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Rayleigh–Bénard convection, i.e. the flow of a fluid between two parallel plates
that is driven by a temperature gradient, is an idealised set-up to study thermal
convection. Of special interest are the statistics of the turbulent temperature field,
which we are investigating and comparing for three different geometries, namely
convection with periodic horizontal boundary conditions in three and two dimensions
as well as convection in a cylindrical vessel, in order to determine the similarities and
differences. To this end, we derive an exact evolution equation for the temperature
probability density function. Unclosed terms are expressed as conditional averages of
velocities and heat diffusion, which are estimated from direct numerical simulations.
This framework lets us identify the average behaviour of a fluid particle by revealing
the mean evolution of a fluid with different temperatures in different parts of the
convection cell. We connect the statistics to the dynamics of Rayleigh–Bénard
convection, giving deeper insights into the temperature statistics and transport
mechanisms. We find that the average behaviour is described by closed cycles in
phase space that reconstruct the typical Rayleigh–Bénard cycle of fluid heating up at
the bottom, rising up to the top plate, cooling down and falling again. The detailed
behaviour shows subtle differences between the three cases.
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1. Introduction

In Rayleigh–Bénard convection, a fluid enclosed between two horizontal plates
is heated from below and cooled from above, which induces a flow and thereby
enhanced heat transport between the plates. This simple set-up is the benchmark
system to study thermal convection, which is important both in nature and technical
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applications. Prominent examples include convection in the oceans and the atmosphere
or plate tectonics in the mantle of the earth. Depending on the control parameters,
the Rayleigh–Bénard system displays a variety of different patterns and flow regimes
ranging from laminar to highly turbulent flows.

Apart from special cases such as laminar convection, an analytical solution does
not exist as turbulent flows are remarkably hard to work with analytically. Because of
their importance, a deeper understanding of turbulent convective flows is still desired,
despite the inability to solve the basic equations analytically. To achieve this, many
different approaches have been pursued. The heat transport as a function of the control
parameters is of particular interest and is well described by the Grossmann–Lohse
theory (Grossmann & Lohse 2000, 2001, 2011, 2012; Ahlers, Grossmann & Lohse
2009; Petschel et al. 2013; Stevens et al. 2013). There have also been studies on
the turbulence properties of Rayleigh–Bénard convection, by e.g. characterising the
statistics of temperature readings of thermal probes in the convection cell (Yakhot
1989; Ching 1993; Ching et al. 2004; Shang, Tong & Xia 2008) or by examining the
heat transport mechanisms and the large-scale circulation by Eulerian (Bailon-Cuba,
Emran & Schumacher 2010; Petschel et al. 2011; van der Poel, Stevens & Lohse
2011; Ahlers et al. 2012) or Lagrangian (Gasteuil et al. 2007; Schumacher 2009)
approaches. An overview of recent progress on Rayleigh–Bénard convection can be
found in Ahlers et al. (2009), Lohse & Xia (2010), Chillà & Schumacher (2012).

In this paper we will describe Rayleigh–Bénard convection with the full single-point
temperature statistics using the temperature probability density function (PDF). This
in turn yields information about the dynamics of the convecting fluid. To this end,
we derive an evolution equation for the temperature PDF, feed in numerical data
to complete our ansatz and obtain through the statistics a description of the mean
dynamics of fluid particles that travel around in the convection cell. A similar
method has previously been used to describe the statistics in homogeneous isotropic
turbulence, see Wilczek & Friedrich (2009), Wilczek, Daitche & Friedrich (2011),
Friedrich et al. (2012). In this paper, we will generalise and extend the work presented
by Lülff, Wilczek & Friedrich (2011), where we first introduced the aforementioned
method to Rayleigh–Bénard convection.

We start by deriving the framework in the most general form. Since Rayleigh–
Bénard set-ups usually contain a number of symmetries that can be utilised to
simplify the problem, we will apply our framework to three different showcases
of three- and two-dimensional convection with homogeneous horizontal directions
(i.e., periodic boundaries) and three-dimensional convection in a cylinder. All three
cases have different statistical symmetries and show slightly different dynamics. The
differences between two- and three-dimensional convection and also between fixed
sidewalls and periodic horizontal boundaries are discussed, for example, in van der
Poel, Stevens & Lohse (2013) and van der Poel et al. (2014). We will use the PDF
methods presented here to further define the similarities and differences between these
three cases and give a comprehensive description of the statistics and the dynamics
of Rayleigh–Bénard convection.

Since the derivation of our framework utilises the basic equations of Rayleigh–
Bénard convection, it can be considered as an ansatz from first principles. The basic
equations that govern Rayleigh–Bénard convection are the Oberbeck–Boussinesq
equations (Oberbeck 1879; Boussinesq 1903) for the velocity u(x, t) and temperature
field T(x, t):
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∂

∂t
u+ u · ∇u=−∇p+ Pr1u+ PrRaTez, (1.1a)

∇ · u= 0, (1.1b)
∂

∂t
T + u · ∇T =1T. (1.1c)

Here, the equations have been non-dimensionalised by the heat diffusion time L2/κ ,
the vertical height L and the heat difference 1 between the upper and lower plate.
This introduces the Rayleigh number Ra = αg1L3/νκ and the Prandtl number
Pr= ν/κ as the control parameters. The vertical coordinate lies in the range z∈ [0, 1]
and the temperature takes values T ∈ [0, 1]. Another control parameter that is often
taken into account is the aspect ratio Γ which indicates the lateral over the vertical
extent of the system.

The remainder of this paper is structured as follows. In § 2 we will briefly recount
our method, i.e. derive an equation for the temperature PDF and connect it to the
description of the dynamics of the system. This general theory is then applied to
three different Rayleigh–Bénard geometries in § 3, namely three- and two-dimensional
convection with homogeneous horizontal directions, and three-dimensional convection
in a closed cylindrical vessel with Γ = 1. Section 4 closes the article with an
interpretation and discussion of the findings.

2. Statistical description of heat transport
To describe Rayleigh–Bénard convection we start from the temperature PDF.

Therefore we derive an equation that describes the temperature PDF and use it to gain
insights into the dynamics of the system. This ansatz is generally referred to as PDF
methods (Pope 1984, 2000) or the Lundgren–Monin–Novikov hierarchy (Lundgren
1967; Monin 1967; Novikov 1968). We now give a short overview of this derivation;
a more detailed discussion of the framework can be found in Wilczek & Friedrich
(2009), Lülff et al. (2011), Wilczek et al. (2011), Friedrich et al. (2012). Similar
equations have been derived for turbulent reactive flows by Pope (1985). However,
there the unclosed terms are modelled instead of estimated from the numerics as in
our case.

2.1. PDF methods
The starting point is the definition of the temperature PDF as an ensemble average,

f (T, x, t)= 〈δ(T(x, t)− T)〉, (2.1)

where the PDF f (T, x, t) describes the probability of finding fluid of temperature T
at position x and time t. Accordingly, T is the sample space variable, while T(x, t)
is a realisation of the temperature field. The averaging process 〈·〉 can be considered
as an ensemble average; later, ensemble averages are evaluated from the numerics by
a suitable volume and time average.

Since the definition in (2.1) includes an actual realisation T(x, t) of the temperature
field, it is now possible to calculate spatial and temporal derivatives of the PDF,
i.e. ∇f (T, x, t) and (∂/∂t)f (T, x, t). These derivatives contain unclosed terms in
the form of conditional averages 〈· | T, x, t〉, where, e.g. the appearing conditionally
averaged velocity 〈u | T, x, t〉 is a function of the sample space variables T , x and t
which defines the mean velocity for fluid of a given temperature, position and time.
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Putting the aforementioned derivatives together and rearranging gives the desired
evolution equation that describes the temperature PDF:

∂

∂t
f +∇ · (〈u | T, x, t〉f ) = − ∂

∂T

(〈
∂

∂t
T + u · ∇T

∣∣∣∣ T, x, t
〉

f
)

(2.2a)

= − ∂

∂T
(〈1T | T, x, t〉f ). (2.2b)

The left-hand side of (2.2a) can be seen as the convective derivative of the PDF
f (T, x, t), while the right-hand side of (2.2a) contains the conditional average of
the convective derivative of the temperature field. Since T(x, t) is a realisation of
the temperature field, it obeys the Oberbeck–Boussinesq equations, so in (2.2b) we
replaced the convective derivative of the temperature field by the right-hand side of
the Oberbeck–Boussinesq equation (1.1c).

We have thus obtained an evolution equation that links the shape of the temperature
PDF to the conditionally averaged velocity 〈u |T, x, t〉 and heat diffusion 〈1T |T, x, t〉,
which have to be supplied externally; in our case they are estimated from simulations.

2.2. Method of characteristics
The above evolution (2.2) that determines the temperature PDF is a first-order partial
differential equation. That means that we can apply the method of characteristics
(Courant & Hilbert 1962; Sarra 2003) which lets us identify the average behaviour
of fluid as it travels through phase space.

By applying the method of characteristics to the evolution equation, one can identify
trajectories (the so-called characteristic curves or just characteristics) in phase space,
along which the partial differential equation for the temperature PDF transforms into a
set of ordinary differential equations for T and x. The phase space is spanned by the
variables that the temperature PDF depends upon, i.e. T , x and t. The characteristics
are defined by the conditional averages,Ṫ

ẋ
ṫ

=
〈1T | T, x, t〉
〈u | T, x, t〉

1

 . (2.3)

This states that the characteristics are solutions (T, x, t)T of (2.3) that follow the vector
field on the right-hand side of the above equation; the vector field is regarded as
the phase space velocity. From the last line of (2.3), ṫ= 1, it becomes clear that the
parametrisation of the characteristics in phase space, i.e. the arc length, is the same
as the time of the system – a fast movement in phase space therefore has to be seen
in the temporal sense.

It is important to note that, since the characteristics are governed by the
conditionally averaged vector field, they show the average behaviour of a fluid
parcel in phase space. In other words, the characteristics can be seen as the mean
evolution of an ensemble of Lagrangian particles that share the same coordinates
in phase space. This is what Pope (1985, § 4.5) refers to as conditional particles –
quasi-particles following the conditionally averaged vector field (2.3) that show the
mean Lagrangian evolution and that have the same statistics as Lagrangian particles.
By examining the conditionally averaged vector field and the resulting characteristic
curves, one can investigate the mean transport properties of the fluid through phase
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space and gain insight into the mean heat transport properties of Rayleigh–Bénard
convection. Since the characteristics are trajectories in phase space, the framework
can be seen as a quasi-Lagrangian description, but it must be stressed that it is
achieved by utilising the statistics of the Eulerian fields alone.

Along the characteristics, the partial differential equation (2.2) becomes an ordinary
differential equation which can be integrated. Thus, the temperature PDF along a
certain characteristic evolves according to

f (T(t), x(t), t) = f (T(t0), x(t0), t0)

× exp

[
−
∫ t

t0

dt′
(
∇ · 〈u | T, x, t〉 + ∂

∂T
〈1T | T, x, t〉

)
T(t′),x(t′),t′

]
.

(2.4)

Here, the integral is a line integral along a characteristic from t0 to t. The integral
kernel is the phase space divergence ∇ · 〈u | T, x, t〉 + (∂/∂T)〈1T | T, x, t〉 evaluated
at the phase space position given by the characteristic for time t′, i.e. (T(t′), x(t′), t′)T.
This equation tells us that the temperature PDF along the characteristic that connects
the initial point (T(t0), x(t0), t0)

T with the point (T(t), x(t), t)T in phase space changes
according to the integrated phase space divergence. As an alternative interpretation,
(2.4) determines how the temperature PDF for t is traced back to the PDF for t0.
While we will not further investigate (2.4) in the numerical results of the next section,
we include it for completeness.

So far we have kept the description as general as possible, but usually, a
Rayleigh–Bénard set-up has a number of statistical symmetries which simplify the
problem, i.e. the phase space dimension is reduced and the estimation of the unknown
conditional averages from numerical simulation is simplified. In the next section, we
will apply the framework that has been outlined to three different Rayleigh–Bénard
geometries with different symmetries and discuss the findings.

3. Results from DNS

In this section, we focus on three Rayleigh–Bénard geometries, i.e. three-
dimensional convection with periodic horizontal boundaries (§ 3.1), two-dimensional
convection with periodic horizontal boundaries (§ 3.2) and three-dimensional convection
in a cylindrical vessel with Γ = 1 (§ 3.3).

3.1. Three-dimensional convection with periodic horizontal boundaries
First, we consider three-dimensional convection with periodic horizontal boundaries
in the statistically stationary state. A snapshot of the instantaneous temperature field
taken from the numerics can be seen in figure 1. The parameters of the simulation
are Ra = 2.4 × 107, Pr = 1 and the aspect ratio of the periodic box is Γ = 4. The
two horizontal plates have a constant temperature and a no-slip velocity boundary
condition. The numerical set-up is a tri-periodic pseudospectral direct numerical
simulation, where the boundary conditions are enforced by volume penalization
methods (Angot, Bruneau & Fabrie 1999; Schneider 2005; Keetels et al. 2007; Lülff
et al. 2011). The equidistant resolution in the x, y and z directions are 512×512×128
grid points, and in the vertical direction 5 grid points fall into the boundary layers,
according to the criteria given by Shishkina et al. (2010). We calculated the statistical
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FIGURE 1. Snapshot of the temperature field in three-dimensional Rayleigh–Bénard
convection. Hot fluid rising up from the bottom plate is reddish, while cold fluid falling
down from the top is blue.

quantities from an ensemble consisting of 571 snapshots, and the snapshots were taken
3.75 free-fall time units apart.

Statistically stationary Rayleigh–Bénard convection in this geometry is homogeneous
in the horizontal directions. This means that the statistical quantities only depend on
the temperature T and the vertical coordinate z and not on the horizontal coordinates
x and y or time t. Thus the temperature PDF and the conditional averages read f (T, z)
and 〈· | T, z〉 and the phase space becomes two-dimensional.

In figure 2, the height-resolved mean, standard deviation, skewness and kurtosis of
the temperature field are shown. As is well known, the mean temperature is almost
constant in the bulk and has a steep gradient towards the hot and cold boundaries at
z= 0 and z= 1. The standard deviation takes its highest values close to the boundaries
and decreases towards the centre of the bulk, indicating a temperature PDF that is
broadening towards the boundaries. The height-resolved skewness takes its highest
absolute values near the boundaries and decreases linearly as function of height in
the bulk. This can be interpreted as hot fluid that is beginning to cool on its way
from the lower to the upper plate (and vice versa). The kurtosis indicates that, apart
from the boundaries, the temperature PDF is more peaked and shows stronger tails
than the Gaussian distribution.

When the simplifications resulting from the statistical symmetries are incorporated
into the general framework presented in § 2, (2.2) defining the PDF becomes

∂

∂z
(〈uz | T, z〉f )=− ∂

∂T
(〈1T | T, z〉f ), (3.1)

while the vector field (2.3) of the characteristics reads(
Ṫ
ż

)
=
(〈1T | T, z〉
〈uz | T, z〉

)
. (3.2)

The PDF and the characteristic curves are therefore defined by the conditional
averages of vertical velocity and heat diffusion. The next step is to estimate the
conditional averages from the numerics while taking the statistical symmetries into
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FIGURE 2. (Colour online) Height-resolved profiles of the mean (a), standard deviation
(b), skewness (c) and kurtosis (d) of the temperature distribution for three-dimensional
convection with periodic horizontal boundaries. The skewness and kurtosis are defined as
the third and fourth standardised moment. Gaussian distributions have skewness of 0 and
a kurtosis of 3.

account. Subsequently, the characteristics are obtained by integrating (3.2) for arbitrary
initial conditions (T0, z0)

T in phase space. Clearly, only initial conditions where the
PDF and the conditional averages are defined, i.e. where there have been any events
at all, can be considered.

When integrating the characteristics for many starting positions, we observe that
they tend to converge to what at first seems to be similar to a limit cycle. This cycle
is shown in figures 5 and 6; we will later return to the description of the dynamics
and behaviour of Rayleigh–Bénard convection that these figures offer. In contrast
to a limit cycle, however, one would expect the characteristics to form concentric
closed curves: to see this, let the phase space be densely seeded by the conditional
particles described in § 2.2. As the density of the conditional particles following the
characteristics is proportional to the temperature PDF, and a limit cycle acts as an
attractor for the conditional particles, the temperature PDF should converge towards a
δ-function that is non-vanishing on the cycle and zero everywhere else. This in turn
stands in contrast to the fact that we are considering statistically stationary systems
and that the temperature PDF is clearly not a δ-function, and thus it follows that
the characteristics cannot converge to a limit cycle but must form concentric closed
curves.

We find that the observed convergence is caused by the flawed conditionally
averaged vector field estimated from the numerics by a binning process. The noise
inherent to the binning violates the solenoidality of the probability flux (phase space
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FIGURE 3. Concentric closed characteristics found for three-dimensional convection after
removing the imperfections from the binned conditionally averaged vector field, cf. text.
The temperature PDF f (T, z) is colour coded.

velocity times PDF) as demanded by (3.1), and thus the imperfect binned vector field
contains many localised sinks where the characteristics converge.

By smoothing the binned data through a convolution with a Gaussian kernel and
projecting the vector field onto the solenoidal part (i.e. enforcing the validity of (3.1)),
we are indeed able to find the expected concentric closed curves, as exemplified
in figure 3. Here the horizontal axis corresponds to the temperature coordinate T
and the vertical axis to the vertical coordinate z of the phase space; the background
colour coding gives the temperature PDF f (T, z). For every starting point located on
the z = 0.5-axis, the characteristics perform a closed loop in the counter-clockwise
direction which shows how particles on average evolve through phase space. By
tracing its course, one is able to reconstruct the typical Rayleigh–Bénard cycle a
conditional particle undergoes. A fluid element near the lower plate first heats up and
then starts to move up towards the cold plate. During its upward travel, it slowly
cools and then becomes much colder when it is close to the top plate before it falls
again towards the lower plate while beginning to heat up and starting what we term
the RB cycle again. The cycles for fluid starting at more moderate temperatures (i.e.
near T = 0.5) show a smaller amplitude in both T- and z-direction. We do not find
closed circles located further outwards, because the characteristics would visit areas
of the phase space where no events are recorded in the numerics, and thus where
the vector field is undefined. This usually happens near the vertical boundaries of
the phase space (i.e. near the plates) where the support of the vector field becomes
very narrow. Furthermore, we remark that the precise appearance of the closed cycles
slightly varies with the parameters of the post-processing described above (e.g. the
amount of smoothing); nevertheless, the description of the qualitative behaviour is
found to be robust.

Without the aforementioned projection to keep the vector field solenoidal in the
presence of noise, the characteristics converge in some parts of the phase space.
To study this behaviour, and also the near-wall regions, we seed characteristics
on the {T > 0.5, z = 0.5}-line and integrate them backwards in time, as shown
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FIGURE 4. Characteristics seeded on the {T > 0.5, z= 0.5}-line and followed backwards
in time for three-dimensional convection. A zoom into the bottom region 0 6 z 6 0.25 is
shown. The divergences of the vector field have not been removed here. The temperature
PDF f (T, z) is colour coded.

in figure 4. The comparison of the characteristics in the regions T < 0.5 and T > 0.5
immediately reveals the convergence for the non-solenoidal case, because the density
of the characteristics on the right side (i.e. at later times) is higher than on the left
side. Furthermore, the characteristics on the far right enter the boundary at z = 0
when integrated backwards in time, or in other words, the characteristics leave the
boundaries very close to each other and then become less dense with time. This
corresponds to the fact that at z = 0, the temperature PDF becomes a δ-function
located at T = 1 due to the Dirichlet boundary condition. In fact, the characteristics
should end precisely in this point, but this behaviour is not resolved here. Likewise,
by symmetry considerations, the characteristics approaching the boundary from the
far left side should also enter the point {T = 1, z= 0}, which we do not observe. We
speculate that a numerical resolution that goes beyond that demanded by the criterion
of Shishkina et al. (2010) may be needed to capture the correct behaviour of the
characteristics in this singular region of phase space.

The cycle to which the characteristics converge in the presence of noise is shown
in figure 5. This cycle is very similar to the closed curves shown in figure 3; in
fact, it is almost completely embedded between two adjacent closed curves. While
the solenoidal projection helps to find the required closed curves, the conditionally
averaged vector field still containing the noise gives the same general picture of the
RB cycle. Additionally, while removing divergences, the projection may introduce
unpredictable systematic errors, especially in regions of the phase space where the
support of the conditional averages and the PDF changes rapidly. Therefore, as we
wish to focus on the qualitative features of Rayleigh–Bénard convection that the
RB cycle as well as the vector field represent, we will from now on only consider
the cases without the solenoidal projection and use the found cycle as one generic
representative of the family of closed concentric curves. The same applies to the
convection cases discussed in §§ 3.2 and 3.3 where the characteristics also tend to
converge due to imperfections induced by noise.
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FIGURE 5. RB cycle of the characteristics for three-dimensional convection. The phase
space speed along the cycle shown as solid thick line is coded in black (low speed) and
white (high speed), i.e. the norm of the phase space velocity appearing in (3.2). The colour
coding in the background shows the temperature PDF f (T, z). The arrows show the phase
space velocity field, where the length of the arrows has been rescaled to arbitrary units for
visualisation purposes. Note that around the lower-left and upper-right corners, no events
were recorded (e.g. there is no fluid of temperature T ≈ 1 near the upper plate).

We now come back to the discussion of the qualitataive features that the
conditionally averaged phase space velocity and the RB cycle describe. In figure 5,
the RB cycle is shown together with the temperature PDF and in figure 6 together
with the phase space velocity. From the first-mentioned figure, it is interesting to
see that hot fluid on the RB cycle has the highest phase space speed in the range
0.25 < z < 0.5, i.e. hot rising fluid is fastest in the lower half of the convection
vessel, and likewise for cold fluid in the upper half due to the up-down symmetry of
Rayleigh–Bénard convection. Henceforth, wherever we describe a fluid process, the
reversed process – interchanging hot ↔ cold, bottom ↔ top, up ↔ down etc. – is
also implied.

The temperature PDF in figure 5 shows that the temperature distribution changes
with the vertical coordinate and contracts to a δ-function at the fixed temperature
boundaries. Furthermore, one can map the shape of the distribution to the higher
moments in figure 2, i.e. the peaks of the standard deviation near the boundaries and
the linear dependence of the skewness on the height in the bulk region. We note that
the isocontours of the PDF do not lie tangent to the vector field or the RB cycle
because the divergence the phase space velocity, (∂/∂z)〈uz | T, z〉 + (∂/∂T)〈1T | T, z〉,
is non-vanishing.

In figure 6, the black and white background colour corresponds to the phase space
speed, and the temperature is given by the colour of the arrows. This display allows
us to identify how fluid behaves in different parts of the phase space. Near the
boundaries, fluid of all temperatures displays high phase space speeds, while in the
bulk, only fluid of intense temperature (i.e. deviating strongly from the mean) has
high speeds. This supports the previous finding that hot fluid on the RB cycle has its
highest speed in the lower half. Fluid that has the mean temperature (cf. figure 2a)
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FIGURE 6. RB cycle of the characteristics for three-dimensional convection as function of
height and temperature. The colour of the arrows (with blue corresponding to T = 0 and
red to T = 1) indicates the temperature. The black and white background colour shows
the phase space speed.
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FIGURE 7. Temperature field for two-dimensional convection with periodic horizontal
boundary conditions. The colour scale for T is shown on the right.

is found to be at rest because no buoyancy acts on it and it does not heat up or cool
down. As can be expected a priori, the vector field shows that the main movement
in the T-direction, i.e. heating and cooling, takes place near the boundaries, while
the main movement in the vertical direction happens in the bulk.

3.2. Two-dimensional convection with periodic horizontal boundaries
The next case we investigate is that of two-dimensional Rayleigh–Bénard convection
with periodic horizontal boundaries. The parameters are Ra = 5 × 108, Pr = 1 and
Γ = 4, and the numerical scheme used is identical to that of § 3.1. Again, the two
horizontal plates are no-slip walls of fixed temperature. The numerical resolution is
1536× 384 equidistant grid points with 7 grid points in the vertical direction falling
into the boundary layers (cf. Shishkina et al. 2010), and the ensemble consists of 3891
snapshots separated by 3.75 free-fall time units.

A snapshot of the temperature field is shown in figure 7, and one can see coherent
structures in the form of four plume hot spots (two at the top, two at the bottom) and
four convection rolls, even at this intermediate Rayleigh number. Also, localised round



Turbulent RB convection described by projected dynamics in phase space 287

0 1 1 2 3 4 5 6 7 8 9–1

0 0.05 0.10 0.15(a) (b)

(c) (d )

z

z

z

z

FIGURE 8. (Colour online) First four standardised moments of temperature for
two-dimensional convection, analogous to figure 2: (a) mean; (b) standard deviation; (c)
skewness; (d) kurtosis.

blobs of hot and cold fluid can be observed. The statistical symmetries in this system
are identical to the ones for the three-dimensional periodic case discussed previously,
which means that the phase space becomes two-dimensional and the statistics depend
on T and z only.

Figure 8 shows the first four height-resolved standardised moments of temperature.
While the mean temperature profile has the same shape as the one from three-
dimensional convection (cf. figure 2), the higher moments show subtle new features.
For the three-dimensional case, the moment profiles as a function of the height
are smoother than for the two-dimensional case. Especially, the skewness shows
transitions and is not as linear in the bulk as for the three-dimensional case. We link
this to the coherent structures in the form of plume hot spots in the two-dimensional
case because the position of the transitions in the moments corresponds to the vertical
size of the plume hot spots (cf. figure 7). In the plume hot spots, there is a recycling
of hot fluid, which means that fluid that is hotter than the mean temperature profile
is trapped near the hot bottom plate for some time instead of being advected upwards
directly, cf. Sugiyama et al. (2010). This hot trapped fluid causes a temperature
distribution that is strongly skewed towards higher temperatures near the lower plate.
Above the hot spot, only a sharp jet of hot fluid remains, which results in a flatter
profile of the skewness. In three-dimensional convection, the trapping mechanism
of plume hot spots is missing: In general terms, with three-dimensional convection
there is another lateral dimension into which the fluid can escape and be advected
away, forming the sheet-like plumes that can also be found in figure 1 (Schmalzl
et al. (2004) and van der Poel et al. (2013) also discuss differences in flow structures
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FIGURE 9. RB cycle of the characteristics for two-dimensional convection, together with
the temperature PDF. Illustration analogous to figure 5.
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FIGURE 10. RB cycle of the characteristics for two-dimensional convection, together with
the phase space speed. Illustration analogous to figure 6.

between two- and three-dimensional convection). Therefore, the entrapment seen in
two-dimensional convection does not occur in three dimensions, which means that a
strong mechanism that in two dimensions traps hot fluid near the bottom is missing
for the three-dimensional case.

When we estimate the conditional averages for two-dimensional convection from the
simulation and then numerically calculate the characteristics, we again find that the
dynamics in phase space resemble a closed cycle. This RB cycle is shown in figures 9
and 10. While the RB cycle displays the same basic cycle of fluid heating up at the
bottom, moving upwards, cooling down at the top plate and falling down again, there
are some differences when compared to the three-dimensional case (figures 5 and 6).
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The most striking new feature is a kink in the RB cycle in the lower left and
upper right corners. As can be seen from the colour coding of the cycle, this is
also the region of the lowest phase space speed. Therefore, we also link this region
to the recycling areas discussed above because fluid trapped in the plume hot spots
undergoes almost no net vertical movement and needs more time to heat up in
comparison to fluid that is in direct contact with the much hotter bottom plate. A
similar argument has been discussed by van der Poel et al. (2013).

Another difference compared to the three-dimensional case is that there is a bulge
in the temperature PDF towards higher temperatures (around T ≈ 0.6, z≈ 0.15). This
bulge is due to the hotter-than-average fluid that gathers near the bottom plate and
is therefore compatible with the interpretation of the recycling fluid discussed above.
Also, this bulge gives a direct impression of the high skewness values found in this
region (cf. figure 8).

Figure 10 shows the vector field of the phase space velocities together with its
norm (coded in black and white). The phase space velocities are more heterogeneously
distributed when compared to the three-dimensional case, e.g. the high speeds in the
bulk for intense temperatures are more pronounced (cf. figure 5). These strong vertical
movements in the bulk lead to higher phase space speeds compared to the case of
three dimensions (see the colour scale in figures 6 and 10). We believe this can only
in part be attributed to the difference in Rayleigh numbers (2.4× 107 versus 5× 108),
but is also due to the coherent structures found in two dimensions, i.e. plume hot
spots as localised events of intense temperature. It is also found that in the kink region
the RB cycle passes through the region of lowest phase space speed, which can be
understood as the average dynamics being slowed down in the recirculating plume hot
spots.

3.3. Three-dimensional convection in cylindrical vessel
The last Rayleigh–Bénard geometry under investigation is a closed cylindrical vessel.
The control parameters are Ra = 2 × 108, Pr = 1 and Γ = 1 (diameter over height).
All the walls are no-slip, and the horizontal plates are of constant temperature while
the sidewalls are thermally insulating. The ensemble consists of 870 snapshots that
are obtained from direct numerical simulation using a second-order finite difference
scheme on a staggered cylindrical grid (Verzicco & Camussi 2003) with a resolution
of Nϕ ×Nr ×Nz = 384× 192× 384 grid points (with ϕ, r and z being the azimuthal,
radial and vertical coordinates, respectively). The boundary layer contains 17 grid
points in the vertical direction. The snapshots are separated by 1 free-fall time unit.
Figure 11 shows a snapshot of the temperature field.

Rayleigh–Bénard convection in a cylinder has statistical symmetries that are
different from the former two cases of horizontally homogeneous convection. In
addition to the temperature T and vertical position z, the statistics now also depend
on the radial position r in the cylinder. Here r = 0 corresponds to the cylinder axis
and the sidewall is at r= 1/2.

In figure 12 the r–z-resolved first four standardised moments of the temperature
distribution are shown. The horizontal and vertical axes correspond to the radial
coordinate r and the vertical coordinate z, respectively. The mean temperature profile
is almost constant in the bulk, and only near the hot and cold plate (and to a lesser
extent near the sidewalls) can a deviation be seen. As with the former cases, the
standard deviation of the temperature takes its highest values near the horizontal
plates and falls off towards the middle of the convection cell with a local minimum
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FIGURE 11. Snapshot of the temperature field in three-dimensional Rayleigh–Bénard
convection in a Γ = 1-cylinder. In the upper left corner, the colour and opacity scale is
shown; fluid around the mean temperature is translucent.
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FIGURE 12. First four standardised r–z-resolved moments of the temperature distribution,
i.e. (a) mean value, (b) standard deviation, (c) skewness and (d) kurtosis. Here the
convection is in a cylinder with Γ = 1.

at z = 0.5. Also, it can be seen that this local minimum is less pronounced near
the sidewalls, i.e. for high r. After rising to its maximum value at z ≈ 0.1, the
skewness varies monotonically with increasing z. This has also been found for the
former two cases. Regarding the radial dependence, the skewness falls off towards the
sidewalls, indicating a less asymmetric temperature distribution there, while its highest
values are found near the cylinder axis. Although the statistics are less converged
for the kurtosis (especially near r = 0 due to the cylindrical geometry), one can see
that the highest values correspond roughly to the extrema of the skewness. These
high values of skewness and kurtosis near the bottom wall can be attributed to hot
localised plumes detaching from the hot bottom plate and piercing into the colder
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fluid of the bulk. We also note that the absolute values of skewness and kurtosis
are higher than in the former two cases (figures 2 and 8), which can be understood
on dimensional grounds: in horizontally periodic convection, we averaged over all
horizontal directions and therefore averaged out the sharp maxima that can be seen
in the cylindrical case (figure 12) where the statistics are resolved additionally in the
horizontal coordinate r.

When inserting the temperature PDF f (T, r, z) and the conditional averages
〈· | T, r, z〉 into the general framework from § 2, the PDF defining equation (2.2)
becomes

1
r
∂

∂r
(r〈ur | T, r, z〉f )+ ∂

∂z
(〈uz | T, r, z〉f )=− ∂

∂T
(〈1T | T, r, z〉f ), (3.3)

while the characteristics (2.3) readṪ
ṙ
ż

=
〈1T | T, r, z〉
〈ur | T, r, z〉
〈uz | T, r, z〉

 . (3.4)

In comparison to the former two cases, we now deal with a three-dimensional phase
space where the additional dimension is related to the radial movement. From (3.4)
one sees that the radial coordinate r of the characteristics evolves according to the
conditional average of radial velocity ur.

We now again turn to the integration of the characteristics, following (3.4).
Although cylindrical convection is intrinsically different from the former two cases of
horizontally periodic convection (due to three- versus two-dimensional phase space),
we still find that the average dynamics of fluid parcels are described by a closed,
twisted loop in phase space that shares common features with the former two. The
cycle is shown in figures 13 and 14 as the slender figure eight shaped curve.

In figure 13(a), the background shows the mean temperature (cf. figure 12) and
the figure eight shaped curve shows a projection of the RB cycle into the r–z-plane.
The third coordinate of the RB cycle, the temperature T , is colour coded. The
temperature scale corresponds to the minimal and maximal temperature (T = 0.47 and
T = 0.53) the RB cycle takes. When tracing the cycle, one can again identify the
Rayleigh–Bénard cycle of the horizontally periodic convection cases, superposed with
an additional inwards and outwards motion: starting with fluid of mean temperature
that is quickly heating up at the bottom, it then begins to rise up and move inwards
into the bulk until z ≈ 0.8 and r ≈ 0.3, where it goes outwards and starts to cool
down. At the maximal z, the fluid cools down quickly and then falls towards the
lower plate while moving inwards, thus starting the RB cycle again. Additionally, one
can see that the hot fluid rising from the lower plate steadily cools down when it
crosses the bulk of almost uniform temperature; this is related to the monotonically
decreasing skewness of temperature that can be seen in figure 12.

The difference of the temperature of the RB cycle and the background temperature
(cf. colour coding of these two in figure 13a) shows that the regions where the
temperature of the RB cycle deviates most from the mean background temperature
are the regions of high buoyancy and correspond to the regions of main vertical
movement in the bulk. To elaborate on this, figure 13(b) shows the standard deviation
of the temperature field in the background, and the colour coding of the cycle shows
the absolute deviation of its temperature coordinate T from the mean temperature.
The deviation of the temperature of a fluid particle on the cycle from the surrounding
mean temperature determines its mean buoyancy, thus panel (b) tells us how strong
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FIGURE 13. RB cycle of the characteristics for convection in a Γ = 1-cylinder. (a)
Temperature of the cycle (figure eight) and r–z-resolved mean temperature colour coded.
(b) The r–z-resolved standard deviation of temperature where T ′= T − 〈T〉. The colour of
the figure eight shaped cycle indicates its absolute temperature difference with respect to
the background temperature.

the buoyancy acts; the highest values for hot rising fluid are found in the lower
half of the convection cell. In comparison, the mean deviation of fluid from the
mean temperature profile (shown in the background as the standard deviation of
temperature) is much weaker. To summarise, from figure 13(a) one can see in which
direction the buoyancy acts, while figure 13(b) shows its strength.

The vector field of the characteristics is shown in figure 14. Due to the difficulty
of displaying a vector field in three-dimensional phase space, we show slices of the
phase space velocity in the r–z plane at different T . Figure 14(a–h) shows one cycle
of a fluid parcel travelling along the RB cycle, with its temperature colour coded as
in figure 13(a). Additionally to the RB cycle described above, figure 14 also reveals
the average behaviour of fluid in different parts of the convection cell, conditioned on
its temperature. The arrows show an r–z slice of the vector field of the characteristics
(3.4) at the T coordinate of the cycle. Also, the black and white background colour
indicates the phase space speed, i.e. how fast a fluid parcel travels through phase space
(with white being the fastest movement). The arrows indicate the mean movement of
fluid of a given temperature in different regions of the convection cell.

Panel (a) shows that cold fluid (here, T = 0.475) has the highest speeds in the bulk
and near the sidewall. Near the cold top plate, cold fluid is mainly transported towards
the outer wall. For z< 0.75, the direction of movement is slightly tilted towards the
cylinder axis. Cold fluid that falls down along the sidewall is deflected towards the
inner cylinder at around z≈ 0.25 due to a corner flow that propels cold fluid upwards
along the sidewall; notice that at r ≈ 0.45 and z ≈ 0.25, up- and down-welling cold
fluid collides. This feature can be understood as cold plumes that are formed at the
upper plate and are swept towards the sidewalls. The plumes then fall down along the
sidewall until they hit the hot fluid at the bottom plate where they are directed inwards.
These cold plumes that fall down along the sidewall can also be seen in figure 11.
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FIGURE 14. Vector field governing the characteristics in phase space for convection in a
Γ =1-cylinder, cf. (3.4). Extents of horizontal and vertical axes as in figure 13, i.e. 06 r6
1/2 and 06 z6 1. The RB cycle is the slender figure eight shaped curve at the right side.
The temperature of the vector field and the RB cycle is colour coded as in figure 13(a),
and the phase space speed (i.e. norm of velocity) is coded in black and white in the
background (with white being high velocity). The eight panels (a–h) follow a fluid parcel
(circle on the cycle, with the colour showing its temperature) along the RB cycle and show
a slice of the vector field of the phase space velocity in the r–z plane at the T coordinate
of the fluid parcel (with T ∈{0.475,0.478,0.487,0.495,0.525,0.519,0.509,0.501} from (a)
to (h)). The vector fields show the average movement in different regions of the convection
cell of fluid of a particular temperature.

The fluid from panel (c) is less cold (T = 0.487) and has overall lower speeds, but
still shows the same features as in panel (a), e.g. cold fluid is swept along the upper
plate outwards and falls down along the sidewall until it hits the upwelling corner
flow. The vector fields for fluid of mean temperature (T ≈ 0.5, panel (d) and (h)) are
symmetric around z = 0.5 and show an almost vanishing velocity in the bulk. Near
the horizontal plates, fluid is swept towards the sidewalls and from there vertically
towards the z= 0.5-line.

The rest of the panels complete one run of the RB cycle and due to the up-down
symmetry, contain the same information already described. Nonetheless, from all eight
panels it can be seen that fluid for all temperatures has high phase space speed near
the sidewalls, which can be attributed to plumes that are guided along the outer walls
of the cylinder, and also has high speeds near the bottom and top plate which is due to
the vigorous temperature contrast between fluid and horizontal plates that leads to high
speeds regarding the T coordinate. Further, we must stress here that the corner flows
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show up due to the investigation being conditioned on the temperature and not due to
any large-scale structure that may be present in the fields; this structure is lost in the
azimuthal averaging process when obtaining the vector field from (3.4). Therefore, in
our analysis the corner flows are statistical structures that are not necessarily related
to structures in the flow.

4. Summary

In this paper, we have analysed the turbulent flow in Rayleigh–Bénard convection
on the basis of statistical quantities such as the temperature PDF and conditionally
averaged fields. We derived that the mean path a fluid particle takes through phase
space (spanned by temperature and spatial coordinates) is defined by so-called
characteristics, i.e. trajectories in phase space that follow the conditionally averaged
vector field composed of heat diffusion and fluid velocities. Thereby, we could
characterise the dynamics and flow features that occur in turbulent convection cells
from a statistical point of view, i.e. from averaged quantities such as the temperature
distribution and its moments as well as statistics conditioned on temperature and
spatial position.

By estimating the aforementioned vector fields for three different Rayleigh–Bénard
geometries while utilising their symmetries and then integrating the characteristics, we
have described the mean dynamics that fluid particles undergo, i.e. we could describe
how fluid of different temperatures behaves in different regions of the convection
volume. We also distinguished regions of high and low transport through phase space.
For all geometries there are high phase space speeds for intense temperatures in the
bulk (which we attribute to localised events of intense temperatures and high speeds,
i.e. plumes) as well as high speeds near the horizontal plates for all temperatures,
while for the case of cylindrical convection the phase space speed also takes high
values near the wall of the cylinder. This we interpret as plumes that are directed
along the insulating sidewalls. In the conditionally averaged vector field of the
cylinder, we could furthermore identify corner flows near the sidewalls for fluid of
different temperatures. Cold fluid experiences a corner flow near the bottom plate
while showing no corner flow near the upper plate and vice versa. Additionally, we
described the higher moments of the temperature distributions, where we could link
features of the moments to coherent structures that appear in turbulent flows.

When we then obtained the characteristics by integrating trajectories through the
conditionally averaged vector field, we found that for all different convection set-ups,
the characteristics form closed cycles in phase space. These cycles reconstruct the
typical Rayleigh–Bénard cycle a fluid particle undergoes on average, i.e. fluid is
heated up at the bottom and rises upwards while slightly cooling down until it hits
the upper plate, where it cools down fast and falls down to the lower plate while
slightly heating up, thus starting the cycle again. In the cylindrical case, where
there is another phase space dimension corresponding to horizontal movement, the
fluid shows an additional inwards and outwards movement while following the RB
cycle. The method thus allows us to further pin-point and quantify the differences
and similarities between Rayleigh–Bénard convection in two- and three-dimensional
periodic boxes and in three-dimensional convection in a cylindrical cell.

For so-called homogeneous Rayleigh–Bénard convection (Lohse & Toschi 2003;
Calzavarini et al. 2005) – thermal convection with horizontally periodic boundary
conditions as well as periodic boundary conditions in the vertical direction together
with an imposed temperature gradient driving the flow – we would expect quite
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different behaviour as such a system does not have boundary layers, but represents
pure bulk turbulence. Furthermore, the statistics do not depend on the spatial
coordinates and the phase space becomes one-dimensional, which is fundamentally
different from the three cases considered in the present paper. The analysis of
homogeneous Rayleigh–Bénard convection would actually be more in line with the
work of Yakhot (1989) and Ching (1993), who analyse with the help of conditional
averages the PDF of experimental time series obtained from temperature probe
measurements. In these works, in a sense the phase space is also one-dimensional
due to the lack of any spatial coordinate. Thus, while their ansatz can be used to
e.g. describe the transition from soft to hard turbulence, no information about the
dynamics and spatial structures can be obtained from the statistics, contrary to the
method we proposed here.
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