR, can
also be solved using IS. The genesis of the method lies in the
so-called inverse IS problem first formulated and solved in [9],
with applications to threshold determination in (radar) detection
algorithms therein and in [10]. It has subsequently been used
for parameter optimization in communication systems [7].
The procedure here involves minimizing a stochastic objective
function with respect to the rate to be estimated. It has the
form

Here is specified, and , to be estimated, is the rate
that achieves the specification. Dependence of and on the
scaling factor is made explicit to emphasize that minimization
of is concomitant with determination and use of optimum bi-
asing. The algorithm to estimate is

(9)

where is a step-size parameter. The prime in the denominator
of the second term on the right-hand side (RHS) of (9) indicates
derivative with respect to . To estimate this derivative, we turn
to (4), which, unfortunately, is not differentiable owing to the in-
dicator. Nevertheless, a derivative can be generated by approx-
imating it with a differentiable function [7], [10]. The sigmoid
nonlinearity, famous from its use in the backpropagation algo-
rithm for training artificial neural networks, is employed. In our
situation, it takes the form , where

and is a positive constant. Replacing the indicator in (4) with
and carrying out the differentiation yields

It is important to stress that the sigmoid is used only for the pur-
pose of estimating the derivative in (9), while the outage prob-
ability itself is estimated as in (4). Finally, the algorithms (4),
(8), and (9) are implemented simultaneously.

V. RESULTS AND DISCUSSION

Results of implementation are in Figs. 1–6. Adaptively deter-
mined optimum scaling factors give rise to estimates of outage
probabilities, Figs. 1–3, down to around . In [1], it was
shown that at a of , a 3-dB increase in SNR at 21 dB
produces almost ( ) more b/s/Hz in outage capaci-
ties. This turns out to be true also for lower values of ,

, and , but the increase is somewhat smaller than . At
lower SNRs, the increase is smaller. Results for different num-
bers of transmitter and receiver antennas are in Fig. 4. These

Fig. 1. Optimum biasing versus outage capacities for n = n = 2.
Parameter is SNR in steps of 3 dB.

Fig. 2. Outage probabilities versus capacities for n = n = 2.

Fig. 3. Outage probabilities versus capacities for n = n = 4.
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Fig. 4. Outage probabilities versus capacities for (n ; n ; SNR dB).

Fig. 5. Outage capacities versus SNR for n = n = 2; 4; 16. Sets of three
graphs are for P = 10 ; 10 ; 10 , going downward. Dashed lines are
ergodic capacities for the same number of antennas.

show that an configuration enjoys an SNR ad-
vantage of 3 dB over a (4, 2) system at 21 dB, which alternately
translates to an advantage of almost 2 b/s/Hz, even for ultra-low
outage probabilities.

Experiments with inverse estimation lead to results in Fig. 5
for three sets of antennas at three specified outage probabili-
ties. Also shown for comparison are ergodic capacities, obtained
through simulation. An interesting finding is that for 2, at
21 dB, SNR increases of less than 3 dB produce reductions of
outage probabilities from to to to at fixed
outage capacities. For antennas, the additional SNR re-
quired is less than 1.5 dB, whereas for , it is less than
half a decibel. Outage capacity curves for different ’s be-
come closely bunched as the number of antennas increases, and
also get closer to Shannon capacities (shown dashed). This im-
plies that with an increasing number of antennas, less loss (in
comparison to Shannon capacity) in terms of b/s/Hz is incurred

Fig. 6. Simulation gains as a function of outage probabilities. SNR = 21 dB
for n = 2; 4.

if systems are operated at low outage probabilities. Of course,
operating at rates equal to the mean capacity would lead to un-
acceptably high outage probabilities.

Effectiveness of IS algorithms is best quantified by estimating
gains (ratios) in simulation lengths achieved over conven-
tional MC procedures for equal variances. Actual variances of
both procedures decrease inversely with (respective) simulation
lengths, as evident from (6). As seen in Fig. 6, a roughly linear
behavior of gain versus (low) outage probability is observed for
the logarithmic scales used. This implies that simulation gain
varies as , where and denote slope and -axis inter-
cept of the extrapolated line. Assume now that for conventional
MC simulation, a length of (a rule of thumb figure)
provides sufficient accuracy; this translates (using an asymp-
totic normality argument) to a 95% confidence of having an
error not exceeding 20%. Therefore, the IS length required for
the same variance would be . From this, we
infer that if the slope is less than, equal to, or greater than unity,
then IS simulation lengths would increase, remain constant, or
even decrease with decreasing outage (rare-event) probability.
This simple though striking fact demonstrates the potential of
IS. In Fig. 6, we see that for 1 (for which the outage prob-
ability can be calculated in closed form) and 2, the length
is independent of . The single-antenna case being simple,
the gain has been determined analytically (by scaling the expo-
nential magnitude squared channel gain) and evaluated numer-
ically. A closer examination of (3) and (7) reveals that the gain
in this case is independent of SNR for a fixed . For ,
at , the gain is approximately , which
means that an IS length of provides the same accuracy
as an MC length of . This value of is sufficient to ensure
the fixed above-given accuracy for any value of (low) outage
probability. All simulations reported here have employed not
less than . IS gains decrease and simulation lengths
needed increase with . This is presumably due to the shape of
the density of the determinant, indicating that biasing by uni-
form scaling loses its effectiveness with increasing size of the
channel matrix.
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An important question is how much computation (relative to
MC) is finally needed to implement adaptive IS algorithms. Sub-
tleties often arise in actual implementation of fast simulation
algorithms. It is beyond the remit of this small letter to study
them all. Therefore, we address this general issue briefly and
qualitatively. Typically, computational saving afforded by the
sometimes enormous IS simulation gains is used to generate es-
timates of rare-event probabilities for various values of system
parameters. Adaptive biasing parameters usually do not change
drastically with small changes in system parameters. This al-
lows the design of adaptive algorithms which converge in rel-
atively few iterations, following an initial search. Moreover,
given the iterative nature of the stochastic recursions, it is pos-
sible at every iteration to use the same set of (unbiased) gener-
ated random variates till completion of the recursions. However,
some caution must be exercised here. The set of random num-
bers must at least be tested by validation on problems with a
priori known answers. This has been used by the first author in
several applications previously. These artifices speed up com-
putations by several orders of magnitude, and usually produce
smooth results. An additional and, by all means, important fa-
cility of these IS algorithms is the possibility of simultaneously
performing parameter optimization in situations that involve the
occurrence of rare events. Be all this as it may, for probabili-
ties that are not low, conventional MC simulations certainly in-
volve far less analytical effort, less computational complexity,
and slightly larger simulation lengths.

VI. CONCLUSIONS

The use of adaptive IS for the estimation of outage capac-
ities of Rayleigh faded MIMO channels has been briefly de-
scribed and demonstrated. A few observations have been made
that could have bearing on implementation of such systems. For
reasons of economy, more detailed results have not been sought.
As an initial aid to researchers, we have provided some results

on biasing parameters that can be used to validate simulations.
In this regard, it should be noted that biasing by scaling is a ro-
bust though conservative technique. More effective schemes can
be developed, but this would require intimate study of the in-
terplay of random variables involved in expressions for outage
probabilities, especially for situations that embody correlation
properties of signals and antennas. Nevertheless, the methods
described herein are general enough in their applicability, and
can be used to study practical channel models available in the
literature. As a final comment, being a forced MC procedure, IS
should be viewed not as an alternative to MC simulation, but a
complement.
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