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Abstract
The inverse problem of blade design for centrifugal pumps and fans has been
studied. The solution to this problem provides the geometry of rotor blades that
realize specified performance characteristics, together with the corresponding
flow field. Here a three-dimensional solution method is described in which the
so-called meridional geometry is fixed and the distribution of the azimuthal
angle at the three-dimensional blade surface is determined for blades of
infinitesimal thickness. The developed formulation is based on potential-flow
theory. Besides the blade impermeability condition at the pressure and suction
side of the blades, an additional boundary condition at the blade surface is
required in order to fix the unknown blade geometry. For this purpose the
mean-swirl distribution is employed. The iterative numerical method is based
on a three-dimensional finite element method approach in which the flow
equations are solved on the domain determined by the latest estimate of the
blade geometry, with the mean-swirl distribution boundary condition at the
blade surface being enforced. The blade impermeability boundary condition is
then used to find an improved estimate of the blade geometry. The robustness
of the method is increased by specific techniques, such as spanwise-coupled
solution of the discretized impermeability condition and the use of under-
relaxation in adjusting the estimates of the blade geometry. Various examples
are shown that demonstrate the effectiveness and robustness of the method
in finding a solution for the blade geometry of different types of centrifugal
pumps and fans. The influence of the employed mean-swirl distribution on the
performance characteristics is also investigated.
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1. Introduction

Turbomachines, and centrifugal pumps and fans in particular, are widely used in domestic
and industrial situations to increase the pressure of fluids in order to facilitate fluid transport
[9, 15]. Inside turbomachines, blades are present (see for example, figure 1 (left)) that direct
the fluid flow and that give rise to energy transfer due to the pressure difference that exists
between the two sides of rotating blades. Despite their long use, the design of the blades in
these machines remains complex, due to the complex nonlinear governing equations, their
complex three-dimensional shape and the contradictory design requirements.

When designing centrifugal pumps and fans, the main objective is to achieve efficient,
lightweight and compact machines, while reducing the cost and duration of the design cycle.
Advanced computer-aided design methods have been developed to support this design process.
Current design methods employed in industry are classically based on empirical approaches,
on simplified (one-dimensional or two-dimensional) flow analyses or on computational fluid
dynamics computations that result in predictions of the hydraulic performance for a given
blade geometry. This is the direct approach to the problem of blade design, in which the blade
geometry is prescribed and the performance characteristics are computed. However, it is often
difficult to determine which changes in geometry might lead to a desired, improved design,
due to the complicated three-dimensional blade shapes and nonlinear effects.

Inverse-design methods are the counterpart of direct analysis methods. In inverse-design
methods the hydraulic performance of a machine, for example in the form of a pressure
distribution, is prescribed and the blade geometry is computed. The advantage of using
such an inverse-design method is that a design of a turbomachine is obtained, which has
the desired characteristics (performance, pressure distribution). The development of inverse-
design methods for turbomachines employed knowledge developed for inverse-design of
airfoils, as described in [16, 16].

In the past decades solution methods for the inverse problem of blade design have become
increasingly popular in the field of turbomachinery. These methods can be classified by

• the dimensionality of the problem considered: two-dimensional [11, 13, 16, 18, 19, 21, 25,
30, 37, 40], quasi three-dimensional [26, 30] or three-dimensional [4, 5, 12, 13, 29, 37,
41, 43],

• whether the flow is considered to be: incompressible [4, 5, 19, 21, 26, 37] or compressible
[10–13, 16, 18, 25, 30–30, 39–41, 43],

• the type of equations that are used to describe the flow: potential-flow equations [4, 5,
18, 19, 21, 26, 37, 43], Euler equations [12, 13, 25, 30, 39, 40], Euler equations with
coupled boundary layer equations [16] or Reynolds-averaged Navier–Stokes equations
(using simple turbulence models, such as algebraic mixing-length or Baldwin–Lomax
model) [10, 11, 29, 30, 40, 41],

• the type of so-called loading that is employed: mean-swirl loading [4, 5, 19, 25, 26, 37, 43],
pressure loading [10, 11, 13, 16, 21, 29, 30, 40, 41] or velocity loading [18],

• the type of turbomachines (see for example [15]) to which the method is applied: axial
turbine [11–13, 18, 19, 21, 25, 26, 30, 30, 37, 40, 41], axial compressor (or pump or fan)
[7, 10, 11, 13, 16, 19, 21, 29, 37], mixed-flow pump [3, 5, 45], radial turbine [4, 43], radial
compressor [39, 44, 45].

The focus of the present study is on centrifugal pumps and fans, of different (sub)types,
ranging from axial, to mixed-flow and radial rotors (these types are shown in more detail in
section 6). For realistic applications, solution methods to inverse problems for these types of
machines should be three-dimensional. The flow in centrifugal pumps and fans can generally
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be considered as being incompressible, contrary to the flow in gas turbines and compressors. In
these latter types of turbomachines the compressibility effects and the (potential) occurrence
of shocks necessitates the use of flow models based on the Euler or (compressible) Reynolds-
averaged Navier–Stokes equations. For centrifugal pumps and fans, the use of methods based
on potential-flow equations is considered sufficient. These various flow considerations are
discussed in more detail in section 3.

The objective of this study is to develop an inverse-design method that is suitable for
the full range of subtypes, from axial, to mixed-flow and radial rotors, without modification.
Contrary to compressors and turbines, centrifugal pumps generally have few blades (for pumps
the number of blades is in the range 3–10, while for compressors the number of blades is up
to 30). The method must provide for solutions, even in cases with few(er) blades where it is
difficult to obtain solutions. In short, the method should be robust.

Existing methods for solving the three-dimensional inverse-design problem that are based
on incompressible potential-flow theory are generally based on a Fourier expansion of the
velocity potential in circumferential direction (for example [4, 5, 21, 26, 37]). Since vorticity
is only present as vorticity bound to the blades, such Fourier series may suffer from Gibbs–
Wilbraham phenomenon. For most applications reported in literature, the number of blades
is rather high (�6). Some considerations on the Fourier-based methods are presented in
appendix A.

In order to develop a robust method, an alternative approach is proposed here that is based
on a careful selection of the boundary conditions that are applied in the iterative cycle. The
discretization of the governing equations for potential flow is based on the three-dimensional
finite element method.

The outline of this study is as follows. In section 2 the basics of centrifugal pumps and
fans are summarized. Then the potential-flow model is discussed in section 3. In section 4
the inverse problem of blade design is formulated. The numerical approach is described in
section 5. Examples of solutions to inverse-design problem are presented in section 6. Finally,
findings from this study are discussed.

2. Basics of centrifugal pumps and fans

The coordinates of the camber surface of the blades can be expressed in Cartesian coordinates
(x, y, z) or, more conveniently for centrifugal pumps and fans, in cylindrical coordinates
(r, θ, z), where r is the radial distance (to the axis of rotation), θ is the azimuthal angle and z is
the axial coordinate. The blade shape is generally determined in the following steps. Firstly, the
so-called meridional shape, see also figure 1 (right), is determined that gives the basic shape of
the flow channel. The meridional shape consists of the (r, z)-coordinates of the so-called hub
and shroud surfaces of revolution (indicated in figure 1 (right)) and of the (r, z)-coordinates
of the leading and the trailing edges (also indicated in figure 1 (right)). Secondly, to fully fix
the geometry of the camber surface of the blades, the distribution of the azimuthal angle θ has
to be determined on the blade surface. Thirdly, by incorporating a blade thickness distribution
to the blade camber surface, a complete description of the geometry of the blades is obtained.
The determination of the distribution of the azimuthal angle θ of the camber surface is the
central problem in the inverse problem of blade design for centrifugal pumps and fans that is
addressed here.

Hydraulic turbomachines, such as centrifugal pumps and fans where the flow can be
considered as incompressible, are used to increase the total (or stagnation) pressure of the
fluid. The total pressure p0 consists of static pressure p and dynamic pressure 1

2ρv2
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Figure 1. Left: example of a three-dimensional rotor with blades shown in dark grey;
inlet, outlet and shroud surfaces are not shown for visual clarity. Right: meridional
plane, giving (r, z)-coordinates; inlet, outlet, hub and shroud surfaces are indicated, as
well as leading and trailing edges. Also indicated are the blade surface coordinates m in
streamwise direction and s in spanwise direction. The diameter of the rotor is denoted
by D.

p0 = p + 1
2ρv · v, (1)

where ρ is the (constant) fluid density and v is the velocity vector. The total-pressure rise
�p0 = p0,outlet − p0,inlet, from inlet to the machine to its outlet, is an important characteristic
of hydraulic turbomachines. It is dependent on the operating conditions of the machine, i.e.
the rotational (or angular) speed � and the volumetric flowrate Q through the machine. The
size of the machine can be characterized by the diameter D of the rotor.

The performance, total-pressure rise �p0 as a function of rotational speed � and flowrate
Q, can be expressed in terms of the non-dimensional flowrate ϕ , the non-dimensional pressure-
rise ψ and the so-called specific speed Ns (see for example [15])

ϕ = Q

�D3
ψ = �p0

ρ�2D2
Ns = �Q

1
2(

�p0

ρ

) 3
4

. (2)

The specific speed Ns is a combination of the non-dimensional flowrate ϕ and the non-
dimensional pressure-rise ψ such that it is independent of the diameter D of the machine.

Two frames of references may be convenient when considering the flow inside
turbomachines, the stationary frame of reference and the frame of reference that rotates with
the rotor at angular speed �. The velocity, i.e. the change in position of a fluid element, can
be considered in the stationary frame of reference and in the rotating frame of reference. The
corresponding velocities are the absolute velocity v and the relative velocity w, respectively.
These velocities are related by the so-called velocity triangle (see for example [15])

v = w + u u = � × r, (3)

where u is the local blade speed, � is the angular speed vector and r is the position vector. In a
cylindrical coordinate system the radial, circumferential and axial components of the absolute
velocity v are denoted by vr, vθ , vz, respectively. Similarly, the corresponding components of
the relative velocity vector w are denoted by wr, wθ ,wz.

The basic equation that describes the energy transfer from (or to) the blades to (or from)
the fluid is Euler’s pump (or turbine) equation [15]

�p0

ηhρ
= �(rtevθ,te − rlevθ,le), (4)
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where ηh is the hydraulic efficiency and subscripts le and te are used to denote quantities at the
leading and trailing edges, respectively. Thus, the mean-swirl, rvθ , at the leading and trailing
edges is important for the total-pressure rise �p0.

3. Potential-flow model

The flow field, characterized by velocity field v and pressure field p, inside turbomachines
can be described by the conservation laws of mass, momentum and energy, with appropriate
boundary conditions. For the flow conditions mostly encountered in centrifugal pumps and
fans, simplified flow equations can be formulated to capture the essential physics of the
three-dimensional flow.

In the current study the incompressible potential-flow model is adopted, which is suitable
for flows near the design point of the hydraulic machine [17, 22]. The potential-flow model
is based on the assumptions of (i) inviscid flow, (ii) irrotational inflow and (iii) flow without
boundary-layer separation. The assumption of inviscid flow is justified when the Reynolds
number Re = �D2

ν
(with �D as characteristic velocity, diameter D of the machine as

characteristic length scale and ν the kinematic viscosity of the fluid) is large (typically
Re > 105) and the turbulence intensity is small. The flow can be considered as incompressible
when the Mach number Ma = �D

a (with a the speed of sound in the fluid) is small (typically
Ma < 0.2) . With these assumptions the incoming irrotational flow remains irrotational, due
to Kelvin’s circulation theorem (see for example, [1]), i.e.

∇ × v = 0. (5)

Then the velocity vector v can be written as the gradient of a velocity potential φ

v = ∇φ. (6)

The incompressible mass conservation law, ∇ · v = 0, then becomes the Laplace equation for
the velocity potential φ

∇2φ = 0. (7)

The conservation law of momentum can be simplified to the unsteady Bernoulli equation (see
for example [1])

∂φ

∂t
+ 1

2
v · v + p

ρ
= c(t). (8)

The (generally time-independent) value of c(t) is determined by the total pressure p0 at inlet
to the rotor.

Since the order of the governing equations is reduced by neglecting viscous terms, the
no-slip condition at solid walls is not enforced. With the potential-flow model the flow outside
of boundary layers can be described. These (thin) boundary layers will form at the rotor blades.

In the unsteady Bernoulli equation, equation (8), ∂φ

∂t is the time derivative of the velocity
potential in the stationary frame of reference. The time derivative of the velocity potential in
the rotating frame of reference is denoted by ∂φ

∂t |R. Since the material derivative Dφ

Dt of a scalar
quantity φ is objective (i.e. frame invariant), we have

∂φ

∂t
+ v · ∇φ = Dφ

Dt
= Dφ

Dt |R
= ∂φ

∂t |R
+ w · ∇φ. (9)
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Figure 2. Left: single flow channel between two blades of a two-dimensional rotor; the
shroud surface is not shown for visual clarity. Right: topology of flow channel; inlet
and outlet surfaces, pressure and suction sides of the blades and periodic boundaries
are shown. For realistic rotors, the inlet region is normal to the axis of rotation (as in
figure 1). For visual clarity this is not the case in this schematic, quasi two-dimensional
figure.

Hence, it follows that the time derivatives in the stationary and the rotating frame of reference
are related by

∂φ

∂t |R
= ∂φ

∂t
+ u · ∇φ, (10)

where equation (3) has been used.
With a well designed diffuser, there will not be significant interaction between rotor and

stationary parts of the machine at the design conditions. The flow field in the rotor is then
steady in the rotating frame of reference, i.e. for an observer that rotates with the rotor

∂φ

∂t |R
= 0. (11)

Then the unsteady Bernoulli equation in the stationary frame of reference, equation (8), can be
rewritten (after some algebra, using equations (3) and (10)) for the rotating frame of reference
as

p

ρ
+ 1

2
w · w − 1

2
u · u = c(t). (12)

This equation allows for the evaluation of the pressure p when the absolute velocity v (and
hence the relative velocity w) is known.

3.1. Domain of interest and boundary conditions

The blades are considered to be geometrically identical. When there is no interaction between
rotor and stationary parts, the flow field in each of the channels between two consecutive
blades is the same. Then it suffices to consider a single channel as the domain of interest where
the flow solution is to be obtained, see for example figure 2 (left).

To solve the governing Laplace equation, equation (7), boundary conditions have to be
formulated for the velocity potential φ at the boundary of the domain of interest. These
boundary conditions will be given for the various surfaces that are indicated in figure 2 (right).

At the inlet surface, see figure 2 (right), it is assumed that the normal component of the
velocity (given by ∂φ

∂n ) is uniform. Its value is then determined from the specified flowrate Q

∂φ

∂n
= − Q

Ainlet
, (13)

6
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where Ainlet is the area of the inlet surface to the turbomachine and the minus sign is present,
since the inward velocity at the inlet is in the direction opposite to the outward unit normal
vector n.

Similarly, the boundary condition at the outlet surface is
∂φ

∂n
= + Q

Aoutlet
, (14)

where Aoutlet is the area of the outlet surface (see figure 2 (right)) to the turbomachine; here
the outward velocity at the outlet is in the same direction as the outward unit normal vector n.

At the impermeable hub and shroud surfaces (see figure 1 (right)) the normal component
of the velocity is zero

∂φ

∂n
= 0. (15)

At the pressure and suction sides of the blades, see figure 2 (right), the normal component
of the relative velocity, w·n, equals zero, since the blades are impermeable. Using equation (3),
this blade impermeability condition can be expressed in terms of the velocity potential φ as

∂φ

∂n
= (� × r) · n. (16)

Since the flow is considered to be identical in each of the flow channels between two
blades, periodic boundary conditions can be formulated that relate the velocity vectors at
corresponding surfaces. These corresponding surfaces are denoted as ‘+’ and ‘−’ surfaces
in figure 2 (right). Periodic boundary conditions apply at the surfaces in front of the leading
edges and behind the trailing edges. These conditions require that the velocity components
normal and tangential to the surface at the corresponding surfaces are related. Hence

∂φ

∂n |+
= −∂φ

∂n |−
φ|+ = φ|− + γ , (17)

where γ is the distribution of the difference between the values of the potential at the ‘+’ and
‘−’ surfaces. The first relation states that the normal components of the velocity are equal; the
minus sign is present, since the normal vectors at ‘+’ and ‘−’ surfaces are in opposite directions.
The second relation states that the tangential components of velocity at the corresponding ‘+’
and ‘−’ surfaces are equal (refer to equation (6)). As the flow is assumed to enter the machine
without pre-rotation, it follows that γ = 0 for the surfaces in front of the leading edge. To
fix the values of γ for the surfaces behind the trailing edge, Kutta conditions are formulated
[1, 8]. These conditions incorporate the essential effects of viscosity in an inviscid theory, as
they enforce that the flow separates at the sharp trailing edge of the blades. Here the Kutta
conditions are formulated as w · n|te = 0, or expressed in terms of the velocity potential φ as

∂φ

∂n |te
= (� × r) · n|te, (18)

where the subscript te is used to indicate the value of a quantity at the trailing edge.

4. Formulation of inverse problem of blade design

For the complete formulation of the inverse problem of blade design, an additional condition
at the blade surface is required, besides the Laplace equation equation (7) with boundary
conditions as described in the previous section, in order to determine the distribution of the
azimuthal angle θ (r, z) on the blade. This additional (so-called blade loading) condition should
involve the desired performance characteristics of the centrifugal pump or fan, i.e. the increase
�p0 of the total pressure as a function of angular speed � and the flowrate Q. The angular

7
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speed � is present in the boundary condition equation (16) for the Laplace equation, while the
flowrate Q is present in boundary conditions equations (13) and (14).

The Euler equation, equation (4), relates the increase of the total pressure �p0 to the values
of the mean-swirl rvθ at the leading and trailing edges. This suggests to use the distribution
of the mean-swirl, from leading edge to trailing edge, as the additional condition required for
the formulation of the inverse problem [4, 5, 19, 26, 37, 43]. This is described in more detail
in the following subsection.

Alternative, more complex additional conditions can be formulated, such as a prescribed
pressure difference between pressure and suction side of the blades or a prescribed, so-called
velocity-loading distribution. These formulations have been investigated in [2, 10, 11, 13, 16,
18, 21, 29, 30, 40–42].

4.1. Mean-swirl distribution

The additional blade-loading condition employed here is that the mean-swirl distribution rvθ

is prescribed

rvθ = f (m, s), (19)

where f is a function of the surface coordinates m and s in the streamwise and spanwise
direction on the blade, respectively (as indicated in figure 1 (right)). The mean (or average)
circumferential (absolute) velocity along a circular arc (with constant radius r) from blade to
blade is defined by

vθ = 1

θss − θps

∫ θss

θps

vθ dθ , (20)

where the subscripts ps and ss are used to indicate values at the pressure and suction side of
the blades, respectively. For blades with infinitely small blade thickness as considered here,
the difference in angle θ is determined by the number of blades Z: θss − θps = 2π

Z . Hence it
follows, using vθ = 1

r
∂φ

∂θ
(compare equation 6), that

φss − φps = 2π

Z
f . (21)

Thus, a prescribed distribution of the mean-swirl rvθ is equivalent to the second relation for a
periodic boundary condition (see equation (17)), where the ‘+’ and ‘−’ surfaces correspond
to the suction and pressure side of the blade, respectively.

The incoming flow has no swirl, which means that γ = 0 in equation (17) at the periodic
boundary in front of the leading edge. From the Euler relation, equation (4), it then follows
that γ = �p0

ρ�ηh
in equation (17) at the periodic boundary behind the trailing edge. Continuity

of the difference in potential, φ|+ − φ|−, is ensured when the mean-swirl distribution f (m, s)
satisfies the following constraints

f (mle, s) = 0 f (mte, s) = �p0

ρ�ηh
. (22)

Additional constraints for the mean-swirl distribution f (m, s) follow from the condition that
the flow angle (of the relative velocity) matches that of the blade, i.e. that the flow incidence is
zero, and that the Kutta conditions, equation (18), are satisfied. These conditions are satisfied
[4, 42] when

∂ f

∂m
(mle, s) = 0

∂ f

∂m
(mte, s) = 0. (23)

8
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A simple, polynomial form for the mean-swirl distribution f that satisfies the constraints,
equations (22) and (23), is

f (m, s) = �p0

ρ�ηh
[3m̂2 − 2m̂3] m̂ = m − mle

mte − mle
, (24)

where m̂ is the scaled (to the interval [0, 1]) streamwise coordinate m at the blade surface. A
different choice for the mean-swirl distribution f will give a different solution to the inverse
problem. Thus, the function f (m, s) forms an important design parameter for the blades of
centrifugal pumps and fans. This will be shown in detail in section 6.2.

4.2. Blade impermeability condition

The impermeability equation equation (16) involves the unit normal vector n at the blade
surface, and hence the unknown distribution of the azimuthal angle θ at the blade surface. This
normal vector is given by

ñ = ∂x
∂m

× ∂x
∂s

(25)

where ñ is the unscaled normal vector (thus n = ñ/‖ñ‖) and m and s are the surface parameters
in the meridional plane (see also figure 1 (right)). After some algebra it follows that ñ can be
expressed in cylindrical coordinates as

ñ = r

(
∂θ

∂m

∂z

∂s
− ∂θ

∂s

∂z

∂m

)
er +

(
∂z

∂m

∂r

∂s
− ∂z

∂s

∂r

∂m

)
eθ + r

(
∂r

∂m

∂θ

∂s
− ∂r

∂s

∂θ

∂m

)
ez, (26)

where er, eθ and ez are the unit vectors in radial, circumferential and axial directions,
respectively.

The equation w ·n = 0 (or equivalently the equation w · ñ = 0) can be rewritten, using the
previous equation and the expression w = wrer + wθeθ + wzez for the relative velocity vector
w in cylindrical coordinates, as the hyperbolic equation (when the relative velocity vector w
is considered known) in the meridional plane

∂θ

∂m
= A(m, s)

∂θ

∂s
+ B(m, s) (27)

with

A(m, s) = wr
∂z
∂m − wz

∂r
∂m

wr
∂z
∂s − wz

∂r
∂s

B(m, s) = wθ

r

(
∂r
∂m

∂z
∂s − ∂z

∂m
∂r
∂s

wr
∂z
∂s − wz

∂r
∂s

)
. (28)

Since the meridional geometry, given by r (m, s) and z (m, s), is prescribed, the geometrical
derivatives present in equation (28) are known.

As the hub and shroud surfaces are impermeable, the normal component of the velocity
vector is zero there, as expressed by equation (15). The (non-scaled) normal vector to the hub
and shroud surfaces of revolution is given by ñ = − ∂z

∂m er + ∂r
∂m ez. The condition w · ñ = 0 then

becomes −wr
∂z
∂m +wz

∂r
∂m = 0. Hence the function A(m, s) = 0 at the hub and shroud surfaces.

Thus, the hub and shroud curves are characteristics of the partial differential equation (27) and
it reduces to an ordinary differential equation here.

To solve equation (27), an ‘initial’ condition is required, for instance at the trailing edge
in the form

θ (mte, s) = θte(s). (29)

This is the so-called stacking condition that determines the three-dimensional shape of the
trailing edge.

In principle, the stacking condition can be prescribed at any curve in spanwise direction
from hub to shroud. For turbines, the stacking condition is generally specified at the leading

9
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edge of the blades. As the implementation of the inverse method is simpler when the stacking
condition is applied at the trailing edge (or at the leading edge for turbines), such alternatives
are not considered here.

4.3. Overview of inverse problem

Parameters that specify this inverse problem of blade design (for blades with infinitesimal
blade thickness) consist of

• operating conditions for the design, i.e. angular speed �, flowrate Q and required total-
pressure rise �p0, and (estimated) hydraulic efficiency ηh,

• meridional geometry, i.e. the hub and shroud contours and the position of leading and
trailing edges of the blades,

• number of blades Z,
• mean-swirl distribution f ,
• stacking condition θte.

Equations to be satisfied are

• governing Laplace equation, equation (7),
• boundary conditions equations (13)–(16) (or equivalently equations (27)) and (17),
• mean-swirl distribution, equation (19) (or equivalently equation (21)),
• stacking condition, equation (29).

Solution of the inverse problem consists of

• the distribution of the azimuthal angle θ at the blade surface, i.e. the missing geometrical
quantity for the description of the camber surface of the blades

• the flow field, i.e. the velocity and pressure fields, v and p respectively, inside the rotor
channel.

5. Numerical approach

As the blade geometry is not completely known, the domain of interest forms part of the
solution to the inverse problem. Thus, the current problem is a free-boundary problem [23, 24,
31, 32, 34]. At the unknown boundary (i.e. the blade surface) the three boundary conditions
are equation (19) (or equivalently equation (21)) and equation (16) at pressure and suction
sides of the blades. Two classes of iterative numerical approaches can be distinguished for
such free-boundary problems.

In the first, Picard-type class of methods [24, 34] the governing flow equations are solved
on a fixed domain (which is based on the latest estimate of the blade geometry), where two
of the three boundary conditions at the pressure and suction sides of the blades (i.e. at the
free boundary) are enforced. The remaining boundary condition is then used to obtain a new
estimate of the position of the free boundary, using (part of) the solution of the fixed-domain
problem. This process is repeated, until convergence is obtained.

In the second, (quasi-)Newton-type class of methods [16, 23, 31, 32], the position of the
free boundary is included in the linearized set of unknowns at each iteration step. Thus, the
(linearized) influence of the geometrical unknowns on the governing flow equations has to be
determined.

The advantage of the first class of methods is the (relative) simplicity of its implementation,
while the advantage of the second class of methods is its higher rate of convergence in the
iterative solution of the nonlinear equations.

10
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Figure 3. Flowchart of iterative scheme for solving the inverse problem.

Here the simpler, first approach is followed. The iterative approach consists of the
solution of the Laplace equation equation (7), on a fixed domain with boundary conditions
equations (13), (14), (15), (17) and (19).

Two boundary conditions are required at the pressure and suction sides of the blades for
the flow solution on the fixed domain. The boundary conditions selected here are the prescribed
mean-swirl distribution, equation (21), and the boundary condition wn|+ = −wn|−, where the
‘+’ and ‘−’ surfaces correspond to the suction and pressure side of the blade, respectively.
Since the corresponding points at the pressure and suction sides are located at the same radius
r, it follows (using equation (3)) that this equation is equivalent to vn|+ = −vn|−. Hence these
boundary conditions at the blade surface are of the same type as the boundary conditions at
the periodic boundaries in front and behind the blades, see equation (17).

Using the solution obtained for the relative velocity vector w at the blade surface (either at
the pressure side or at the suction side), the blade geometry is adjusted, based on the solution
of equation (27) with the stacking condition equation (29). This process is repeated until
convergence is obtained. The flowchart for this iterative scheme is illustrated in figure 3.

The boundary conditions described above for the intermediary solutions (on the fixed
domain) in the iterative process are always consistent with overall mass conservation
requirement,

∫
S vn dS = 0, where S is the boundary of the domain of interest.

When the solution satisfies the impermeability condition w · n = 0, at either the pressure
side or at the suction side, then the imposed boundary condition wn|+ = −wn|− ensures that
the solution satisfies the impermeability condition at pressure and suction sides of the blades.

11
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5.1. Implementation and additional numerical techniques

Here a finite element method approach is adopted to solve the Laplace equation, equation (7),
for the velocity potential φ with linear tetrahedral elements. This gives second-order accuracy
for the velocity potential φ. Some details on the weak form of the Laplace equation in the
presence of periodic boundary conditions and their handling in the discretization are described
in appendix B.

Although here a finite element method is employed (based on the authors’ experience),
finite volume, finite difference or boundary integral methods could also be used to solve
the governing Laplace equation. A critical factor for the method to be robust is the suitable
formulation of the boundary conditions for the intermediate flow solutions in the iterative
process, as described before.

In each iteration a structured finite element mesh is generated automatically, where
each elementary cube is subdivided into six tetrahedra. This structured-mesh approach is
employed, as the mesh generation process is easily automated. The structured mesh is refined
in circumferential direction near the blades and in streamwise direction near the leading and
trailing edge locations.

The absolute velocity vector v, i.e. the gradient of the potential φ, in the nodal points is
determined from the nodal point values of the potential using the SPR-method [47], as it gives
better accuracy for the velocity vector in comparison with other post-processing methods.
The accuracy is second-order (for the linear elements employed) for internal nodes, while for
boundary nodes the order of accuracy is lower. The relative velocity vector w in the nodal points
is determined from the absolute velocity vector v, using the velocity triangle equation (3).

The equation employed for the adjustment of the blade geometry, the impermeability
condition equation (27), is discretized using the implicit second-order (in space) Crank–
Nicholson scheme
θi+1, j − θi, j

�m
= Ai+1, j(θi+1, j+1 − θi+1, j−1) + Ai, j(θi, j+1 − θi, j−1)

4�s
+ Bi+1, j + Bi, j

2
, (30)

where i is the index in the streamwise m-direction and j is the index in the spanwise s-direction.
These equations are solved from the trailing edge, where the stacking condition equation (29)
provides the starting values, towards the leading edge. Note that these discrete equations are
coupled in the spanwise s-direction. This coupling of the equations for the adjustment of
the blade geometry, as determined by the distribution of the angle θ , is very important for
the increased robustness of the proposed method, in comparison with line-based methods, as
employed in [26].

In principle, the velocities at pressure side or at the suction side could be employed in
equation (4). Since the relative velocity at the pressure side is lower than at the suction side
(due to the existence of the so-called counter-vortex), backflow is more likely to occur at the
suction side than at the pressure side (especially in the intermediate flow solution encountered
in the iterative process). Backflow is associated with a divergence of the quantity A(m, s) in
equation (16). Therefore the velocities at the suction side are always used for the adjustment
of the blade geometry.

Using this approach, an adjusted blade geometry, as characterized by the solution θ
adj
i, j of

equation (30), is obtained. However, in order to achieve convergence of the iterative process,
it is often beneficial to limit the maximum change θ

adj
i, j − θn

i, j in the blade angles to a maximum
(absolute) value, �θmax. Here θn

i, j denotes the previous estimate of the azimuthal angles of the
blade surface. This change-in-angle limitation is especially beneficial in the initial stage of
the iterative process and when the initial estimate deviates strongly from the solution to the
inverse problem.

12
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An additional technique for increasing the robustness of the method is to employ under-
relaxation. The new estimate of the azimuthal angles, θn+1

i, j is obtained from the previous

estimate θn
i, j and the adjusted solution θ

adj
i, j by

θn+1
i, j = θn

i, j + ω
(
θ

adj
i, j − θn

i, j

)
, (31)

where ω < 1 is the under-relaxation coefficient.
The convergence criterion employed for the iterative process is that the magnitude of the

flowrate through the blades (which should be equal to zero, see equation (16)) is smaller than a
specified fraction (typically 0.1%) of the flowrate Q through the machine. Typical convergence
histories are given in [42].

The complete method has been tested and verified for a simple two-dimensional case of
a source and free vortex flow. For this case an analytical solution is available (see [42]). The
computational cost of the current method and of the Fourier-based method [4] is comparable
when efficient iterative methods (such as multigrid methods) are employed to solve the
discretized equations.

In consideration of the order of accuracy of the complete method, solutions to the inverse
problem have been computed using three different meshes with increasing number of nodes.
The position of the leading edge from these solutions has been compared. Using Richardson
extrapolation, the order of accuracy of the complete method is found to equal 1.1, see [42]
for more details. This relatively low order of accuracy of the complete method is attributed
to the lower order of accuracy of the SPR-method for the velocities at the blade surfaces.
The velocities obtained through the use of the SPR-method at the blades are required in the
solution of the equation for the adjustment of the blade geometry, equation (27).

5.2. Initial estimate of geometry, existence and uniqueness of solutions

An initial estimate of the blade geometry is required for the iterative solution method. This
initial estimate can be determined in a number of ways. Firstly, by estimating the blade
geometry at the leading and trailing edges, assuming that the flow field is uniform from blade
to blade (see for example [15]). In between leading and trailing edges, the initial blade geometry
is then interpolated. Secondly, the meridional velocities can be computed by analysing the
flow field in the absence of rotor blades. This gives estimates of the radial and axial velocity
components wr and wz. The circumferential velocity component wθ is estimated from the
mean-swirl distribution equation (19) (which gives the average circumferential component of
the absolute velocity vθ ) and from the velocity triangle equation (27). Using this approximate
relative velocity field, the blade adjustment equation (30) can be solved to give the initial
estimate for the blade geometry. The developed method is not very sensitive to the quality of
the initial estimate: even when the difference between the initial and the final blade shape is
large, a solution is generally found. The number of iterations that is required is, of course,
smaller when a good initial estimate is employed.

For airfoils it is known that constraints need to be satisfied by the prescribed pressure
distribution for solutions to inverse problems to exist, see for example [24]. The issue of
existence and uniqueness of solutions to inverse problems for turbomachines is also discussed
(for the two-dimensional case) in [25].

From experience in the design of centrifugal pumps and fans it is known (see for
example [15]) that there is a correlation between the meridional shape and the specified
performance characteristics, i.e. angular speed �, flowrate Q and total-pressure rise �p0. For
a high value of the so-called specific speed Ns (see equation (2)), efficient designs are possible
when the meridional shape is axial, while a radial meridional shape is best for low values of
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the specific speed (see also section 6 for a description of these meridional shapes). This also
suggests that solutions to the inverse problem of blade design do not always exist, although
no proof is available.

From experience with the developed method when using different initial estimates, it
appears that the same solution (when found) is obtained, irrespective of the initial estimate.
This suggests that the solution is unique (when it exists), although no proof is available.

6. Examples

To demonstrate the capabilities of the developed method, firstly some examples are shown in
section 6.1 of solutions to the inverse-problem that correspond to different values of the specific
speed Ns, see equation (2). Secondly, the influence of the mean-swirl distribution f (m, s),
which constitutes an input parameter for the designer, on various performance characteristics
is investigated in section 6.2.

6.1. Different types of rotor

The developed solution method for the inverse problem has been applied to three different
cases. These cases correspond to three different types of rotor: (i) a radial type, (ii) a mixed-
flow type and (iii) an axial type. These cases correspond to different meridional geometries,
as shown in the left column of figure 4. The specified operation conditions (expressed in
terms of the dimensionless flow coefficient ϕ, dimensionless total-pressure rise coefficient ψ

and dimensionless specific speed Ns, see equation (2)), meridional geometries and number of
blades Z were based on existing designs.

In all three cases the mean-swirl distribution according to equation (24) has been used,
without a stacking distribution (i.e. the blade is straight in spanwise direction at the trailing
edge). For the radial rotor φ = 0.014, ψ = 0.141, Ns = 0.51 and Z = 7. For the mixed-flow
rotor φ = 0.039, ψ = 0.087, Ns = 1.24 and Z = 5. For the axial rotor φ = 0.106, ψ = 0.017,
Ns = 6.96 and Z = 6.

For the structured computational grids the number of nodes employed are 78, 35 and 15
in streamwise direction, from blade to blade and in spanwise direction, respectively. Values
for parameters in the robustness-enhancing techniques are the under-relaxation coefficient
ω = 0.3 and the maximum change-in-angle �θmax = 25◦. The required number of iterations
ranged from 17–26 (higher for the radial case than for the axial case).

The method yields a solution to these different inverse problems, without modifications.
This shows the robustness of the developed method.

For these three meridional geometries, the number of blades Z was varied to determine
the lowest number of blades, Zmin, for which a solution to the inverse problem could still be
obtained (through reduction of the under-relaxation coefficient ω and the maximum change-
in-angle �θmax). The minimum number of blades were: Zmin = 4 for the radial rotor, Zmin = 3
for the mixed-flow rotor and Zmin = 3 for the axial rotor. Note that these solutions do not
necessarily correspond to good designs from the hydrodynamical viewpoint, as they show small
or negative (i.e. backflow) velocities at the pressure side of the blades. However, the fact that
solutions with few blades could be obtained further emphasizes the robustness of the developed
method. In the literature examples are presented with many blades (generally Z � 6).

6.2. Influence of mean-swirl distribution

The influence of the mean-swirl distribution f (m, s) on various performance characteristics
is investigated here. These performance characteristics are: (i) power losses, (ii) cavitation
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Figure 4. Left column: meridional plane used as input; indicated are inflow regions,
leading edges (LE) and trailing edges (TE). Right column: resulting rotor geometries.
Top row: radial rotor (Ns = 0.51). Middle row: mixed-flow rotor (Ns = 1.24). Bottom
row: axial rotor (Ns = 6.96).

inception coefficient and (iii) velocity loading. These performance characteristics will now be
described.

The power losses �P are estimated, based on the inviscid velocity field. This velocity
field at solid surfaces, such as blades, hub and shroud surfaces, represents the velocity at the
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edge of the boundary layers that form at these surfaces. Using this velocity field, the power
loss inside boundary layers can be estimated by [14, 33]

�P = 1

2
ρcD

∫
S
w3dS , (32)

where cD is a dissipation coefficient (in the range 0.003–0.005; its value is fairly insensitive
to the state of the boundary layer), S is the solid area where the boundary layer forms (i.e.
at pressure and suction sides of the blades and at the hub and shroud surfaces) and w is the
magnitude of the (potential-flow) relative velocity vector w. The fraction of power loss �P
over the power input Pinput is the loss coefficient ζ

ζ = �P

Pinput
. (33)

The power input Pinput is easily determined from the inviscid potential-flow computation by
Pinput = Poutput = Q�p0.

Cavitation (see for example [6]) is the phase transition from liquid to vapour phase due to
acceleration of the flow, which may occur in centrifugal pumps (not in fans where the medium
is a gas). In general, the occurrence of cavitation is undesirable. Close to the leading edge of the
blades the flow (locally) accelerates, resulting in a drop in pressure p. When the local pressure
drops below the vapour pressure pvapour, vapour bubbles will form. This will be the case when
the inlet pressure is low and/or the local acceleration is large. Further downstream in the
machine, where the pressure is higher, these vapour bubbles will collapse violently, resulting
in damage to the blades. Additionally, cavitation can lead to a decrease in total-pressure rise
and/or efficiency. The dimensionless cavitation coefficient κ describes the margin between the
total pressure at the inlet that is required in order to prevent cavitation bubbles from forming,
p0,inlet, no bubble, and the vapour pressure pvapour. This is a cavitation inception criterion. The
dimensionless cavitation inception coefficient κ is defined by

κ = p0,inlet, no bubble − pvapour
1
2ρu2

te

, (34)

where ute is the (maximum) blade speed at the trailing edge. A low cavitation coefficient κ

is desirable, as it allows for operation of the centrifugal pump without cavitation at low inlet
pressures (i.e. without strong requirements for the total pressure at the inlet).

The dimensionless velocity loading coefficient χ is frequently used to describe the
performance of centrifugal pumps and fans [35, 36, 38]. This coefficient describes the tendency
for boundary layers to separate when the flow deceleration along the blades is large: a low
value for the velocity loading coefficient χ is favourable. The velocity loading coefficient χ

is defined by

χ = wss − wps
1
2 (wss + wps)

, (35)

where wss and wps are the magnitudes of the relative velocities at the suction and pressure
sides of the blades, respectively. The velocity loading coefficient χ is the ratio between the
difference between these relative velocities over their mean. At the suction side the relative
velocity will be high, compared to that at the pressure side, see also equation (12). When the
relative velocity at the pressure side becomes almost zero (corresponding to the initiation of
backflow), the velocity loading coefficient equals 2. A guideline is that the velocity loading
coefficient χ should be smaller than 0.7–1.5, depending on the specific speed Ns [35, 36].

The mean-swirl distribution is described here in a simple, single-parameter form to
demonstrate that different mean-swirl distributions result in solutions (i.e. geometries of rotor
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Figure 5. Influence of mean-swirl distribution f (m, s) on performance characteristics.
Top left: scaled mean-swirl distribution g(m̂) ≡ f (m̂) [ρ�ηh/�p0] (0 � g(m̂) � 1) as
a function of the scaled meridional coordinate m̂ according to equation (36), for various
values of the single parameter q. Top right: maximum (over the blades) velocity loading
coefficient ζmax as a function of the parameter q. Bottom left: cavitation inception
coefficient κ as a function of the parameter q. Bottom right: loss coefficient ζ as a
function of the parameter q.

blades) with different performance characteristics. This mean-swirl distribution function is
given by a quartic polynomial (also employed in [7])

f (m, s) = �p0

ρ�ηh
[(16q − 5)m̂2 + (14 − 32q)m̂3 + (16q − 8)m̂4] , (36)

where the scaled streamwise coordinate in the meridional plane m̂ is given in equation (24).
Note that this distribution satisfies the constraints on the mean-swirl distribution given in
equations (22) and (23) for all values of q and that for q = 1/2 the mean-swirl distribution
given in equation (24) is retrieved.

The single parameter q has been varied for the mixed-flow meridional geometry (i.e.
the second case in section 6.1). Some corresponding mean-swirl distributions are shown in
figure 5 (top left). For each case, i.e. each value for q, the inverse problem was solved, using
the numerical method described in section 5, and the performance characteristics given in this
subsection were determined from the solution to the inverse problem. The results are shown
in figure 5, which illustrates the influence of the mean-swirl distribution on the performance
characteristics. The maximum (over the blade) velocity loading χmax is shown at the top right,
the cavitation inception coefficient κ at the bottom left and the loss coefficient ζ at the bottom
right (for cD = 0.004). Note that the total-pressure rise �p0 is the same for all these cases.
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For comparison, the values of the hydraulic characteristics of the original rotor design have
also been computed (using a direct solver for the potential-flow problem). These values are:
χmax = 1.46, κ = 0.22 and ζ = 0.038. In comparison to the original design the inverse designs
have much better cavitation behaviour (low cavitation coefficient κ) and lower (maximum)
velocity loading coefficient χmax. The losses, characterized by ζ , are generally somewhat
higher. To obtain inverse designs with low(er) losses while retaining the other, favourable
performance characteristics, more complicated (described by more than a single parameter)
mean-swirl distributions have to be considered (see [42]). More detailed descriptions of the
original and the resulting geometries are reported in [42] where the so-called blade-angle
distributions are shown that describe the blade geometry.

For an acceptable value of the (maximum) velocity loading coefficient, χmax < 1 for
mixed-flow machines, the value of q should be smaller than 0.5. With an increase in q, the
loading changes from front-loading to aft-loading of the blades. Front-loaded blades are shorter,
but give a more pronounced pressure drop near the leading edge than aft-loaded blades. Hence,
front-loaded blades have lower losses (due to the smaller surface areas, compare equation (32)),
but worsened cavitation properties in comparison to aft-loaded blades. The results shown in
figure 5 demonstrate that the desirable performance characteristics of low loss coefficient
ζ , low cavitation coefficient κ and low (maximum) velocity loading coefficient χmax are
contradictory. Similar trends for the dependence of losses and cavitation characteristics on
variations in the blade loading were observed in [3].

The presented variation of the parameter q represents a limited sensitivity analysis, where
the hydraulic parameters are used to characterize the solution. The results shown in figure 5
indicate that the solution (i.e. the hydraulic characteristics) generally depends continuously
on parameter q. Thus, in this sense this inverse problem seems to be generally well-posed.
However, the cavitation inception coefficient κ rapidly increases for q in the range 0.75–0.80.
This gives an indication of loss of well-posedness. The geometry of the rotors, that forms part
of the solution to the inverse problem, is sensitive to the prescribed mean-swirl distribution
(see [42]).

7. Discussion

The inverse problem of blade design for centrifugal pumps and fans has been studied. Based
on potential-flow theory, the inverse problem has been formulated, in which the meridional
coordinates (r, z) are specified and the distribution of the azimuthal angle θ (r, z) constitutes
an additional unknown, next to the flow field. Besides the governing Laplace equation with
appropriate boundary conditions, an additional boundary condition has been employed, the
mean-swirl distribution, in order to fix the unknown blade geometry.

An iterative numerical method has been developed to solve the inverse problem. This is
based on a Picard-type of approach, in which the Laplace equation is solved on an estimated
domain, with some of the boundary conditions at the blade surface being enforced. The
remaining boundary condition at the blade surface is used to find an improved estimate of the
blade shape. This process is repeated until convergence is obtained.

The robustness of the method is increased significantly by employing a number of
techniques: (i) the suitable formulation of boundary conditions for the intermediate flow
solutions (which are obtained through a finite element method for the discretization of the
Laplace equation) in the iterative process, (ii) the coupled discretization of the impermeability
condition, equation (30), (iii) the use of under-relaxation in the adjustment of the blade
geometry and (iv) the use of a maximum change-in-angle between successive estimates of

18



Inverse Problems 30 (2014) 065003 N P Kruyt and R W Westra

the blade angle θ . These extra techniques have proven to be essential in obtaining converged
solutions for a wide variety (expressed through the specific speed, Ns) of rotors (as shown in
section 6.1) and for a range of prescribed mean-swirl distributions (as shown in section 6.2).
Specifically, solutions can (also) be found for low numbers of blades, Z.

The developed method gives the azimuthal angle θ at the blade surface (as part of
the solution), where the meridional geometry forms input to the method. This input of the
meridional geometry remains largely due to experience (and is related to the specific speed Ns).

The method gives a blade geometry, based on considerations at a single operation point.
A consequence is that the obtained design may perform well at this design point, but the
performance may degrade (rapidly) when the centrifugal pump or fan is operated at conditions
(flowrate Q or angular speed �) that deviate from the design conditions. To alleviate this
situation, the method for solving the inverse problem could be employed as part of an
optimization method, in which blade geometries under consideration are solutions of the
inverse problem (see for example [27, 42]). In this hybrid manner (combining solutions
of inverse problems with results of optimization methods) the performance at off-design
conditions may be taken into account in the design process.

The present method has been developed for blades of infinitesimal thickness. Some
work on extending the method to the case with finite blade thickness, while maintaining
a true representation of the geometry during the flow solution, is reported in [2] for the
two-dimensional case. The extension towards the three-dimensional case is presently under
investigation. With infinitesimal blade thickness a non-zero angle of incidence gives rise to a
weak singularity near the leading edge (see for example [1]). In design practice, some flow
incidence is sometimes aimed for, even at the design point. By considering the case with finite
blade thickness, an inverse problem can be formulated that allows for flow incidence at the
leading edge, but that does not involve a weak singularity.

The current method is based on a Picard-type method, in which the solutions for the flow
field and for the geometry are decoupled at the stage of a single iteration. To increase the
convergence rate of the method, it may be beneficial to develop the more complex (quasi-)
Newton methods, as have been reported for viscous free-boundary problems [23, 31, 32] and
used in [16] for two-dimensional inverse-design problems for turbomachines.
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Appendix A. Considerations on Fourier-based methods for inverse problem of
blade design

The methods for the inverse problem by [4, 5, 21, 26, 37] are based on a Fourier expansion for
the potential φ in circumferential direction θ . This leads to (indefinite) two-dimensional
inhomogeneous Helmholtz equations for the Fourier amplitudes of the potential in the
meridional plane (see [4]). It is well-known that such solutions of Helmholtz equations are
strongly oscillatory for high ‘wave numbers’ (see for example [20]). Furthermore, the right-
hand side in the inhomogeneous Helmholtz equations is strongly oscillatory for higher Fourier
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modes. These factors may contribute to the convergence problems in the overall iterative
Fourier-based methods.

In the method proposed here the boundary conditions for the intermediate flow solutions
in the iterative cycle are selected such that the normal component of the velocity at the
pressure side and the suction side of the blades satisfy the condition ∂φ

∂n |+ = − ∂φ

∂n |−. Hence,
the intermediate flow solutions satisfy the overall (integral) form of the mass conservation
equation, equation (7). Such consistency is not generally ensured for the methods based on
Fourier expansions. This means that those intermediate solutions generated during the iterative
process may violate the overall (integral) form of the mass conservation equation, equation (7).
This may be a source of convergence problems.

The Fourier-based methods were developed for blades with infinitesimal thickness. The
generalization of such methods to blades with finite blade thickness is not possible when
an accurate representation of the blade geometry and of the flow field is required. Such an
accurate representation is required for proper evaluation of cavitation characteristics, which
are determined by the flow near the leading edge of the blades. For the FEM-based methods
an accurate representation of the blade geometry and an accurate flow solution is possible for
blades with finite thickness (see [2] for the two-dimensional case).

Appendix B. Weak form of Laplace equation and handling of periodic
boundary conditions

The weak form of the Laplace equation, equation (7), forms the basis of discretization by
the finite element method. Here this weak form is shortly described, with emphasis on the
treatment of the periodic boundary conditions, equation (17).

The weak form of the Laplace equation (7) is obtained by multiplication by an arbitrary
test function ψ that satisfies the periodicity constraints ψ|S+ = ψ|S−and by integration over the
domain of interest V . Using Gauss theorem, it follows that∫

V
∇φ · ∇ψ dV =

∫
SN

∂φ

∂n
ψ dS +

∫
S+

∂φ

∂n
ψ dS +

∫
S−

∂φ

∂n
ψ dS , (B.1)

where SN is the part of the boundary where Neumann boundary conditions ( ∂φ

∂n = vn) apply
and S+ and S− are corresponding surfaces in the periodic boundary conditions. Since the test
function ψ is required to be periodic, ψ|S+ = ψ|S− , and the normal components of the velocity
satisfy the first relation in equation (17), the terms corresponding to the periodic boundaries
cancel out. The final expression for the weak form of the Laplace equation becomes∫

V
∇φ · ∇ψ dV =

∫
SN

vnψ dS . (B.2)

The degrees of freedom, represented as a vector, can be divided into those for periodic
surfaces at S+ and S−, with vectors {φ+}, {φ−} respectively, and remaining degrees of freedom
{φi}. The discretization by the finite element method gives a system of equations of the
following structure, where the various submatrices L describe the coupling between the various
sets of degrees of freedom. The right-hand side vector can be grouped in a similar manner.
The discretized linear system of equations can then be written as⎡

⎢⎣
[Lii] [Li−] [Li+]

[L−i] [L−−] [L−+]

[L+i] [L+−] [L++]

⎤
⎥⎦

⎧⎪⎨
⎪⎩

{φi}
{φ−}
{φ+}

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

{Ri}
{R−}
{R+}

⎫⎪⎬
⎪⎭ . (B.3)

The degrees of freedom vectors at the periodic surfaces S+ and S− are related by
{φ+} = {φ−} + {γ }, see the second relation in equation (17). Hence, the degrees of freedom
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{φ+} can be eliminated from the system of equations. This can be done, while preserving the
symmetry properties of the original discretization in equation (B.3), by adding the third block
of equations to the second block of equations. The final result for the discretized system of
linear equations is[

[Lii] [Li−] + [Li+]

[L−i] + [L+i] [L−−] + [L++] + [L−+] + [L+−]

] {
{φi}
{φ−}

}
=

{
{Ri} − [Li+]{γ }

{R+} + {R−} − ([L−+] + [L++]){γ }

}
. (B.4)
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