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Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic
sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of
a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive
microarray profiling of 900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation
varies enormously by anatomical location, with different regions and their constituent cell types displaying robust
molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene
co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell
classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine
anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission.
The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated
selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial
topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the
more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional
baseline for neurogenetic studies of normal and abnormal human brain function.

The enormous complexity of the human brain is a function of its
precise circuitry, its structural and cellular diversity, and, ultimately,
the regulation of its underlying transcriptome. In rodents, brain-
and transcriptome-wide, cellular-resolution maps of transcript
distributions are widely useful resources to complement genomic
sequence data1–3. However, owing to the challenges of a 1,000-fold
increase in size from mouse to human, limitations in post-mortem
tissue availability and quality, and the destructive nature of molecular
assays, there has been no human counterpart so far. Several
important recent studies have begun to analyse transcriptional
dynamics during human brain development4,5, although only in a
small number of relatively coarse brain regions. Characterizing
the complete transcriptional architecture of the human brain will
provide important information for understanding the impact of
genetic disorders on different brain regions and functional circuits.

Furthermore, conservation and divergence in brain function between
humans and other species provide essential information for the
understanding of drug action, which is often poorly conserved across
species6.

The goal of the Allen Human Brain Atlas is to create a com-
prehensive map of transcript usage across the entire adult brain, with
the emphasis on anatomically complete coverage at a fine nuclear
resolution in a small number of high-quality, clinically unremarkable
brains profiled with DNA microarrays for quantitative gene-level
transcriptome coverage. Furthermore, structural brain imaging data
were obtained from each individual to visualize gene expression data
in its native three-dimensional anatomical coordinate space, and to
allow correlations between imaging and transcriptome modalities.
These data are freely accessible via the Allen Brain Atlas data portal
(http://www.brain-map.org).
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Global mapping of transcript distributions
A tissue processing and data collection pipeline was established to
image the brain and subsequently dissect tissue samples from
approximately 900 anatomically defined sites for RNA isolation and
microarray analysis (Fig. 1 and Supplementary Methods 1). Two
complete normal male brains were analysed from donors aged 24
and 39 years and are referred to here as Brain 1 and Brain 2
(Supplementary Table 1). Briefly, cooled brains underwent in cranio
magnetic resonance imaging (MRI) followed by embedding, slabbing
and freezing. Whole-brain cryosections were made from each slab,
after which the slabs were subdivided and sectioned on 2 3 3 inch
slides for histological analysis with Nissl and other markers for struc-
ture identification. Defined brain regions were isolated either using
macrodissection (cortical gyri, other large structures) or laser micro-
dissection (LMD; Leica LMD6000, Leica Microsystems) from tissue
sections on polyethylene naphthalate (PEN) membrane slides (Leica
Microsystems). Any given anatomical structure was first identified on
the basis of histological data, and then sampled in a series of contigu-
ous coronal slabs in both hemispheres. RNA was isolated from each
sample and used to generate labelled cRNA probes for hybridization
to custom 64K Agilent microarrays. The output of this pipeline was a
set of microarrays that sample the entire spatial extent of neocortical
gyri that could be reproducibly identified across individuals, as well as
subcortical nuclear structures, at the resolution allowed by Nissl
staining and sample size requirements for microarray analysis. One-
hundred and seventy distinct structures were assayed at least once
in both brains, and 146 structures twice or more (Supplementary

Table 2). Sample locations were mapped back into the native brain
MRI coordinates and subsequently to Montreal Neurological Institute
(MNI) coordinate space7.

These microarray data form the foundation for a publicly accessible
online atlas, which includes viewers for microarray data visualization
and mining, MRI/histology/sample location, and three-dimensional
(3D) visualization of MRI and gene expression. To complement and
validate the microarray data, several targeted, large-scale in situ
hybridization (ISH) data sets were generated using a high-throughput
ISH platform1,8. All of these data are linked with the other databases
available via the Allen Brain Atlas data portal (http://www.brain-map.
org) to facilitate comparative analyses with developing and adult
mouse, rhesus macaque and human.

The output of the data generation pipeline described above is a
detailed quantitative map of transcript distribution across the entire
brain. As one example, Fig. 2a depicts the structural distribution of gene
expression related to dopaminergic neurotransmission, illustrating the
highly localized enrichment of genes associated with dopamine syn-
thesis, packaging, degradation and postsynaptic signalling. Regional
enrichments were conserved between the two brains (note similar peaks
in paired rows for Brain 1 and 2; Fig. 2a) and were consistent with
previous studies9,10. For example, tyrosine hydroxylase (TH) is enriched
in the substantia nigra pars compacta (SNC), ventral tegmental area
(VTA), and hypothalamic supraoptic and preoptic nuclei, as well as in
the locus ceruleus, the neurons of which use dopamine as a precursor
for noradrenaline. Similar brain-wide plots for other neurotransmitter
systems are provided in Supplementary Fig. 1.
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Figure 1 | Data generation and analysis pipeline. a, Experimental strategy to
subdivide intact brains and isolate precise anatomical samples. b, Anatomical
reference data are collected at each stage, including whole-brain MRI, large-
format slab face and histology, medium (2 3 3-inch slide) format Nissl
histology and ISH, and images of dissections. In Brain 2, labelling was
performed for additional markers as shown. Histology data are used to identify
structures, which are assembled into a database using a formal

neuroanatomical ontology (d), and to guide laser microdissection of samples
(a, lower panel). Isolated RNA is used for microarray profiling of ,900 samples
per brain (b, lower panel). c, Microarray data are normalized and sample
coordinates mapped to native 3D MRI coordinates. e, Data visualization and
mining tools underlie the online public data resource. Numbers in a and
b denote the order of sample processing steps leading to microarray data
generation.

RESEARCH ARTICLE

3 9 2 | N A T U R E | V O L 4 8 9 | 2 0 S E P T E M B E R 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

http://www.brain-map.org
http://www.brain-map.org


Interestingly, no statistically significant hemispheric differences
could be identified at this fine structural level that were corroborated
in both brains (paired one-sided t-tests, P , 0.01, Benjamini–
Hochberg (BH)-corrected). Although surprising given well described
lateralization of function, this finding is consistent with a recent study
of developing human neocortex that failed to identify hemispheric
differences despite extensive efforts using microarrays and quantitative
PCR11. It may be that the basis for lateralization of function involves
more subtle changes in specific cellular components, differences in
relative area rather than type of functional domains between hemi-
spheres, or is more related to functional connectivity patterns than
molecular differentiation. Given this observation and to increase
statistical power, samples from the two hemispheres for each structure
were pooled for all subsequent analyses. In each brain independently,
84% of unique transcripts on the microarrays (29,412, referred to as
genes for this manuscript) were found to be expressed in at least one
structure (91.4% overlap in expressed gene sets between brains), con-
sistent with the percentage of genes expressed in mouse brain by ISH
(80%; ref. 1) and fetal human brain by microarrays (76%; ref. 11).
Expression levels across anatomical structures were strongly correlated
between brains (Pearson r 5 0.98, P , 10240), with a highly significant

correlation in differential expression relationships between structures
(Pearson r 5 0.46, P , 10240). Later in our analysis we completed data
generation from a single (left) hemisphere of a third specimen. We
found strong corroboration of overall expression levels and fold
changes between structures in all three brains (Supplementary Fig. 2).

To illustrate the value of these data in understanding the functional
organization of neurotransmission, we examined the 740 genes iden-
tified in the human excitatory postsynaptic density (PSD12), and in
particular those that varied in their neuroanatomical distribution.
Thirty-one per cent of PSD genes showed highly regional differential
expression (Supplementary Methods 2 and Supplementary Table 3)
(fold change .5 between any pair of 170 structures, false discovery
rate ,0.01), a significantly greater percentage than that observed
across all genes (21%, P , 1026, Mann–Whitney U-test). As expected,
many synapse-associated Gene Ontology (GO) categories13 were
enriched in this gene set, even relative to the PSD genes as a whole,
including synapse (GO: 0045202), synaptic vesicle (GO: 0008021),
synaptic transmission (GO: 0007268), neurophysiological process
(GO: 0050877) and receptor activity (GO: 0004872).

Expression patterns for the most differentially expressed 10% of
these PSD genes between any pair of structures are displayed in Fig. 2b
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Figure 2 | Topography of transcript distributions for dopamine-signalling-
and postsynaptic-density-associated genes. a, Gene expression profiles of
genes associated with dopamine signalling plotted across 170 brain structures
in two brains. Expression profiles for each probe plotted as raw microarray data
normalized to mean structural expression, in paired rows to demonstrate
consistency between the two brains. b, Gene-clustered topographic

representation of the 74 most differentially expressed genes in human PSD
preparations12. Gene profiles represent average expression in each structure
between brains, plotted as deviation from the median. Clusters correspond to
selective spatial enrichment of genes related to synaptic function, as well as an
oligodendrocyte-enriched gene cluster (front cluster).
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(74 genes with at least a 10.6-fold difference). The synapse-associated
genes clustered into groups enriched in specific regions, indicative of a
diverse set of excitatory synapse subtypes. For example, the primary
motor cortex in the precentral gyrus, the origin of the longest range
projection neurons, is delineated by selective enrichment of neuro-
filament proteins NEFL, NEFM and NEFH, which are frequently
enriched in long-range projection neurons14. Surprisingly, a number
of the most differentially expressed PSD-associated genes seem to be
synthesized by glia, an observation made obvious by the stereotyped
structural distribution of oligodendrocytes in white matter and other
brain regions and the presence of well known myelin-associated genes
(for example, myelin oligodendrocyte glycoprotein, MOG; myelin
basic protein, MBP) in this gene cluster (Fig. 2b, front rows). The
presence of these proteins in PSD preparations may represent a
carry-over of glial fragments. Alternatively, they may be components
of glutamatergic synapses between neurons and oligodendrocytes,
which have been shown to share many properties with neuronal–
neuronal synapses15. Overall, these data show remarkable regional
variation in synaptic gene expression that probably underlies func-
tional distinctions between regions.

Global transcriptional architecture of the adult brain
We next investigated the dominant features of transcriptional vari-
ation across the brain, beginning with global, brain-wide analyses
and moving towards targeted local analyses of specific regions. An
informative method for identifying biologically relevant patterns in
high-dimensional microarray data sets is weighted gene co-expression
network analysis (WGCNA)16,17, which groups genes into modules
that have strongly covarying patterns across the sample set. This
method can identify gene expression patterns related to specific cell
types such as neurons and glia from heterogeneous samples such as
whole human cortex18, due to the highly distinct transcriptional
profiles of these cell types and variation in their relative proportions
across samples. Each module is represented by an ‘eigengene’ corres-
ponding to its expression pattern across structures (first left singular
vector of the gene 3 structure matrix16), and genes highly correlated
with the module eigengene are called ‘hub’ genes. This unbiased
approach allows a module’s function or cellular specificity to be
imputed based on hub gene function, and allows statistical comparison
either across studies to assign function or between brains to examine
preservation between individuals.

Applied to the entire 911 sample set from Brain 1, genes were
grouped into well-defined co-expression modules with specific
anatomical distributions (Fig. 3a, b), consistent with previous studies
in brain tissues18,19. Gene modules were frequently related to primary
neural cell types and molecular functions (Fig. 3b, c). Several modules
identify genes with enriched expression in neurons (M1–M2), based
on overlap with neural-cell-type-enriched gene sets identified in pre-
vious studies18 (second row in Fig. 3b). Genes in these modules are
enriched in the neocortex (fifth row in Fig. 3b), and in particular
cortical divisions as shown in eigengene plots (Fig. 3c). Hub genes
and enriched GO terms for these modules are associated with neuronal
structure and function and energy metabolism, as might be expected
given the high metabolic demands of neurons (Supplementary Table 4).
Other modules showed subcortical enrichment and correspond to
expression in different types of glia (M8–M12), including microglia,
astrocytes and oligodendrocytes. Additionally, one module with strik-
ing anatomical specificity for the paraventricular thalamus and central
glial substance (asterisks in M5 eigengene histogram, Fig. 3c) corre-
sponded to expression in the ventricular ependymal lining and choroid
plexus. One highly regionalized neuron-related module (M6) was
enriched in the striatum (the dopamine receptor DRD1 in Fig. 2a is a
hub gene). Thus, a major feature of the adult brain transcriptome
profiled in this manner is the degree to which anatomical variation
reflects the cellular make-up of different brain regions, both neuronal
and non-neuronal.

The gene modules identified in Brain 1 were well conserved in
Brain 2 as a whole (Fig. 3b), both at the level of regional gene expres-
sion patterns (third row) and as measured by a module preservation
index (fourth row) using a summary Z-statistic as described previ-
ously20. Modules corresponding to broad neural cell types also showed
highly significant preservation compared to a previous study using
human brain samples (ref. 19 and data not shown).

We next took a more direct approach to examine relationships
between regions of the brain based on dissimilarity of gene expres-
sion, by tabulating genes exhibiting highly differential expression
between all pairs of regions. Significant pairwise differential relation-
ships (BH-corrected P , 0.01) were independently recorded in
each brain and a threshold set for at least a 2.8-fold ratio between
structures (Supplementary Table 5). Figure 4a illustrates the resulting
neuroanatomical molecular ‘blueprint’ common to both brains, by
plotting the number of genes differentially expressed between each
pair of structures based on the 11,414 genes passing these criteria in
both brains (individual brain maps in Supplementary Fig. 3).

Many features of the brain transcriptome are apparent with this
visualization. Remarkably few differences are seen at this fold change
threshold across the neocortex (Fig. 4a, upper left) and cerebellum
(lower right), reflecting their stereotyped repetitive cytoarchitecture.
Exceptions to this relative cortical homogeneity include the postcentral
gyrus (primary sensory cortex), temporal pole (area 38) and primary
visual cortex (area 17). In contrast, complex differential relationships
were observed between specific nuclei in subcortical structures. The
globus pallidus and striatum have highly distinct profiles, as do several
specific subcortical regions including the midbrain raphe, pontine
nuclei and inferior olivary complex. The magnitude of differential
expression between pairs of structures is also strongly correlated with
the number of differentially expressed genes between these structures
(Pearson r 5 0.62, P , 10216; Supplementary Fig. 4).

Interestingly, a large percentage of these common differentially
expressed transcripts (48%, or 5,500 probes) are poorly annotated,
including probes not mapped to the human genome (HG19;
http://genome.ucsc.edu/cgi-bin/hgGateway), mapped to contig
sequences, or not mapped to known GENCODE genes21. Approxi-
mately 10% of these transcripts had very high correlation with the
co-expression modules identified above (Pearson r . 0.7; Sup-
plementary Table 6). For example, 38 transcripts demonstrated high
correlation with the striatal module (M6), and 87 transcripts with the
oligodendrocyte-associated module (M12; Fig. 3c), providing ana-
tomical ‘guilt-by-association’ annotation of these genes of previously
unknown function for selective roles in striatal and myelin function,
respectively.

Most genes with high variation across brain regions are not selective
for a single major brain region; rather, they are expressed in multiple
regions and non-uniformly within these regions (Supplementary
Fig. 5). This suggests that many genes may be quite pleiotropic with
respect to brain function, and that local gene regulation in specific
cytoarchitectural nuclei is the most important level of resolution. To
summarize the complexity of structural variation and examine the
extent to which major brain regions display local enrichment in spe-
cific fine cytoarchitectural divisions, we created a specificity index for
each major region that measures enrichment in subdivisions of that
region. This index, defined as the ratio of expression in one subdivision
relative to the remaining subdivisions in that region (Supplementary
Methods 3 and Supplementary Table 7), measures transcriptional
diversity within regions. The results in Fig. 4b bear strong similarity
to the plot in Fig. 4a, again with the neocortex and cerebellum display-
ing the least internal heterogeneity. In contrast, subcortical regions
with many well-defined nuclei show the greatest local heterogeneity,
including the myelencephalon, mesencephalon, pons, hippocampus
and hypothalamus. It is also possible to identify genes with either
brain-wide (global) or within structure (local) ubiquity (Supplemen-
tary Table 8). Not surprisingly, these gene sets are enriched for cellular
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organelles and ‘housekeeping’ functions (for example, ribosome, mito-
chondrion, metabolism).

Local patterning reflects hippocampal cytoarchitecture
To explore local variation, we identified unique transcriptional signa-
tures by analysis of variance (ANOVA) for the hippocampus.
Following unsupervised hierarchical 2D clustering, cytoarchitecturally
discrete subdivisions of the hippocampus (dentate gyrus, CA fields and
subiculum) showed distinctive expression patterns sufficiently robust
to cluster together like-samples while distinguishing subdivisions from
one another (Fig. 5a). Interestingly, samples from the CA3 and CA4
subfields were not discriminable (intermixing in Fig. 5a), consistent
with the view that CA4 is not a functionally distinct subfield from CA3
(ref. 22). Similarly robust regional clustering was observed in the
mesencephalon, pons and myelencephalon (Supplementary Fig. 6 and
Supplementary Table 9). Differential expression across hippocampal
subfields could be validated by ISH. For example, the calcium-binding
protein CALB1 has strong selectivity for the dentate gyrus relative to
other hippocampal subdivisions in both brains (Fig. 5b), and cellular
specificity for dentate gyrus granule neurons is demonstrated on an
independent adult brain specimen by ISH in Fig. 5c. Hippocampal

ISH data for CALB1 generated with the same histology platform in
adult mouse1 and rhesus macaque23 allowed a phyletic comparison.
Interestingly, expression in human differs from that in mouse (Fig. 5d)
and rhesus monkey (Fig. 5e), where CALB1 is robustly expressed in
CA1 and CA2 in addition to dentate gyrus.

Neocortical transcription reflects spatial topography
Our extensive neocortical sampling allowed us to investigate
transcriptional variation across the neocortex in relation to spatial
position and functional parcellation. Although highly differential
expression between cortical regions is much less pronounced than
between other brain regions (Fig. 4), many genes show statistically
significant variation between lobes or gyri at a lower threshold. We
first identified the 1,000 genes displaying the most significant vari-
ation in expression between 56 gyri in both brains (ANOVA, P , 0.01
BH-corrected, ranked by fold change between gyri; Supplementary
Table 10). We then performed principal component analysis (PCA)
on the 1,000 (genes) by 56 (sampled gyri) matrices for both brains. As
shown in Fig. 6a–c, the first three principal components had striking
selectivity for specific cortical regions (samples ordered by lobe
and roughly rostral to caudal within each lobe) and were generally
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Figure 3 | Global gene networks. a, Cluster dendrogram groups genes into
distinct modules using all samples in Brain 1, with the y axis corresponding to
co-expression distance between genes and the x axis to genes (Supplementary
Methods 2). b, Top colour band: colour-coded gene modules. Second band:
genes enriched in different cell types (400 genes per cell type18) selectively
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purple, astrocytes; white, microglia. Third band: correlation of expression
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summary (Z $ 10 indicates significant preservation). Fifth band: cortical (red)
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reproducible across both brains. PC1 is associated with primary sen-
sorimotor cortices, with relative differential expression in precentral
(motor) and postcentral (somatosensory) cortex, Heschl’s gyrus
(primary auditory) and primary and secondary visual areas. Confirma-
tion of the visual cortex enrichment by ISH for several synaptic
transmission-associated genes highly correlated to PC1 is shown in
Supplementary Fig. 7. PC2 has areal selectivity for posterior orbital,
paraolfactory and subcallosal gyri in the frontal lobe, the temporal pole,
and the primary visual cortex. PC3 is primarily differential in frontal
cortex compared to temporal and occipital cortex. These first three
components accounted for a large amount of the variance (PC1: 58% in
Brain 1, 42% in Brain 2; PC2: 10% in Brain 1, 11% in Brain 2; PC3: 5% in
Brain 1, 8% in Brain 2; Supplementary Fig. 8). The spatial organization
of the first three principal components was highly correlated between
brains (Pearson r 5 0.71 for PC1, 0.51 for PC2 and 0.70 for PC3).

To examine molecular relationships between different cortical
regions, we applied multi-dimensional scaling (MDS; Supplemen-
tary Methods 3) to the samples of Brain 1 to visualize their genetic
correlations along the directions of the first two (2D) or three (3D)
principal components. Remarkably, the transcriptional relationships
between samples recapitulate the spatial topography of the neocortex,
as qualitatively illustrated after sample mapping in 2D (Fig. 6e). The

relative positions of samples in the MDS plot mirror the actual
positions of the gyri in the physical brain, shown in Fig. 6d on the
MRI of the brain from which the samples were derived. Not only do
samples from each lobe group together, but the relative positions of
the lobes are anatomically correct. Furthermore, the relative position
of each lobe’s samples reflects the cortical topography, with the frontal
pole and occipital striate cortex at opposite ends, precentral gyrus
near postcentral gyrus, and so on. To provide a quantitative measure
of this result we then applied the MDS method in 3D. As the positions
of the samples were mapped back into MRI coordinate space, the
correlation between ‘genetic distance’ and physical distance can be
calculated after projecting the original cortical samples to a sphere
and applying suitable rotation and scaling operations (Supplemen-
tary Methods 3). MDS-based sample correlations vary nearly linearly
with 3D physical distance (Fig. 6e, inset), with a goodness of
fit between native and MDS coordinates of 28.36% (P , 1024,
Supplementary Fig. 9). This effect is strongest when limited to genes
that are differential between gyri as above, but can also be seen using
the entire ,30,000 gene set, achieving a fit of 12.48% between native
and MDS coordinates (P , 1024, Supplementary Fig. 10). Therefore,
gene expression profiles substantially determine position on the
cortical sheet.
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Discussion
Molecular studies of human tissues are necessary for understanding
the details of human brain function in the context of specific pathways
and cell types and how they are affected in disease conditions. Here we
describe the creation of an anatomically comprehensive transcriptional
map in a small number of carefully selected, clinically unremarkable
specimens, applying standardized digital molecular brain atlasing
methods used in model organisms3,24,25. The combination of
histology-guided fine neuroanatomical molecular profiling and
mapping of gene expression data into MRI coordinate space produced
an anatomically accurate quantitative map of transcript distribution
across the entire human brain. This strategy was borne out in the
robust differential molecular profiles of cytoarchitecturally and func-
tionally distinct nuclei, providing a high-resolution genome-wide map
of transcript distribution and the ability to analyse genes underlying
the function of specific brain regions. Similar application of RNA
sequencing methods26,27, which were cost-prohibitive and technologic-
ally immature when the project was initiated, holds great promise for
elucidating finer details of transcriptional regulation in the future.

Regional transcriptional signatures are highly conserved between
the two brains assayed. These two individuals were males of similar
age and ethnicity and therefore do not capture population or sex
diversity; nevertheless, this high degree of similarity is suggestive of a
strong underlying common blueprint for the human brain transcrip-
tome and is consistent with other recent studies of human neocortical
gene expression4,5. The availability of an entire hemisphere of a third
brain specimen, as remarked above, enabled several confirmatory
analyses to be performed. In particular, Supplementary Figs 11–13
report positively on the network analyses, structural variation of gene
expression, and genetic topography of the neocortex. In summary, the
high recapitulation of gene expression patterns across all three brains
indicates that the basic transcriptional blueprint is robust across indi-
viduals. Ongoing work is focused on processing additional brains of
both sexes to estimate the consistency of this blueprint.

The primary feature that distinguishes the human brain from that
of other species is the enormous expansion of the neocortex relative to

total brain volume. Our extensive profiling allowed us to ask directly
how transcription varies across the neocortex. Surprisingly, we find a
remarkable degree of transcriptional uniformity compared to other
brain regions, apparently reflecting the similarity in laminar architec-
ture across the entire neocortex28. However, there is significant, albeit
less robust, variation in gene expression across cortical areas with two
hallmark features. First, individual cortical samples showed such
strong transcriptional similarities to neighbouring samples that the
topography of the neocortex as a whole can, in part, be reconstructed
based on their molecular profiles. One possible explanation is that
these proximity relationships mirror lineage relationships of neocor-
tical neurons generated from proximal parts of the developing
neuroepithelium. Second, some primary sensory and motor regions
do have distinct whole-transcriptome signatures, probably related to
their specialized cellular and functional architecture. It is also likely
that other more subtle features of cortical parcellation may not have
been detected in the current analysis, including those identified using
neurotransmitter receptor distributions29 and functional connectivity30.
One issue is that gyral patterns do not correlate perfectly with either
cytoarchitectural or functional cortical parcellation. Greater regional
differences may emerge if the samples can be grouped either by
Brodmann area or on the basis of correlation to functional parcellations
derived from functional imaging studies, now possible given the
mapping of these data to MRI coordinates. Furthermore, it is likely
that greater variation across areas will be found when assayed at the
level of specific cortical cell types, as the excitatory neuron types in
different layers display highly distinct molecular profiles31 that have
been shown to vary significantly across areas in primate neocortex23.
Finally, higher confidence in consistent regional differences should
emerge as more samples are investigated32. Nevertheless, the relative
homogeneity of the two largest neuronal structures, with ,69 billion
(cerebellar cortex) and ,16 billion (cortex) neurons out of the 86
billion neurons in the human brain33, is striking and suggests an evolu-
tionary expansion of a canonical cortical blueprint34.

Finally, these data allow comparisons between humans and other
animals, with particular relevance for studies of human disease. The
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current manuscript describes a human-specific pattern for CALB1 in
the hippocampus compared to mouse and rhesus monkey. There are
certain to be many such differences. In this light, these data should be
extremely valuable from a translational perspective, allowing analysis
of candidate genes and functional parcellation derived from genetic
and imaging studies, and as a baseline for investigating neurological
and neuropsychiatric disease.

METHODS SUMMARY
Anatomically comprehensive transcriptional profiling of adult human brains
used high-throughput tissue processing and data generation pipelines for post-
mortem brain imaging, anatomical delineation, sample isolation and microarray
analysis. Data visualization and mining tools were developed to create a publicly
accessible data resource (http://human.brain-map.org/). Extensive methodo-
logical details are supplied in Supplementary Methods 1.
Post-mortem tissue acquisition and screening. Tissue was provided by NICHD
Brain and Tissue Bank for Developmental Disorders and the University of
California, Irvine Psychiatry Brain Donor Program. After obtaining informed
consent from decedent next-of-kin, specimens with no known neuropsychiatric
or neuropathological history were collected and underwent serology, toxicology
and neuropathological screening, and testing for RNA quality (RNA integrity
number .6). Tissue collection was approved by Institutional Review Boards of
the Maryland Department of Health and Hygiene, University of Maryland
Baltimore and University of California Irvine. Specimens for microarray profiling

were a 24-year-old African American male (Brain 1), a 39-year-old African
American male (Brain 2), and a 57-year old Caucasian male (Brain 3;
Supplementary Table 1).
Sample processing. Brains were imaged in cranio using MRI, cut into 0.5–
1.0-cm-thick slabs and frozen. Slabs were subdivided and sectioned to allow
histological staining, anatomical delineation and sample isolation using macro-
dissection or laser microdissection. Total RNA was isolated and microarray data
were generated by Beckman Coulter Genomics on Agilent 8 3 60K custom-
design arrays (AMADID no. 024915). Sample locations were mapped from
histology data into MR space using Inkscape (http://www.inkscape.org) and
BioImage Suite (http://www.bioimagesuite.org) (Supplementary Methods 1).
Microarray data analysis. Weighted Gene Coexpression Analysis (WGCNA)
was performed as described (Supplementary Methods 2)16,17,20. Module charac-
terizations used Enrichment Analysis Systematic Explorer35. R (http://www.r-
project.org/) was used for analysis and visualization (Supplementary Methods
2), principal component analysis (PCA), multidimensional scaling (MDS), and to
transform MDS embedding into MNI space (Supplementary Methods 3).
In situ hybridization. In situ hybridization used a semi-automated non-isotopic
technology platform1.
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