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a b s t r a c t

To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this
paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for
an active vibration isolator using a single-axis active hard mount. The hard mount provides a stiff support
while an active control system is used to get the desired isolation performance. In our previous work, we
showed that a sensor fusion control strategy for active hard mounts can be used to realize three
performance objectives simultaneously: providing isolation from floor vibrations, achieving a low
sensitivity for direct disturbance forces, and adding damping to internal modes of the supported
precision machine. In the present work, an enhanced control strategy is presented, referred to as two-
sensor control. We will show that two-sensor control outperforms sensor fusion, because it has more
possibilities for loop-shaping and has better stability properties. The two-sensor control strategy is
successfully validated on an experimental setup.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration isolators are widely used in high-precision machines
(e.g. wafer scanners) (Heertjes, de Graaff, & van der Toorn, 2005).
Passive isolators consist of physical springs and dampers between
the floor and the supported machine (Rivin, 2003). Such isolators
can only reach a limited performance because a large passive
damping of the suspension mode leads to less vibration isolation
at high frequencies (Karnopp & Trikha, 1969). Active isolators
contain, in addition to physical springs, a control system to realize
active vibration control.

For vibration isolators in general it holds that vibration isola-
tion is obtained above

ffiffiffi
2

p
times the system0s suspension fre-

quency, which is calculated as the square root of the support
stiffness divided by the supported mass. To obtain a low suspen-
sion frequency (typically 1–2 Hz) the machine is usually mounted
on low-stiffness springs, the so-called soft mounts (Heertjes et al.,
2005). However, the low support stiffness introduces leveling
problems, and it also makes the machine susceptible to direct
disturbance forces (e.g. caused by cables, accelerating stages, etc.)
(van der Poel, 2010). An alternative approach is using active hard
mounts (Beard, Schubert, & von Flotow, 1994; Nelson, 2002;
Tjepkema, van Dijk, & Soemers, 2011; van der Poel, 2010), which
provide a much stiffer support. Due to the higher suspension
frequency (typically 10–20 Hz) the transmissibility of floor

vibrations must be actively reduced to make it comparable to that
of soft mounts (Tjepkema et al., 2011). A consequence of actively
reducing the suspension frequency is that internal modes are also
lowered in frequency and remain poorly damped (Tjepkema et al.,
2011; van Dijk, 2009). Poorly damped internal modes result in a
relatively large internal deformation and settling time, and as a
consequence a relatively large misalignment within the machine
(Holterman & de Vries, 2004).

To improve the performance of active hard mounts, we present
a two-sensor control strategy that satisfies three performance
objectives simultaneously: (1) realizing a low-frequency and well-
damped suspension mode to obtain a low transmissibility of floor
vibrations, (2) providing a stiff support, and (3) increasing the
damping of internal modes. We will show that we can damp
internal modes of active hard mounts by damping the anti-
resonances in the control loop. We will show also that this is
not possible when only a single sensor is used. The two-sensor
control strategy results always in a stable system as long as the
sensors and actuators are collocated. The controller needs no
prior knowledge of the internal modes, therefore no detailed
model is needed and model uncertainties do not limit the
performance of the controller. The two-sensor control strategy
presented in this paper is developed from the sensor fusion
control strategy presented in our previous work (Tjepkema
et al., 2011). Using sensor fusion, the outputs of an accelerometer
and a force sensor are merged and fed back to a single-input
single-output (SISO) controller. Using two-sensor control, sepa-
rated feedback controllers are designed for each sensor signal,
resulting in a multiple-input–single-output (MISO) controller.
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Therefore two-sensor control has more possibilities for loop
shaping and better stability properties.

Two-sensor control by combining absolute motion feedback
(e.g. using a geophone or accelerometer) and force feedback has
already been used in several applications for vibration isolation.
Among others, Gardonio, Elliott, and Pinnington (1997) studied the
combination of velocity feedback and force feedback to reduce the
structural power transmission from a vibrating source to a receiv-
ing plate. Hauge and Campbell (2004) used two-sensor control for
vibration isolation in aerospace equipment to profit from the low-
frequency performance of a geophone and the high-frequency
robustness of a load cell. Pantazi, Sebastian, Pozidis, and
Eleftheriou (2005) used two-sensor-based H1 control such that
they can use different sensors for the low- and high-frequency
range to determine the position of a probe storage. El-Sinawi
(2004) and van der Poel (2010) use two-sensor control to realize a
feedforward-feedback controller for active vibration isolation,
using a floor sensor for feedforward and a machine sensor for
feedback control. However, none of the two-sensor control stra-
tegies described in these references can be used directly for
simultaneously realizing the three mentioned performance objec-
tives as mentioned above. Therefore we present in this paper a
two-sensor control strategy which specifically aims at simulta-
neously realizing these three performance objectives.

This paper is organized as follows. Section 2 describes the
limitations of single-sensor control. The two-sensor control strat-
egy is explained and compared to sensor fusion in Section 3. The
validation of the proposed control strategy on an experimental
setup is described in Section 4. Sections 5 and 6 present a
discussion and the conclusions, respectively.

2. Feedback control using a single sensor

This section starts with a description of the plant model for active
hard mounts and a definition of the performance objectives. Subse-
quently the controllers for single-sensor control are designed. The
section ends with discussing the limitations of single-sensor control.

2.1. Description of the plant

To model a machine supported by an active vibration isolator, a
rigid-body model can be used as shown in Fig. 1. The model
consists of a rigid body with machine mass m on a hard mount
with stiffness k1. The actuator produces a force Fa and is assumed
to behave as an ideal actuator within the bandwidth of the
controller. The position of m can be disturbed by a floor motion
x0 (broadband floor vibrations) and a direct disturbance force Fd
(originating from moving stages, acoustical noise, etc.). Since
practical vibration isolators contain parasitic stiffness paths (e.g.
originating from cables and guidances), a small parasitic stiffness
kp is taken into account. Measurements are taken from an accel-
erometer €x1 onm and a force sensor Fs located between the mount

and m. The stiffness of the force sensor is considered to be infinite.
No physical damper is present since the suspension mode is
actively damped and the mechanical damping of a physical spring
is assumed to be negligible. It is assumed that the floor can be
considered as an ideal displacement source. Since precision
machines are usually placed on stiff and heavy floors, the effect
of the actuator force Fa on the floor displacement is negligible,
which justifies this assumption (van der Poel, 2010).

To model an internal mode of the machine, a flexible-body
model, as in Fig. 2, can be used. Therefore the supported machine
massm is split into two separate massesm1 andm2 connected by a
spring with stiffness k2. Numerical values for this model are listed
in Table 1. These numbers correspond to the values of the
experimental setup used in Section 4. With these values of the
masses and the stiffnesses, the suspension frequency of the
machine is 13 Hz, while the internal mode has a resonance
frequency of 93 Hz. This suspension frequency is typically for an
active hard mount vibration isolator (Tjepkema et al., 2011) and
93 Hz is typical for a first resonance frequency of the internal
mode of a precision machine (Holterman & de Vries, 2004). A
parasitic stiffness of 1% of the value of suspension stiffness k1 is
taken into account. Table 1 also contains numerical values for an
ideal soft mount system, which will be used as a reference system.
The ideal active soft mount system has a suspension frequency of
1 Hz with 70% skyhook damping (Tjepkema et al., 2011).

2.2. Performance objectives

To analyze the performance of the vibration isolator, three
transfer functions are defined as performance objectives. The first
function is the transmissibility, describing the response of the
machine to floor vibrations:

TðsÞ �
€X1ðsÞ
€X0ðsÞ

: ð1Þ

Note that €X1ðsÞ is a short notation for s2X1ðsÞ. The second function
is the compliance, describing the response of the machine to direct
disturbance forces:

CðsÞ � X1ðsÞ
FdðsÞ

: ð2Þ

The third function is the deformation transmissibility, describing
the response of internal machine deformations (ΔXðsÞ ¼ X2ðsÞ�
X1ðsÞ) due to floor vibrations:

TdðsÞ �
ΔXðsÞ
€X0ðsÞ

: ð3Þ

A high deformation transmissibility leads to internal deformations,
and thus performance limitation because of misalignment in the
machine.

Fig. 1. Rigid-body model for active vibration isolation with (a) acceleration feedback and (b) force feedback. The active hard mount is modeled as an actuator force Fa and
a high-stiffness spring k1. Mass m represents the suspended machine, spring kp represents a parasitic stiffness.
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2.3. Controller design

This section describes the controllers for single-sensor control
using either acceleration or force feedback. The controllers are
used to lower the suspension frequency of the hard mount and to
add damping to the suspension mode.

2.3.1. Acceleration feedback
For acceleration feedback by measuring €x1, the following PI

controller can be used to fulfill the requirements (Tjepkema et al.,
2011):

H €X 1
ðsÞ ¼ FaðsÞ

€X1ðsÞ
¼ � Kaþ

Kv

s

� �
: ð4Þ

A physical interpretation of this PI controller is the addition of
virtual mass by the proportional (P) action to lower the suspension
frequency, and virtual sky-hook damping by the integral (I) action
to damp the suspension mode (van Dijk, 2009). The numerical
values for Ka and Kv depend on the desired closed loop transmis-
sibility, i.e. the closed loop suspension frequency and its relative
damping. Therefore an expression for the closed loop transmissi-
bility is derived first. The derivation starts with the Laplace
transform of the equation of motion for the rigid-body model
(Fig. 1):

ðms2þk1þkpÞX1ðsÞ ¼ ðk1þkpÞX0ðsÞþFaðsÞþFdðsÞ: ð5Þ
Next, substitute FaðsÞ ¼H €X 1

ðsÞ €X1ðsÞ in (5), with H €X 1
ðsÞ as given in

(4). After this substitution, the following transmissibility function
is obtained for the closed loop system with acceleration feedback:

TðsÞ ¼
k1þkp
mþKa

s2þ Kv

mþKa
sþk1þkp

mþKa

: ð6Þ

This transfer function can also be written as

TðsÞ ¼ ω2
n

s2þ2ζnωnsþω2
n
: ð7Þ

From (6) and (7), the closed loop suspension frequency ωn and its
relative damping ζn are derived:

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1þkp
mþKa

s
; ð8Þ

ζn ¼
Kv

2ωnðmþKaÞ
: ð9Þ

From (8) and (9) it follows that the closed loop parameters ωn and
ζn can be set to any desired value by choosing the appropriate
values for Ka and Kv. We choose ωn ¼ 1 � 2π rad=s and ζn ¼ 0:7 to
make the transmissibility of an active hard mount system compar-
able to that of an ideal soft mount system. Given these control
objectives, the controller parameters are calculated by rewriting
(8) and (9) and using the numerical values from Table 1:

Ka ¼
k1þkp
ω2

n
�m¼ 9:2� 102; ð10Þ

Kv ¼ 2ζnωnðKaþmÞ ¼ 8:0� 103: ð11Þ
Similar to T(s), the compliance of the closed loop system with
acceleration feedback can be derived from (5):

CðsÞ ¼ 1
ðmþKaÞs2þKvsþðk1þkpÞ

: ð12Þ

The static compliance (Cðs-0Þ) equals 1=ðk1þkpÞ. This implies that
the control system with acceleration feedback does not negatively
affect the desired high static stiffness of the passive hard mount.

2.3.2. Force feedback
Using force feedback, the normal force measured by Fs(s) can be

expressed as the sum of actuator force Fa(s) and the normal force
in spring k1, see Fig. 1:

FsðsÞ ¼ FaðsÞ�k1ðX1ðsÞ�X0ðsÞÞ: ð13Þ
Combining (13) and (5) leads to an alternative expression for Fs(s):

FsðsÞ ¼ms2X1ðsÞþkpðX1ðsÞ�X0ðsÞÞ�FdðsÞ: ð14Þ
If one neglects the contributions of kp and Fd in (14), it follows that
the sensors Fs and €x1 measure the same signals except for a gain m.
Therefore controller (4), which was designed for acceleration
feedback, can also be used for force feedback when it is scaled
with 1=m:

HFs ðsÞ ¼
FaðsÞ
FsðsÞ

¼ � 1
m

KaþKv

s

� �
: ð15Þ

Numerical values for Ka and Kv are directly adapted from (10) and
(11), respectively. To obtain the closed loop transfer functions of
T(s) and C(s) in the case of force feedback, substitute FaðsÞ ¼
HFs ðsÞFsðsÞ in (5), whereby an expression for HFs ðsÞ is found in (15)
and an expression for FsðsÞ is found in (14). The closed loop
transmissibility reads then

TðsÞ ¼
k1

mþKa
þkp
m

1þ Kv

ðmþKaÞs

� �

s2þ Kv

mþKa
sþ k1

mþKa
þkp
m

1þ Kv

ðmþKaÞs

� �: ð16Þ

Assuming Kv¼0, (16) can be written in the form of (7), hence an
expression for the undamped suspension frequency is obtained for
the closed loop system with force feedback:

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

mþKa
þkp
m

s
: ð17Þ

It follows from (17) that the suspension frequency is limited by the
factor kp=m when force feedback is used. The compliance for the
closed loop system with force feedback equals

CðsÞ ¼
1
m

1þ Kv

ðmþKaÞs

� �

s2þ Kv

mþKa
sþ k1

mþKa
þkp
m

1þ Kv

ðmþKaÞs

� � : ð18Þ

Fig. 2. Flexible-body model, containing one internal mode (acceleration feedback).
In contrast with the rigid-body model from Fig. 1, the machine is modeled now as
two masses, m1 and m2, connected by an internal machine stiffness k2.

Table 1
Mass and stiffness properties of hard and soft mount systems.

System m1 (kg) m2 (kg) k1 (N/m) k2 (N/m) kp (N/m)

Hard mount 2.8 2.6 36 000 450 000 360
Soft mount 2.8 2.6 213 450 000 0
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For force feedback, the static compliance (Cðs-0Þ) equals 1=kp.
This means that for force feedback, in contrast with acceleration
feedback, the control system significantly increases the static
compliance. Because of the limitations in ωn and C(s) for force
feedback, acceleration feedback is preferred over force feedback.

2.3.3. Stability improvement
The controllers (4) and (15) are extended with filters to

improve the stability properties of the control system. To prevent
actuator saturation, the controller gain is penalized by a second-
order high-pass filter at 0.1 Hz (ωl ¼ 0:1 � 2π rad=s, ζl ¼ 0:7). This
filter frequency is a factor 10 lower than the desired suspension
frequency (1 Hz), so the filter will not influence the controller
action at the suspension frequency. At high frequencies, the
controller bandwidth is limited by a second-order low-pass filter
to prevent stability problems due to non-modeled high-frequency
dynamics and sensor noise. The corner frequency of the low-pass
filter is set to 20 Hz (ωf ¼ 20 � 2π rad=s), resulting in an attenua-
tion of 50 dB in the transmissibility [ðωf =ωnÞ2 ¼ ð20=1Þ2 ¼
400450 dB]. An attenuation level of 50 dB is comparable to the
attenuation provided by soft mount systems (Tjepkema et al.,
2011). The relative damping ζf of the low-pass filter can be set to
any value. In this paper ζf ¼ 0:07 is used. A lower value of ζf results
in more vibration isolation in the frequency range around ωf.
Finally, a zero at 290 Hz (ωz ¼ 290 � 2π rad=s) is added to improve
the phase margin around the high cross-over frequency, which is
the frequency where the magnitude of the loop gain (explained
later) is equal to one. The improved controllers for acceleration
feedback and force feedback are

H €X 1 ;r
ðsÞ ¼ � Kaþ

Kv

s

� �
s2

s2þ2ζlωlsþω2
l

ω2
f

s2þ2ζfωf sþω2
f

sþωz

ωz
; ð19Þ

HFs ;rðsÞ ¼
1

m1þm2
H €X 1 ;r

ðsÞ: ð20Þ

The corresponding loop gains are

L €X 1
ðsÞ ¼ G €X 1

ðsÞH €X 1 ;r
ðsÞ; ð21Þ

LFs ðsÞ ¼ GFs ðsÞHFs ;rðsÞ: ð22Þ
Expressions for the transfer functions G €X 1

ðsÞ ¼ €X1ðsÞ=FaðsÞ and
GFs ðsÞ ¼ FsðsÞ=FaðsÞ can be derived by analyzing the equations of
motion of the flexible-body model in Fig. 2. The loop gains are
plotted in Fig. 5.

2.4. Modeling results

In Fig. 3 the performance of hard mount systems is compared
to that of an ideal soft mount system for which the values are
listed in Table 1. The passive soft mount system already has

a suspension frequency of 1 Hz, so its control system only has to
provide sky-hook damping. This is realized by using controller (4)
for the soft mount with Ka ¼ 0 and Kv according to (9).

Fig. 3(a) shows the transmissibility T(s). The transmissibility of
the active hard mount system with acceleration feedback and the
active soft mount system are comparable in the frequency range
up to 20 Hz. Beyond 20 Hz, the controller action of the hard mount
is cut off by the low-pass filter in (19). The transmissibility of the
active hard mount system with force feedback is not as desired,
since the achievable suspension frequency is limited by the
parasitic stiffness, see (17).

Fig. 3(b) shows the compliance C(s). Using acceleration feed-
back, the static compliance is 1=ðk1þkpÞ, see (12), which is as
desired. Using force feedback, the static compliance is 1=kp, see
(18). The static compliance of the soft mount is about 170 times
higher than that of the hard mount.

Fig. 3(c) shows the deformation transmissibility TdðsÞ. Com-
pared to the soft mount, the magnitude at the resonance fre-
quency of the internal mode of active hard mounts is much higher
for both acceleration feedback (at 66 Hz) and force feedback (at
92 Hz), which is undesired. For acceleration feedback, the internal
mode is lowered in frequency, which is also undesired. Both
feedback strategies fail to damp the internal mode.

3. Two-sensor control (TSC)

In Section 2.2, three performance objectives for active hard
mount systems are defined. Section 2.4 shows that at best only
two of these objectives, i.e. a low transmissibility and a low
compliance, can be satisfied simultaneously with single-sensor
control. In this section, it will be shown that it is possible to satisfy
all three performance objectives simultaneously when using two-
sensor control (TSC). In this paper, TSC is a combination of
acceleration feedback and force feedback. This section describes
how TSC can be used to increase the damping of an internal mode,
gives a stability analysis of TSC, and shows how TSC can be used to
satisfy all three performance objectives simultaneously. At the end
of this section, it is shown that TSC outperforms the sensor fusion
strategy described in Tjepkema et al. (2011).

3.1. Adding damping to internal modes

Consider the closed loop system in Fig. 4. The plant transfer
functions Gij(s), from input j to output i, can be derived from the
model in Fig. 2. The plant has three inputs, i.e. a floor acceleration
€X0ðsÞ, a direct disturbance force Fd(s), and an actuator force Fa(s).
The plant has three outputs, i.e. the accelerometer €X1ðsÞ, the force
sensor Fs(s), and a virtual measurement of the internal deforma-
tion ΔXðsÞ. From SISO control systems it is known that the closed

Fig. 3. Bode magnitude plot for comparing the performance of passive and active hard mount systems with the performance of an ideal soft mount (Ref. S.M.) system. The
performance is assessed by means of the transmissibility (left), compliance (middle) and deformation transmissibility (right).
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loop transfer function from €X0ðsÞ to ΔXðsÞ equals the open loop
transfer function G31ðsÞ ¼ΔXðsÞ= €X0ðsÞ scaled with the sensitivity
function 1=ð1þLðsÞÞ. In Appendix A it is shown that the same
relation holds in the case of two controlled outputs:

ΔXðsÞ
€X0ðsÞ

 !
c:l:

¼ 1
1þLðsÞG31ðsÞ: ð23Þ

where c.l. stands for closed loop, and the total loop gain L(s) is the
sum of L €X 1

ðsÞ and LFs ðsÞ as defined by (21) and (22), respectively.
From (23) it can be concluded that a high magnitude of L(s) results
in a strong attenuation of internal deformation. On the other hand,
if LðsÞ-0, such as in the case of a poorly damped anti-resonance
frequency, there is no active attenuation of internal deformations.
Therefore, L(s) should not contain poorly damped anti-resonances
in the frequency range where internal modes must be damped.
Fig. 5 shows the bode plots for L €X 1

ðsÞ and LFs ðsÞ, in the case of
single-sensor control defined by (21) and (22), respectively, and
the sum LðsÞ ¼ L €X 1

ðsÞþLFs ðsÞ. From Fig. 5 it is observed that both
L €X 1

ðsÞ and LFs ðsÞ contain anti-resonances, but that they differ in
frequency. The frequencies of these anti-resonances are approxi-
mated (see Tjepkema et al., 2011) as

ωa; €X 1
¼

ffiffiffiffiffiffiffi
k2
m2

s
¼ 66 Hz; ð24Þ

ωa;Fs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
m2

1þm2

m1

� �s
¼ 92 Hz: ð25Þ

Fig. 5 also shows that an anti-resonance in L(s) appears at 76 Hz,
because at this frequency both L €X 1

ðsÞ and LFs ðsÞ have the same
magnitude (22 dB) but opposite sign due to a 1801 phase differ-
ence. A method to circumvent such anti-resonances caused by

a 1801 phase difference, without precisely knowing the internal
resonances of the plant, is realizing a 901 phase difference
between L €X 1

ðsÞ and LFs ðsÞ. In the complex s-plane this is interpreted
as the summation of two perpendicular vectors, which can never
result in a zero value. This method is illustrated by the example in
the following subsection.

3.1.1. Example: damping the internal mode
As an example, consider the controllers H €X 1 ;ex

ðsÞ ¼ 106=s2 and
HFs ;exðsÞ ¼ 500/s for acceleration feedback and force feedback,
respectively. The corresponding bode plots are given in Fig. 6. In
this example, H €X 1 ;ex

ðsÞ has a roll-off rate of �40 dB/decade and
HFs ;exðsÞ has �20 dB/decade. Both controllers are 901 out-of-phase
in the complete frequency range. The corresponding loop gains are
given in Fig. 7. In the frequency range between ωa; €X 1

(66 Hz) and
ωa;Fs (92 Hz), the phase difference between L €X 1 ;ex

ðsÞ and LFs ;exðsÞ is
equal to þ901, elsewhere the phase difference is �901. From Fig. 7
it is observed that this method performs well since LexðsÞ ¼
L €X 1 ;ex

ðsÞþLFs ;exðsÞ has no poorly damped anti-resonances anymore.
From the theory in the previous subsection it follows that this is
equivalent to adding damping to the internal modes.

This example shows that it is possible to damp anti-resonances
in the control loop using two-sensor control. This is possible
because the anti-resonance frequencies are not closely located to
each other (66 Hz vs. 92 Hz). However, when the anti-resonance
frequencies almost coincide, neither acceleration feedback nor
force feedback can put a strong control action to the system at

Fig. 4. Closed loop system with two-sensor control. The plant transfer functions
Gij(s) can be derived from the model in Fig. 2; the feedback controllers are H €X 1

ðsÞ
and HFs ðsÞ. The Laplace operator ðsÞ has been omitted in the figure.

Fig. 5. Bode diagram of the loop gains for acceleration feedback (gray solid line),
force feedback (gray dashed line) and the total loop gain (black solid line). Notice
the different anti-resonance frequencies for acceleration feedback (66 Hz) and force
feedback (92 Hz). Also notice the anti-resonance in L(s) at 76 Hz, caused by the 1801
phase difference between L €X 1

ðsÞ and LFs ðsÞ while the gain is the same for L €X 1
ðsÞ and

LFs ðsÞ.

Fig. 6. Example bode diagram of an acceleration feedback controller (solid line)
and a force feedback controller (dashed line) satisfying the 901 out-of-phase
property. This property is used to damp internal modes of the suspended machine.

Fig. 7. Corresponding loop gains for the controllers shown in Fig. 6. L €X 1 ;ex
ðsÞ is the

loop gain for acceleration feedback, LFs ;exðsÞ is for force feedback, and
LexðsÞ ¼ L €X 1 ;ex

ðsÞþLFs ;exðsÞ is for two-sensor control. It appears that Lex(s) has no
poorly damped anti-resonance anymore, because of the 901 out-of-phase property.

M.A. Beijen et al. / Control Engineering Practice 26 (2014) 82–9086



that frequency. The result is that the summed loop gain will still
have an anti-resonance at that specific frequency, leading to an
internal mode that is still poorly damped. In our example, the anti-
resonances are located far enough from each other because the
mass ratio m2=m1 is sufficiently large.

3.2. Stability analysis

In Fig. 6, the roll-off rates are �40 dB/decade for H €X 1 ;ex
ðsÞ and

�20 dB/decade for HFs ;exðsÞ. From a stability point of view, this is
the only possible combination of roll-off rates. Suppose, as an
alternative, a �20 dB/decade rate for H €X 1 ;ex

ðsÞ and a 0 dB/decade
rate for HFs ;exðsÞ. Then the 901 phase difference is still achieved, but
the force feedback loop has no roll-off anymore. This results in an
infinite bandwidth of the force feedback loop and therefore
stability problems due to higher-order dynamics and sensor noise.
Another alternative could be a roll-off rate of �60 dB/decade for
H €X 1 ;ex

ðsÞ and �40 dB/decade for HFs ;exðsÞ, but this can lead to
stability problems due to the crossing of the �1801 phase line of
Lex(s).

Using a roll-off rate of �40 dB/decade for H €X 1 ;ex
ðsÞ and �20 dB/

decade for HFs ;exðsÞ, stability of the closed loop system is guaran-
teed if the sensors and actuators are collocated. A property of
collocated control is that variations in the phase ϕ due to internal
modes are always in between ϕ and ϕþ1801. The loop gains of the
system are designed such that for acceleration feedback ϕ¼�1801
and for force feedback ϕ¼�901, see Fig. 7. This means that, for
collocated control, the phases of our example loop gains L €X 1 ;ex

ðsÞ
and LFs ;exðsÞ do not drop below �1801. Therefore, the phase of
Lex(s) will not drop below ϕ¼�1801, because the phase of Lex(s) is

always in between the phases of L €X 1 ;ex
ðsÞ and LFs ;exðsÞ, see Fig. 7.

This implies that the closed loop system with TSC is stable.

3.3. Controller design and modeling results

To satisfy all three performance criteria from Section 2.2
simultaneously, acceleration feedback (Section 2) is used for low
frequencies and TSC (Section 3.1) is used for high frequencies. TSC
restricts the roll-off rate for the acceleration feedback controller to
�40 dB/decade (phase �1801) and for the force feedback con-
troller to �20 dB/decade (phase �901) at high frequencies.

The acceleration feedback controller from (19) can be used for
TSC if the zero at 290 Hz is removed. This zero must be removed to
preserve the �40 dB/decade roll-off at high frequencies. The
resulting controller reads

H €X 1 ;TSC
ðsÞ ¼ � Kaþ

Kv

s

� �
s2

s2þ2ζlωlsþω2
l

ω2
f

s2þ2ζfωf sþω2
f

: ð26Þ

The force feedback controller (20) for single-sensor control is not
used for TSC, because it has no longer the role of adding virtual
mass and sky-hook damping. At low frequencies the controller
gain for force feedback must be limited to prevent distortion of the
compliance. This is realized by a second-order high-pass filter with
a corner frequency of 20 Hz (ωf ¼ 20 � 2π rad=s) and a small
relative damping ζf ¼ 0.07. These values are identical to the
values of the second-order low-pass filter in (26) to create the
same behavior in the drop of the phase angle around 20 Hz. To
realize the desired roll-off rate of �20 dB/decade at high

Fig. 8. Bode diagram of the designed controllers for two-sensor control (kf¼20). At
low frequencies, acceleration feedback is dominant because force feedback suffers
from parasitic stiffness effects. At high frequencies, the 901 out-of-phase property
between acceleration feedback and force feedback is obtained.

Fig. 9. Bode magnitude plots showing the influence of a varying kf on the closed loop performance using two-sensor control (TSC), i.e. transmissibility (left), compliance
(middle) and deformation transmissibility (right). The line passive refers to a passive hard mount vibration isolator, the line SF refers to sensor fusion.

Fig. 10. Bode diagram showing the influence of a varying kf on the loop gain for
two-sensor control. On the one hand, a higher kf results in more damping of the
anti-resonance, but on the other hand also the cross-over frequency increases,
resulting in a higher bandwidth of the control system. The figure also shows the
loop gain when using sensor fusion. In the latter case, the phase angle crosses the
�1801 line, which can result in an unstable system.
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frequencies, an additional first-order low-pass filter with a corner
frequency of 20 Hz (ωf ¼ 20 � 2π rad=s) is used. The result is the
following force feedback controller:

HFs ;TSCðsÞ ¼ kf
s2

s2þ2ζfωf sþω2
f

ωf

sþωf
: ð27Þ

Fig. 8 shows bode plots of controllers (26) and (27). The
controller gain kf can be used to tune the loop gain, see Fig. 10,
and the performance, see Fig. 9. The transmissibility is hardly
affected by the choice of kf, see Fig. 9(a). An increased value for kf
results in a higher compliance, see Fig. 9(b), but also in more
damping of the internal mode, see Fig. 9(c). From the loop gain
plot in Fig. 10 it is observed that an increased value for kf results in
a higher crossover frequency and therefore a higher control
bandwidth, but also in more damping of the anti-resonance at
66 Hz (see (23)). The damping of the anti-resonance in the loop
gain is coupled to the damping of the internal mode in Fig. 9(c).
For the experimental validation described in the next section, the
value kf ¼ 20 will be used, since it is a good compromise between
damping of the internal mode, the compliance and the controller
bandwidth.

3.4. Comparison with sensor fusion

Section 3.3 shows that two-sensor control (TSC) can be used to
realize all three performance objectives from Section 2.2 simulta-
neously. In our previous work (Tjepkema et al., 2011), we showed
that Sensor Fusion (SF) leads to similar results for active hard
mount systems. The performance of the closed loop system with
sensor fusion is also shown in Fig. 9. Using SF as described in
Tjepkema et al. (2011), the sensor signals of €x1 and Fs are merged
using complementary filters (a low-pass filter and high-pass filter
of which the sum equals one). Signal €x1 is low-pass filtered and Fs
is high-pass filtered and scaled with the total machine mass. The
merged signal is fed back to a controller similar to (19). This is
effectively the same as implementing the following controllers for
acceleration and force feedback in the case of sensor fusion:

H €X 1 ;SF
ðsÞ ¼H €X 1 ;r

ðsÞ ωp

sþωp
; ð28Þ

HFs ;SF ðsÞ ¼
1

m1þm2
H €X 1 ;r

ðsÞ s
sþωp

ð29Þ

with H €X 1 ;r
ðsÞ as described by (19), andωp is the corner frequency of

the complementary filters. Yet we will show that TSC is preferred
over SF.

The first reason to prefer TSC over SF is an enhanced freedom in
controller design. TSC is based on a 901 phase-difference between
acceleration feedback and force feedback to damp internal modes
at high frequencies. Using TSC, the controller structure may be
completely different at low frequencies. With SF, the controller
structure for acceleration feedback and force feedback is the same
in the complete frequency range, except for the complementary
filters. Therefore SF has an unnecessary constraint on the con-
troller structure. Due to this unnecessary constraint, the gain of
HFs ;SF ðsÞ is much higher than that of HFs ;TSC ðsÞ at low frequencies,
resulting in less performance using SF. This is because force
feedback increases the compliance at low frequencies, see Fig. 3.

The second reason is the stability property of TSC. It is shown
that TSC remains stable as long as the sensors and actuators are
collocated, because then the total loop gain never crosses the
�1801 line. SF does not have this property, because it has a �1801
phase crossing of the total loop gain, see Fig. 10. This is caused by
the low-pass filter at ωp in H €X 1 ;SF

ðsÞ.
The third reason is that TSC can easily be tuned such that

multiple internal modes are damped just by realizing a sufficiently

high total loop gain. This is in contrast with SF which aims at
maximizing the damping of only one internal mode.

4. Experimental validation

An experimental setup, that represents the model of Fig. 2, is
used to validate the designed controllers. The setup is shown in
Fig. 11. In this figure,m0 is the floor body which can be excited by a
shaker. Body m0 is connected to body m1 by a mount that consists
of a voice coil actuator act, generating a force Fa, and a parallel
stiffness k1. Spring k1 is relatively stiff to represent a hard mount.
m1 and m2 are machine bodies interconnected by a compliant
element with stiffness k2. The devices acc: are piezoelectric
accelerometers at m0, m1 and m2. A force sensor frc: is mounted
between act andm1. An additional voice coil actuator vca is used to
apply direct disturbance forces to the system. The bodies are
mounted in a linear guidance to allow motion in one direction
only. To prevent the need for gravity compensation the setup is
placed horizontally. Numerical values for the masses and stiff-
nesses are given in Table 1. The controllers are implemented on a
dSpace digital signal processor using a sample frequency of
12 800 Hz. The measurement signals are fed to a charge amplifier
containing a band-pass filter with corner frequencies 0.1 Hz and
3 kHz. An additional zero at 680 Hz is used in the controllers to
compensate for the induction pole of the voice coil motor.
Furthermore the filter frequency ωl of the high-pass filter in the
acceleration feedback controller (26) is increased from 0.1 Hz to
0.3 Hz to circumvent drift in the controller signal. This drift
originates from the piezoelectric sensors, which give unreliable
measurements at low frequencies.

To determine the (deformation) transmissibility the floor body
is excited by a shaker such that the velocity spectrum of bodym0 is
25 μm=s RMS per 1/3 octave, which is comparable to VC-B curve
excitation as defined by Gordon (1991). To determine the com-
pliance, a direct disturbance force is applied by the additional
voice coil actuator vca. This actuator provides a random signal of
0.3 N RMS.

In practical applications it will be hard to measure Δx. For this
setup there is an indirect method to measure it. This is because the
setup consists of two clearly separated masses m1 and m2. By
neglecting the parasitic stiffness effects of the linear guidance for
mass m2 and analyzing the equation of motion of m2 in Fig. 2,
which is given by

m2
€X2ðsÞ ¼ �k2ΔXðsÞ; ð30Þ

it is observed that Δx can be approximated by scaling €x2 by
a factor �m2=k2. Since measuring €x2 is much easier than Δx,

Fig. 11. Experimental setup for the single-axis active vibration isolator. The setup
corresponds with the flexible-body model from Fig. 2. The setup is aligned
horizontally to prevent gravity compensation.
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the scaled response of €x2 is used to analyze the deformation trans-
missibility.

The performance objectives are determined by calculating
(cross) power spectral densities (PSDs), denoted as Puyðf Þ. Here
f is the frequency in Hertz and u; y are the measured signals. The
estimated transmissibility T̂ ðsÞ, compliance Ĉ ðsÞ and deformation
transmissibility T̂d ðsÞ are calculated by

T̂ ðf Þ ¼ P €x1 €x0
ðf Þ

P €x0 €x0
ðf Þ; ð31Þ

Ĉ ðf Þ ¼ P €x1Fd ðf Þ
PFdFd ðf Þ

1
ð2πf Þ2

; ð32Þ

T̂ dðf Þ ¼
P €x2 €x0

ðf Þ
P €x0 €x0

ðf Þ
m2

k2
: ð33Þ

Notice that the compliance is estimated as Ĉ ðf Þ ¼ Px1Fd ðf Þ=PFdFd ðf Þ
in which Px1Fd ðf Þ ¼ P €x1Fd ðf Þ=ð2πf Þ2. This is equal to integrating
P €x1Fd ðf Þ twice with respect to time. This estimation is used because
it is hard to measure the absolute position x1 directly.

In Fig. 12 the experimental results are compared to the
theoretical values. When evaluating the (deformation) transmis-
sibilities it is observed that the measurements become noisy at
frequencies above 100 Hz. This is because sensor noise dominates
over the actual acceleration level at these high frequencies. At
frequencies below 1 Hz the results become unreliable because the
piezoelectric sensors cannot provide reliable measurements below
1 Hz. In the mid-frequency range (1–100 Hz) the measurements fit
well with the modeling results. Around 20 Hz some additional
peaks due to resonance modes are visible. These modes originate
from motion of the table on which the experimental setup is
mounted. The force sensor is not able to measure and compensate
for this motion, which is transmitted onto the machine bodies by
means of the parasitic stiffness path formed by the linear guidance
(Tjepkema et al., 2011). This phenomenon is a limitation of the
experimental setup and is not expected to occur in practical
vibration isolators. In the deformation transmissibility, the internal
mode is poorly damped when acceleration feedback is used, while
with TSC the mode is damped significantly. As expected from the
model, the resonance peak of the internal mode drops down with
30 dB. The compliance plots in Fig. 12(b) show that for high
frequencies (45 Hz) the compliance is very well estimated by
the model. At low frequencies, the measured compliance deviates
from the modeled compliance and has a certain slope. This is
because the measured compliance is derived from the measured
acceleration €x1 instead of the displacement x1, see (32). At low
frequencies, the actual acceleration level is so small that sensor
noise dominates the measurement, so that the measured accel-
erations no longer represent the actual acceleration level. The

compliance is derived from the acceleration response filtered with
1=ð2πf Þ2, resulting in the slope which is visible in Fig. 12(b) at low
frequencies.

5. Discussion

Although the experimental setup used in this paper is a rough
simplification of a real precision machine, the results have a
generic applicability. The expectation is that in future work the
TSC approach in this paper can be extended to multi-axis systems,
especially when decoupling control is possible. An example of
decoupling control is the modal control approach in van Dijk
(2009). When doing so, the multi-axis control problem reduces to
a set of SISO control problems which can be solved by the TSC
strategy presented in this paper. A similar method is described in
our previous work Tjepkema et al. (2011), where we describe a
method to implement sensor fusion on more realistic multi-axis
systems.

Vibration isolation systems for precision machines usually have
to perform well for floor vibrations as small as VC-E curve
excitation. However, we used a VC-B curve excitation level to
make the effect of two-sensor control more clearly by preventing
the limiting effects of sensor noise and actuator noise showing up
in the results.

We assumed ideal actuator behavior within the bandwidth of
the controller by using a voice coil motor in combination with the
high stiffness of the hard mount. Alternatively, piezo stack actua-
tors with an elastic element in series could have been used as
described in van der Poel (2010). However, in practice, the actuator
will not have an infinite stiffness, which can lead to loss of
collocation. Loss of collocation can be problematic because the
two-sensor control strategy guarantees stability as long as the
system is collocated, see Section 3.2. Linearity of the electronics
could also become a problem if the controller bandwidth becomes
really high. Using additional filtering could be a simple solution to
prevent instability due to parasitic actuator dynamics or non-
linearities in the electronics.

6. Conclusions

Two-sensor control is a promising strategy to damp internal
modes in active hard mount systems, while simultaneously
obtaining a low transmissibility of floor vibrations and a low
compliance. The frequency of the suspension mode is lowered
from 13 Hz to 1 Hz and 70% sky-hook damping is added to this
mode, while the high static stiffness of the passive hard mount is
not affected. Using two-sensor control, damping is added to the

Fig. 12. Bode magnitude plot with experimental results for the closed loop performance, i.e. transmissibility (left), compliance (middle) and deformation transmissibility
(right). TSC represents two-sensor control. In the mid-frequency range, the experiment results show a good fit with the model. At low frequencies and high frequencies,
sensor noise dominates the figure.
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internal mode and the peak value of this resonance is decreased
with 30 dB in contrast with single-sensor control using accelera-
tion feedback. The two-sensor control strategy is successfully
validated on an experimental setup. Compared to sensor fusion,
two-sensor control offers more possibilities for loop shaping and it
has better stability properties.

Appendix A. Derivation of the sensitivity function for
two-sensor control

In this appendix, a relation is derived between the open loop
performance of the internal deformation ΔXðsÞ and the closed
loop performance in the case of two measurement outputs and
one control input. It follows that the closed loop performance
equals the open loop performance scaled with the sensitivity
function 1=ð1þLðsÞÞ, which is the same relation as valid in SISO
systems.

Consider the closed loop plant in Fig. 4 with the symbols as
defined in Section 3.1. The Laplace operator s is omitted. When
neglecting the direct disturbance force Fd, the output ΔX can be
written as

ΔX ¼ G31
€X0þG33Fa ðA:1Þ

The actuator force equals

Fa ¼ �ðH €X 1

€X1þHFsFsÞ ðA:2Þ

The sensor outputs can be expressed as

€X1 ¼ G11
€X0þG13Fa ðA:3Þ

Fs ¼ G21
€X0þG23Fa ðA:4Þ

Eqs. (A.3) and (A.4) are substituted into (A.2):

Fa ¼ �H €X 1
ðG11

€X0þG13FaÞ�HFs ðG21
€X0þG23FaÞ ðA:5Þ

Rewriting (A.5) gives the closed loop transfer function from floor
vibration to actuator force:

Fa ¼ �
H €X 1

G11þHFsG21

1þH €X 1
G13þHFsG23

€X0 ðA:6Þ

This expression for Fa is substituted into (A.1):

ΔX ¼ G31�G33
H €X 1

G11þHFsG21

1þH €X 1
G13þHFsG23

 !
€X0 ðA:7Þ

This means that the closed loop transfer function from floor
motion €X0 to internal deformation ΔX equals

ΔX
€X0

� �
c:l:

¼ G31�G33
H €X 1

G11þHFsG21

1þL
ðA:8Þ

In (A.8) the loop gain L¼H €X 1
G13þHFsG23. To simplify (A.8)

a substitution for G33 is derived:

G33 ¼
ΔX
Fa

¼ΔX
€X0

€X1

Fa

€X0
€X1

¼ G31
G13

G11
ðA:9Þ

Eq. (A.9) is substituted into (A.8):

ΔX
€X0

� �
c:l:

¼ G31 1�
H €X 1

G13þHFsG21
G13

G11

1þL

0
BB@

1
CCA ðA:10Þ

In a similar way as in (A.9) it can be shown that G21G13=G11 ¼ G23,
which means that the nominator in (A.10) equals L. This leads to
the final result:

ΔX
€X0

� �
c:l:

¼ G31
1

1þL
ðA:11Þ

Eq. (A.11) states that the closed loop internal deformation is equal
to the open loop internal deformation G31 scaled with the
sensitivity 1=ð1þLÞ.
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