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ABSTRACT

Climate change is expected to have large impacts on peak flows. However, there may be bias in the sim-

ulation of peak flows by hydrological models. This study aims to improve the simulation of peak flows under

climate change in Lanjiang catchment, east China, by comparing two approaches: postprocessing of peak

flows and composite objective calibration. Two hydrological models [Soil and Water Assessment Tool

(SWAT) and modèle du Génie Rural à 4 paramètres Journalier (GR4J)] are employed to simulate the daily
flows, and the peaks-over-thresholdmethod is used to extract peak flows from the simulated daily flows. Three
postprocessing methods, namely, the quantile mapping method and two generalized linear models, are set up
to correct the biases in the simulated raw peak flows. A composite objective calibration of the GR4J model by
taking the peak flows into account in the calibration process is also carried out. The regional climate model
ProvidingRegional Climates for Impacts Studies (PRECIS) with boundary forcing from twoGCMs (HadCM3
and ECHAM5) under greenhouse gas emission scenario A1B is applied to produce the climate data for the
baseline period and the future period 2011–40. The results show that the postprocessing methods, particularly

quantile mapping method, can correct the biases in the raw peak flows effectively. The composite objective

calibration also resulted in a good simulation performance of peak flows. The final estimated peak flows in the

future period show an obvious increase compared with those in the baseline period, indicating there will

probably be more frequent floods in Lanjiang catchment in the future.

1. Introduction

Over the past few decades, the topic of climate change

has attractedmore andmore attention as climate change

affects many aspects of the planet and in daily life (e.g.,

water resources). For example, Immerzeel et al. (2010)

pointed out that climate change will affect the upstream

snow and ice coverage of the Brahmaputra and Indus

basins, resulting in reductions of flow in these river basins,

which would furthermore threaten the food security of

about 60 million people. In some regions that are sensitive

to climate change, themagnitude and frequency of extreme

meteorological or hydrological events could reach a new

high (Solomon et al. 2007; Field et al. 2012). For example,

the Department of Water Resources of Zhejiang Province

(DWRZJ 2013) reported that Yuyao City in Zhejiang

Province was seriously flooded because of Typhoon Fitow,

which brought extreme precipitation amounts. The cu-

mulative precipitation in one gauge reached 736mm, and

the flood led to a tremendous disaster. Therefore, it is

urgent that researchers and decision-makers pay close
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attention to the flooding problems caused by climate

change, which has become a globally hot issue. In recent

years, there are more and more studies focusing on cli-

mate change impacts on extreme events such as storms,

floods, and droughts (e.g., Booij 2005; Lackmann 2013;

Matonse and Frei 2013; Planton et al. 2008; Schubert

et al. 2011; Taye et al. 2011; Xu et al. 2012).

Commonly, general circulation models (GCMs) are

used to generate precipitation, temperature, and other

variables for future periods (e.g., Ault et al. 2014; Booth

et al. 2013; Cullather et al. 2014; Karnauskas et al. 2012).

Subsequently, GCM output is downscaled for assessing

climate change impacts at a regional scale. When it

comes to runoff or floods, a hydrological model is usu-

ally employed to investigate the impact of climate

change on the flows. Akhtar et al. (2008) used the Hy-

drologiskaByrånsVattenbalansavdelning (HBV)model
combined with the Providing Regional Climates for
Impacts Studies (PRECIS) regional climate model to
estimate the impact of climate change onwater resources
in three river basins in the Hindu Kush–Karakoram–

Himalaya region. Their results indicated that in summer a

higher risk of floodproblems under climate change can be

expected. Dobler et al. (2012) used the hydrological

model HQsim to simulate runoff for future climate con-

ditions (2071–2100) and found a considerable shift in

seasonal floods. Safeeq and Fares (2012) used the Dis-

tributed Hydrology Soil Vegetation Model (DHSVM)

model to study the impact of future climate change sce-

narios on streamflow in a mountainous Hawaiian water-

shed, and the results showed a reduction in streamflow by

6.7%–17.2%. Xu et al. (2013) used the Soil and Water

Assessment Tool (SWAT)model to investigate the water

resources of the upper reaches of Qiantang River basin,

east China, under climate change conditions. Their re-

sults suggested that the annual river runoff will likely

decrease in the future.

In climate change impact studies, because of uncertainty

in the GCM structure, emission scenarios, downscaling

methods, and hydrological models (Chen et al. 2011; Kay

et al. 2009; Woldemeskel et al. 2012; Zhang et al. 2014),

there will be bias in simulated variables in general, and in

particular for variables such as rainfall, runoff, and extreme

events. One possible approach to reduce these biases in the

simulated variables is postprocessing (Liu et al. 2013;

Madadgar et al. 2014; Van Andel et al. 2013; Zhao et al.

2011). Postprocessing is widely used for the bias correction

of hydrological forecasting and climate model projections.

A variety of techniques can be used for postprocessing. For

example, Feddersen et al. (1999) demonstrated a statistical

postprocessing method based on the leading singular value

decomposition analysis (SVDA) modes and applied it to

the GCM simulations. Their results showed the statistical

postprocessing method had the greatest potential to im-

prove skill for a variable like precipitation. Zhao et al.

(2011) used a generalized linear model (GLM) to post-

process streamflow predictions produced by a hydrologic

model and found that the postprocessing model removed

the mean bias when applied to hydrologic model simula-

tions. Brown and Seo (2013) introduced a nonparametric

technique based on Bayesian optimal linear estimation of

indicator variables and showed skillful estimates of the

hydrologic uncertainties. Verkade et al. (2013) used mul-

tiple techniques (quantile mapping, linear regression, and

logistic regression) to postprocess the European Centre

for Medium-Range Weather Forecasts (ECMWF) tem-

perature and precipitation ensemble forecasts. They

showed that the forcing ensembles contain significant

biases, which would propagate to the streamflow en-

semble forecasts. Madadgar et al. (2014) introduced a

postprocessing method based on copula functions and

showed more effective performance than the quantile

mapping (QM) method in improving the forecasts. Van

Andel et al. (2013) reported on an intercomparison ex-

periment for postprocessing techniques by considering

six techniques and revealed the differences between these

postprocessing methods.

As mentioned above, the biases from different sources

will propagate to hydrological predictions, such as

streamflow. When it comes to extreme flow, the bias may

be even larger (X. Chen et al. 2013). Because of the

structure of some hydrological models and data limita-

tions, extreme high flows are often underestimated or

overestimated by rainfall–runoff models (X. Chen et al.

2013; Setegn et al. 2011; Taye et al. 2011; Xu et al. 2013).

Moreover, as extreme flows may directly lead to disasters

such as floods and droughts, it is important to pay signifi-

cant attention to the accuracy of extreme flow simulations.

An in-depth understanding of the recurrence of ex-

treme hydrological events helps decision-makers to

plan and operate hydraulic structures more efficiently.

This study aims to correct the biases in simulated ex-

treme high flows under long-term climate change pro-

jections by applying a postprocessing method to the

output of hydrological models. Besides, a composite

objective calibration of a hydrological model by taking

the peak flows into account in the calibration process is

also investigated to compare with the results of the

postprocessing models. This is the first study to com-

pare postprocessing with composite objective calibra-

tion in peak flow simulation. The approach is illustrated

by an application of two popular hydrologic models in

case study catchment.

The structure of this paper is as follows. An introduction

about the study area, the hydrometeorological data, and

the climate change data are presented in section 2. The
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methodology, including the experimental design, the

hydrological models, the bias correctionmethod for the

regional climate model outputs, the peak flow extrac-

tion approach, and the postprocessing methods for

peak flows, is described in section 3. In section 4, the

results and discussion on the calibration and validation

of the hydrological models, the bias correction of the

PRECIS predictions, the calibration and validation of

the postprocessing models, and the peak flow estima-

tion under climate change are presented. Conclusions

are drawn in section 5.

2. Study area and data

The study area, Lanjiang catchment, is located in the

upstream part of the Qiantang River basin, east China.

The catchment, contributing to about two-thirds of the

runoff to the downstream Qiantang River basin, has an

area of about 19460km2 and a main stream of about

300km in length. The catchment is dominated by a sub-

tropical humid monsoon climate. The annual mean rain-

fall is about 1600mm and the annual mean temperature is

about 178C. Peak flows usually occur during the period

May–July, sometimes resulting in big floods and leading to

enormous economic losses. Figure 1 shows the location of

Lanjiang catchment and the hydrometeorological stations

in the study area. Table 1 shows detailed information

about the hydrometeorological stations. In this study,

there are three discharge stations, namely, Quzhou, Jin-

hua, and Lanxi. Other data, such as precipitation and

temperature data, are used as input for the hydrological

models.

In this paper, two GCMs, namely, Hadley Centre

Coupled Model, version 3 (HadCM3), from the Hadley

Centre, United Kingdom (Gordon et al. 2000), and

ECHAM5 from the Max Planck Institute for Meteo-

rology, Germany (Simmons et al. 1989), under green-

house gas emission scenario A1B, are used as the

boundary forcing for the regional climate model

PRECIS developed by the Hadley Centre. Climate

projections for the baseline period 1961–90 and for the

future period 2011–40 covering the study area are simu-

lated by the PRECIS model. In this study, the simulation

domain of the PRECIS model is east China (Xu et al.

2014). The output data from the PRECIS model with a

resolution of 25km 3 25km are used as simulated input

data for the hydrological models after bias correction (see

section 3c).

3. Methodology

a. Experimental design

This research investigates the postprocessing of ex-

treme flows, comparing it with a composite objective

calibration of the hydrological model to improve the

simulation of peak flows under climate change. Figure 2

shows the framework of this study, primarily consisting

of four steps. Step 1 is about the setup of the hydrolog-

ical models in the study area. Two hydrological models

[SWAT and modèle du Génie Rural à 4 paramètres
Journalier (GR4J)] are applied and 10 yr of daily dis-

charges are used to calibrate and validate these models.

The first 7 yr (1981–87) are used for calibration and the

last 3 yr (1988–90) are used for validation. The year of

1980 is used as the warm-up period for the hydrological

models. Step 2 is about the bias correction of the outputs

of the PRECIS model by using the method of QM,

which will be introduced later. The outputs from the

FIG. 1. Location of Lanjiang catchment and the hydrometeorological stations.
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PRECIS model for both the baseline period (1961–90)

and the future period (2011–40) are bias corrected before

being used as input for the hydrological models. Step 3 is

about the simulation of peak flows by combining hydro-

logical models and the peaks-over-threshold (POT)

method to simulate daily discharges and extract peak

flows. Besides the observed peak flows, there are three

types of simulated peak flows using three groups of

input data: the observed data from the hydrometeo-

rological stations in the period of 1961–2000, PRECIS

predictions in the baseline period, and PRECIS pre-

dictions in the future period. Step 4 is about the post-

processing of peak flows. Observed peak flows and

simulated peak flows with observed input data are used

to set up the postprocessing model in three ways,

namely, based on the QM method and two generalized

linear models (GLMs). The first 30 yr (1961–90) are

used for calibration and the last 10 yr (1991–2000) are

used for validation. Then the simulated peak flows with

simulated input data under climate change are bias

corrected by applying the postprocessing model.

The composite objective calibrated GR4J model,

marked as GR4J-M, takes both the daily flows and peak

flows into calibration process. The peak flows are also

extracted by the POTmethod. The simulated peak flows

by the GR4J-M model will not be postprocessed,

because the model has already improved the peak flow

simulation performance.

b. Hydrological models

1) MODEL DESCRIPTION

The two hydrological models included in this paper

are a distributed model (SWAT) and a lumped model

(GR4J). These twomodels are well known, and details of

the model structure have been widely presented in many

previous studies. Below, only brief descriptions of the two

models are provided. GR4J-M is actually a composite

objective GR4J model combined with the POT method,

including peak flows into the model calibration, which

will be introduced later.

The SWATmodel (Arnold et al. 1998; Srinivasan et al.

1998) is a physically based distributed hydrological model,

which is widely used all over the world (Abbaspour et al.

2007; Setegn et al. 2011; Strauch et al. 2012; Yang et al.

2008). The model divides a river basin into several sub-

basins, and each subbasin usually contains several hy-

drologic response units (HRUs). An HRU, the smallest

unit in the SWAT model, is defined as an area with the

same soil type and land-use type. Generally, the model

requires the user to build the land-use database, soil da-

tabase, and weather generator database for the study

TABLE 1. Information of the hydrometeorological stations in Lanjiang catchment.

No. Station

Lat

(8N)

Lon

(8E)
Elev

(m MSL)

Observed

variables* Time period

1 Jinhua 29.12 119.65 62.6 P, T, H, R, W, and Q 1961–2000

2 Quzhou 29.00 118.90 82.4 P, T, H, R, W, and Q 1961–2000

3 Lanxi 29.22 119.47 58 P and Q 1975–2000

4 Bada 29.20 120.50 332 P 1967–2000

5 Changshan 28.92 118.50 145 P 1961–2000

6 Dushan 28.42 118.98 705 P 1961–78, 1981–95

7 Longyou 29.05 119.17 54 P 1980–95

8 Misai 29.18 118.40 313 P 1961–96

9 Yiwu 29.30 120.07 62 P and T 1961–2000

10 Yongkang 28.90 120.02 194 P and T 1961–2000

11 Zhengzhai 28.90 119.63 152 P 1980–95

12 Baishuikeng 28.42 118.60 459 P 1975–2000

13 Dongyang 29.27 120.22 81 P and T 1961–2000

14 Jiangshanwanyao 28.68 118.67 141 P 1975–2000

15 Nanjiangshuiku 29.15 120.43 242 P 1971–2000

16 Qianhe 28.85 118.78 74 P 1961–2000

17 Xujiacun 28.98 118.13 675 P 1961–2000

18 Yanxi 29.33 118.32 286 P 1963–2000

19 Quxiandazhou 28.87 118.98 131 P 1961–2000

20 Bukengkou 28.90 119.13 97 P 1961–2000

21 Darifan 28.57 118.88 243 P 1979–91

22 Kaihua 29.13 118.40 155.3 T 1961–2000

23 Jiangshan 28.75 118.63 95.3 T 1961–2000

* Precipitation, P; temperature, T; humidity, H; radiation, R; wind speed, W; and discharge, Q.
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area. Then themodel simulates runoff with the input data

such as precipitation and temperature.

The GR4J model (Perrin et al. 2003) is a daily four-

parameter lumped rainfall–runoff model, which is an im-

proved version of the GR3J model. Because of its good

performance in streamflow simulation, the GR4J

model has been widely used all over the world

(Demirel et al. 2013; Thyer et al. 2009; Tian et al. 2013).

The model structure is based on a production store, a

routing store, and two unit hydrographs. The required

input data include the area of the catchment, daily

precipitation, and potential evapotranspiration. The

potential evapotranspiration is calculated using the

Penman–Monteith equation (Allen et al. 1998).

2) MODEL CALIBRATION

The calibration of the SWAT model is based on the

software SWAT-CUP (Faramarzi et al. 2009; Schuol

et al. 2008; Yang et al. 2008), which is a freely available

program for sensitivity analysis, calibration, validation,

and uncertainty analysis for the SWAT model. There

are several calibration methods available in SWAT-

CUP, including SUFI-2 (Sequential Uncertainty Fit-

ting, version 2), GLUE (Generalized Likelihood

Uncertainty Estimation), MCMC (Markov Chain Monte

Carlo), and PSO (Particle Swarm Optimization). Yang

et al. (2008) compared five calibration methods in

SWAT-CUP, showing that the SUFI-2 method is an

FIG. 2. Methodology for postprocessing of peak flows.
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easy and efficient one, and it is therefore employed in

this study to calibrate the SWAT model. The SUFI-2

method contains several steps that were introduced in

the work of Abbaspour et al. (2004, 2007). Table 2

presents the parameters for calibration in the SWAT

model following the initial parameter sensitivity analysis.

As there are only four parameters in the GR4Jmodel

and the model often has a good performance with a

simple calibration method, in this study, Monte Carlo

simulation (MCS) with Latin Hypercube sampling for a

sample size of 10 000 parameter sets is carried out. The

initial parameter ranges are presented in Table 3 and

the objective function for model calibration is the

Nash–Sutcliffe coefficient. For the GR4J-M model, a

composite objective function is used, taking into ac-

count two objectives, the Nash–Sutcliffe coefficient for

daily streamflows and the Nash–Sutcliffe coefficient for

peak flows. To equally weight the simulation perfor-

mance for daily and extreme conditions, the weights for

these two Nash–Sutcliffe coefficients are set to 0.5 and

the combined Nash–Sutcliffe coefficient NScom is de-

fined as follows:

NScom 5 0:53

8>>>><
>>>>:
12

�
N

i51

[Qobs(i)2Qsim(i)]
2

�
N

i51

[Qobs(i)2Qobs(i)]
2

9>>>>=
>>>>;

1 0:53

8>>>><
>>>>:
12

�
M

i51

[QP,obs(i)2QP,sim(i)]
2

�
M

i51

[QP,obs(i)2QP,obs(i)]
2

9>>>>=
>>>>;
, (1)

where N and M are the number of the daily flows and

peak flows, respectively;Qobs andQsim are the observed

and simulated daily flows, respectively; and QP,obs and

QP,sim are the observed and simulated peak flows, re-

spectively, extracted from the daily streamflows by the

POT method (see section 3d).

TABLE 2. Calibrated parameters in the SWAT model.

Parameter Definition Initial range*

Optimal value

Quzhou Jinhua Lanxi

v__CH_K2.rte Effective hydraulic conductivity in main channel

alluvium (mmh21)

[0, 150] 15.39 7.27 142.85

a__CN2.mgt Initial U.S. Department of Agriculture (USDA)

Soil Conservation Service (SCS) runoff curve

number for moisture condition II

[255, 15] 21.83 242.24 236.81

v__ALPHA_BF.gw Baseflow alpha factor (days) [0, 1] 0.59 0.85 0.85

v__GWQMN.gw Threshold depth of water in the shallow aquifer

required for return flow to occur (mm H2O)

[0, 5000] 2881.58 2465.11 4673.13

v__GW_REVAP.gw Groundwater ‘‘revap’’ coefficient [0.02, 0.2] 0.02 0.14 0.05

v__ESCO.hru Soil evaporation compensation factor [0.01, 1] 0.95 0.94 0.18

v__RCHRG_DP.gw Deep aquifer percolation fraction [0, 1] 0.67 0.43 0.96

r__SOL_AWC.sol Available water capacity of the soil layer

(mm H2O per mm soil)

[21, 0.8] 20.53 20.75 0.43

r__SOL_Z.sol Depth from soil surface to bottom of

layer (mm)

[21, 0.8] 20.87 20.65 20.97

v__SURLAG.bsn Surface runoff lag coefficient [1, 24] 2.13 2.13 2.13

* The initial ranges for different aggregate parameters are mainly based on their physically meaningful absolute ranges in the SWAT

model manual and their initial values in model databases.

TABLE 3. Calibrated parameters in the GR4J and GR4J-M models.

Parameter Definition Initial range

Optimal value (GR4J) Optimal value (GR4J-M)

Quzhou Jinhua Lanxi Quzhou Jinhua Lanxi

X1 Max capacity of the production store (mm) [100, 1200] 141.07 284.40 235.62 115.45 144.95 139.69

X2 Groundwater exchange coefficient (mm) [25, 3] 0.10 20.36 0.07 0.23 0.01 20.24

X3 One day ahead max capacity of the

routing store (mm)

[20, 300] 44.69 28.80 38.49 31.77 44.64 22.24

X4 Time base of unit hydrograph UH1 (days) [1.1, 2.9] 2.14 2.37 2.46 2.10 2.01 2.52
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Besides the Nash–Sutcliffe coefficient, one other cri-

terion is calculated to evaluate the performance of the

models after calibration, the relative Bias:

Bias5

�
N

i51

[Qsim(i)2Qobs(i)]

�
N

i51

Qobs(i)

3 100% (2)

c. Bias correction of PRECIS predictions

The QM method is a statistical approach originating

from the empirical transformation of Panofsky and Brier

(1968). It has been successfully used for bias correction

of meteorological outputs from GCMs and RCMs

(Gudmundsson et al. 2012; Li et al. 2010; Themeßl et al.
2012) and also for postprocessing of hydrological fore-

casts (Hashino et al. 2007;Madadgar et al. 2014). TheQM

method is capable of correcting errors in variability be-

cause it corrects errors in the shape of the distribution.

Thismethod has been demonstrated to provide reasonable

improvements in the representation of precipitation out-

puts on a daily, monthly, and annual level (J. Chen et al.

2013). In this study, the QM method is based on the em-

pirical cumulative distribution function (ecdf) of daily

observed and PRECIS-projected variables in the baseline

period. The theoretical cumulative distribution function

estimates the probability of precipitation by usingwet days

only, while the QM method takes both wet and dry days

into account when employing the ecdfs. Therefore, the

frequency of precipitation occurrence is also corrected

together with the precipitation amount. By using ecdfs, the

QM method is applicable to all possible output variables

from the PRECIS model. The transformation function of

the QM method is defined as

Y5 ecdf21
obs[ecdfsim(X)] , (3)

CF5Y2X , (4)

and

Yfuture 5Xfuture 1CF, (5)

where X is the simulated variable from the PRECIS

model in the baseline period and Y is the bias-corrected

value of the corresponding variable X in the baseline

period. The function ecdfsim is the ecdf of the simulated

variable based on the dataset in the baseline period,

while the function ecdf21
obs is the inverse ecdf of the ob-

served variable based on the dataset in the baseline

period. The bias-corrected value of the simulated vari-

able in the future period Yfuture is estimated by adding a

correction factor (CF) to the simulated variable in the

future periodXfuture, and CF is defined as the difference

between the bias-corrected value and the simulated raw

value of the variable in the baseline period. In this study,

precipitation and temperature from the PRECIS model

are bias corrected both in the baseline period and the

future period. As the outputs of the PRECIS model are

provided at a gridcell level, the observed dataset from

the nearest station to the gridcell center is used to set up

ecdf21
obs for the simulated dataset of the corresponding

grid cell.

d. Peak flow extraction

There are several types of flood peak series, and the

widely used two types are annual maximum flood

(AMF) series and POT series. The AMF series can be

simply constructed by extracting the maximum daily

discharge in each year, while the POT series consists of

peak flows above a threshold. The POT series allow for

more peaks to be selected and included in extreme flow

analysis, as shown by, for instance, Parent and Bernier

(2003) and Villarini et al. (2011). Application of the

AMF method, naturally leads to peak flows that are

independent. For the POT series, however, meeting the

independence condition has to be taken into account

when determining the threshold. In this study, the in-

dependence condition for peak flows proposed by the

United StatesWaterResources Council (USWRC1976)

is employed. It suggests that two consecutive peak flows

P1 andP2 are independent if 1) the time between them is

larger than five days plus the natural logarithm of the

basin area in square miles and 2) the intermediate flows

between these two consecutive peaks must drop below

75% of the lowest of these two peak flows. Based on this

independence condition, a maximum of 90 peaks in the

baseline period (1961–90) are selected to set up the

postprocessing model, and 30 peaks in the period 1991–

2000 are selected to validate the postprocessing model.

Similarly, a maximum of 90 peaks in the future period

(2011–40) are selected for the postprocessing model

application. As the daily discharge record at Lanxi sta-

tion is from the year of 1975, only a maximum of 48

peaks in the period 1975–90 are selected for model cal-

ibration at this station.

e. Postprocessing methods for peak flows

In this study, three methods for postprocessing are

compared: two types of the GLM and the QM method,

which has also been used for the bias correction of

PRECIS outputs. The GLM is a flexible generalization

of an ordinary linear model and has been used for

rainfall analysis (Chandler and Wheater 2002; Segond

et al. 2006) and streamflow postprocessing (Zhao et al.
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2011). There are three components in theGLM, namely,

the dependent variable Y, the independent variable X,

and a link function g to connect them. The model ex-

pression is as follows

g(m)5Xb5 �
n

i50

bixi , (6)

where m5E(Y) is the expected value ofY,X is the linear

predictor, b is the unknown parameter, n is the number of

predictors, and g is the link function. The outcome of the

dependent variable Y is assumed to be generated from a

particular distribution as, for instance, the normal, bi-

nomial, Poisson, and gamma distributions. The link func-

tion provides the relationship between the expected value

of the dependent variable and the linear predictors. There

are many commonly used link functions, including iden-

tity, inverse and log regressions, etc. In this study, the ex-

tracted observed and simulated peak flows after sorting in

ascending order are regarded as the dependent variable

and independent variable, respectively, to set up theGLM.

Several link functions and several distributions for the

dependent variable are tested, and the parameters b are

calibrated by themaximum likelihood approach. Based on

the performances of different GLMs, two GLMs are fi-

nally selected. These are GLMNI and GLMGI based on

the normal and gamma distributions, respectively, with the

link function identity. After the calibration and validation

of the postprocessing methods, the future peak flows ex-

tracted from the simulated daily flows by the SWAT and

GR4J models are bias corrected by the postprocessing

methods. The GR4J-M model is calibrated both on the

daily flows and peak flows, and therefore the extracted

future peak flows from the GR4J-M model are not bias

corrected by the postprocessing methods.

4. Results and discussion

a. Calibration and validation results of the
hydrological models

Tables 2 and 3 also show the calibrated values for the

parameters in the SWAT model and the GR4J and

GR4J-M models, respectively. Table 4 presents the re-

sults of the two model performance indices in the

calibration and validation periods for the three hydro-

logical models for the three discharge stations. Based on

the values of the objective function NS, the SWAT

model performance is worse than the other two models.

Besides the differences between model structures, this

might be related to the different calibration methods.

Other studies such as Zhang et al. (2009) show that the

genetic algorithms (GA) and PSO methods are pre-

ferred based on different numbers of model runs. As the

GR4J-M model includes peak flows into model cali-

bration, it shows a worse performance than the GR4J

model in terms of daily discharges. The NS values in the

validation period are slightly higher than those in the

calibration period. This is mainly because the variance

of observed discharges in the validation period is much

larger than that in the calibration period (the variances

in the validation period are 69%, 92%, and 73% larger

than those in the calibration period at Quzhou, Jinhua,

and Lanxi stations, respectively), increasing the NS

values. In general, the three models underestimate the

daily discharges according to the values of Bias, partic-

ularly for Jinhua and Lanxi stations in the SWATmodel.

According to the two evaluation indices, the model

performance is the best at Quzhou station for all three

hydrological models, indicating that the watershed

characteristics also play a significant role in streamflow

simulation, as well as the hydrological model structure.

In general, the NS values are all higher than 0.7 for the

SWAT model and higher than 0.8 for the other two

lumped models, which is considered as a satisfactory

performance for a daily step simulation.

Figure 3 shows the flow duration curves of observed

and simulated daily flows in the calibration period at

Quzhou, Jinhua, and Lanxi stations. For the purpose of

comparing the peak flows clearly, the range of the x axis

is set to [0, 10]. It can be seen that the GR4J model is

better than the SWAT model in terms of peak flow

simulation, but there is still some underestimation of

peak flows, especially at Jinhua and Lanxi stations.

Actually, there are on average three peak flows per year

extracted by the POT method in this study. Excluding

the peak flows that do not satisfy the independence

condition in POT method, the exceedance quantile of

the extracted peak flows in Fig. 3 is about 1%. With

TABLE 4. Hydrological model performance in the calibration and validation periods at Quzhou, Jinhua, and Lanxi stations.

Period Index

SWAT GR4J GR4J-M

Quzhou Jinhua Lanxi Quzhou Jinhua Lanxi Quzhou Jinhua Lanxi

Calibration (1981–87) NS 0.74 0.76 0.76 0.94 0.91 0.92 0.91 0.84 0.89

Bias (%) 24.1 216.9 214.2 24.9 29.1 25.8 21.2 2.3 211.1

Validation (1988–90) NS 0.78 0.76 0.78 0.95 0.91 0.95 0.91 0.88 0.92

Bias (%) 24.0 218.5 214.3 25.2 216.7 211.2 21.5 26.1 214.7
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regard to the simulation of the 1% peak flows, the

GR4J-M model performs better than the GR4J model

because of the composite objective in the calibration

process.

Recently, there have been some studies focusing on

quantifying the impact of human activities on runoff in

the SWAT model (e.g., Fan et al. 2010; A. Zhang et al.

2012; C. Zhang et al. 2012). They aim to distinguish the

impact caused by climate change and human activities in

the historical period. However, in the future period, it is

difficult to model the impact of human activities. To

some extent, human activities have already been in-

corporated in climate change scenarios based on CO2

emissions. Therefore, human activities are not consid-

ered in the SWAT model in this study. Besides, some

other studies such asZhang et al. (2013) have investigated

the interactions among different parameters in the

SWAT model using Sobol’s method, which is a good

approach for sensitivity analysis and to improve param-

eter calibration.

b. Bias correction results of the PRECIS model

The daily precipitation and maximum and minimum

temperature at the hydrometeorological stations in the

baseline and future periods projected by the PRECIS

model are bias corrected by the QM method. To

FIG. 3. Flow duration curves of daily observed discharges (OBS) and simulated discharges by

the SWAT, GR4J, and GR4J-M models in the calibration period 1981–87 at three stations:

(a) Quzhou, (b) Jinhua, and (c) Lanxi.
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evaluate the performance, the observed, simulated, and

bias-corrected precipitations in the baseline period are

compared and three hydrometeorological stations (i.e.,

Quzhou, Jinhua, and Lanxi) are taken as examples to

show the results of bias correction. Figure 4 shows the

ecdfs of the daily precipitation at these three stations in

the baseline period. For the purpose of presenting the

ecdfs clearly, the ranges of the x and y axes are set to [0,

80] and [0.6, 1], respectively. For Quzhou and Jinhua

stations, a large number of daily precipitation values

smaller than 80mm are underestimated, while for Lanxi

station, they are overestimated. After bias correction, at

all three stations, the ecdfs of simulated daily pre-

cipitation become very close to those of observed daily

FIG. 4. The ecdfs of the observed, PRECIS-simulated—under (left) HadCM3 and (right) ECHAM5—, and bias-

corrected daily precipitations in the baseline period 1961–90 at three stations: (a),(b) Quzhou; (c),(d) Jinhua; and

(e),(f) Lanxi.
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precipitation, demonstrating a very satisfactory perfor-

mance of the QM bias correction method.

As this study focuses on peak flows, the bias correction

performance is also evaluated for extreme precipitation

values, which are the driving forces for peak flows. Figure 5

shows the observed, PRECIS model–simulated, and QM

bias-corrected annual maximum precipitation in the

baseline period at the three example stations. At all

three stations, the annual maximum precipitation with a

small exceedance probability simulated with HadCM3

boundary data are larger than those simulated with

ECHAM5 boundary data, while an opposite situation is

FIG. 5. Annual max precipitation extracted from observed, PRECIS-simulated—under (left) HadCM3 and (right) ECHAM5—, and bias-

corrected daily precipitation in the baseline period 1961–90 at three stations: (a),(b) Quzhou; (c),(d) Jinhua; and (e),(f) Lanxi.
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shown for precipitation with a large exceedance proba-

bility, indicating larger variability exists in the annual

maximum precipitation values simulated with HadCM3

boundary data than those simulated with ECHAM5

boundary data. At Quzhou station, most annual maxi-

mum precipitation values are underestimated, except

several extreme precipitation values simulated with

HadCM3 boundary data. At Jinhua station, however,

most annual maximum precipitation values are over-

estimated, except several precipitation values with a

large exceedance probability simulated with HadCM3

boundary data. At Lanxi station, all annual maximum

precipitation values are overestimated by the PRECIS

model both with HadCM3 and ECHAM5 boundary

data, and biases are much larger, in accordance with the

results in Figs. 4e and 4f. Overall, the bias-corrected

annual maximum precipitation values are quite close

to the observed ones at all three stations, confirming

the satisfactory performance of the QM bias correction

method.

As J. Chen et al. (2013) stated, compared with the

change factor method, the advantage of the QMmethod

is that the future precipitation occurrence is also cor-

rected along with the magnitude. This is very important

in some temperate basins such as our study area, be-

cause an extreme flood is usually caused by one or a few

extreme rainfall events. However, the QM method may

underestimate the interannual variability in some way.

In the areas where there is obvious interannual vari-

ability in climate or the temporal dependence is signifi-

cant, one can refer to some other bias correction

methods that take temporal dependence into account,

such as the nested bias correction proposed by Johnson

and Sharma (2012).

c. Calibration and validation results of postprocessing
models

Three approaches (i.e., QM, GLMNI, and GLMGI)

are applied to set up the postprocessing models to cor-

rect the biases in the peak flows extracted from daily

flows simulated by the SWAT and GR4J models at

Quzhou, Jinhua, and Lanxi stations. The two indices

(i.e., Nash–Sutcliffe coefficient and relative bias) are

also used in this subsection to evaluate the performance

of the postprocessing models. Table 5 shows the values

of Nash–Sutcliffe coefficient (NSP) and relative bias

(BiasP) for the raw and bias-corrected peak flows in the

calibration and validation periods at these three sta-

tions. Compared with the raw peak flows simulated by

the SWAT and GR4J models, obvious improvements in

the simulation of bias-corrected peak flows by all three

postprocessing models can be observed both in the cal-

ibration and validation periods at Quzhou station, T
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especially for the SWAT model. At Jinhua station, sim-

ilar improvements can be observed in the postprocessed

peak flows, except for the GLMNI postprocessing model

when applied to the SWAT-simulated peak flows in the

validation period in terms of the two evaluation indices.

At Lanxi station, except for the GLMGI postprocessing

model when applied to the SWAT-simulated peak flows

in the validation period (with a NSP value of 20.57),

simulation of all other peak flows is improved by the

postprocessing models to a large extent. When applied to

the GR4J-simulated peak flows, all three postprocessing

models perform nicely both in the calibration and vali-

dation periods. Since the GR4J-M model is calibrated

with a composite objective function by taking peak flows

into account, the raw peak flows simulated by the GR4J-

M model have a performance comparable with the other

postprocessed peak flows at all three stations both in the

calibration and validation periods.

Figure 6 shows the observed, simulated, and bias-

corrected peak flows in the calibration period at

Quzhou, Jinhua, and Lanxi stations. The raw peak flows

simulated by the SWAT and GR4J models all un-

derestimate the observed peak flows, and the biases are

larger for the SWAT than for the GR4J model. At

Quzhou station, the postprocessingmodels performwell

in correcting the biases in the raw peak flows simulated

by the SWAT and GR4J models, except an apparent

overestimation for the highest peak in the GLMGI

postprocessing model when applied to the SWAT-

simulated peak flows in Fig. 6a. The peak flows are also

well simulated by the GR4J-M model, as can be seen

in Fig. 6c. At Jinhua station, it can be observed that all

peak flows are well simulated by the postprocessing

models and the GR4J-M model. At Lanxi station, it can

be observed that the GLMGI model obviously over-

estimates the highest peak when applied to the raw

peaks simulated by the SWATmodel, similar toQuzhou

station. Other postprocessed peak flows perform con-

siderably well, as do the peak flows simulated by the

GR4J-M model.

FIG. 6. Peak flows of observed (OBS), simulated by hydrologicalmodels (Raw)—under (left) SWAT, (middle)GR4J, and (right)GR4J-

M—, and bias-corrected by three postprocessing methods (GLMGI, GLMNI, and QM) in the calibration period at three stations:

(a)–(c) Quzhou, (d)–(f) Jinhua, and (g)–(i) Lanxi.
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Figure 7 shows the observed, simulated, and bias-

corrected peak flows in the validation period at Quzhou,

Jinhua, and Lanxi stations. It can be observed that al-

most all raw peak flows simulated by the SWAT and

GR4J models are underestimated at all three stations.

The performance of all three postprocessing models is

worse in the validation period than in the calibration

period. However, except some overestimations of high

peaks by all three postprocessing models when applied

to the raw peak flows simulated by the SWAT model,

other peak flows are reasonably well simulated, as seen

in Figs. 7a, 7d, and 7g. For the postprocessing models

applied to raw peak flows simulated by the GR4Jmodel,

performances are more satisfactory based on Figs. 7b,

7e, and 7h. Furthermore, it can be observed from

Figs. 7c, 7f, and 7i that theGR4J-Mmodel performs well

in the validation period, especially at Lanxi station.

In general, the performances of the postprocessing

models in the calibration and validation periods are

satisfactory and only a few peak flows are not post-

processed well by the GLMGI or GLMNI models. The

QM postprocessing model is the best one among the

three models and can correct the biases in the raw peak

flows significantly, especially for the SWAT-simulated

peak flows. Based on the performance of the GR4J-M

model, it can be concluded that using a composite ob-

jective function to take peak flows into account in the

calibration process of a hydrological model is also an

effective way to improve the accuracy in the simulation

of peak flows. For a lumped hydrological model such as

the GR4J model, the composite objective calibration

taking peak flows into account is a good alternative to

improve the simulation performance of peak flows, as it

is much easier to combine another objective function

into the model calibration process. However, it should

be noticed that composite objective calibration will

probably weaken the simulation performance of daily

flows to some extent. For a distributed hydrological

model such as the SWAT model, it is much easier to

employ a postprocessing model to improve the peak

flow simulation, since it is a cumbersome process to

combine peak flows into the model calibration process.

Comparing two approaches, the postprocessing ap-

proach is based on a statistical analysis of the difference

FIG. 7. As in Fig. 6, but for the validation period.
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between the simulated and observed peak flows, while

the composite objective calibration combines two cali-

bration goals during the simulation of the peak flows.

The postprocessing approach can be understood as a

blind adjustment of the errors existing in the simulated

peak flows. It can be argued that the postprocessing

approach is not physically based, but it must be admitted

that the approach works. This is why the postprocessing

approach has been widely used (Madadgar et al. 2014;

Van Andel et al. 2013; Zhao et al. 2011). Furthermore, a

statistically based approach may provide a clue and a

driving force for scientists to find the physically based

relationship that remains under cover. The composite

objective calibration can improve the accuracy of peak

flow simulation, but it may offset the accuracy of daily

flow simulation in the meanwhile. This is confirmed in

Table 4 as the NS values for daily flows of the GR4J-M

model are lower than those of the GR4J model. It is

important to notice the trade-off when choosing the

objective functions. The postprocessing approach can be

used as a flexible alternative to composite objective

calibration of distributed hydrological model, which is

often cumbersome and time consuming.

d. Comparison of simulated peak flows with
different inputs

In this study, the simulations of peak flows with ob-

served and simulated inputs are evaluated in the base-

line period to investigate the input data quality under

climate change projection. Figure 8 shows the peak flows

simulated by the SWAT, GR4J, and GR4J-M models

with observed inputs and PRECIS-simulated inputs

with ECHAM5 and HadCM3 boundary data in the

baseline period 1961–90. It can be observed that most

peak flows simulated by the hydrological models with

PRECIS-simulated inputs are very close to those simu-

lated with observed inputs. The PRECIS-simulated

precipitation and temperature are bias corrected by

the QM method before being used in the hydrological

models. However, more significant variability that can-

not be reflected in the ecdf may exist in the projected

precipitation by climate models. Based on Fig. 8, it can

FIG. 8. As in Fig. 6, but for observed inputs (Raw) and PRECIS-simulated inputs with ECHAM5 and HadCM3 boundary conditions

(Raw_ECHAM5 and Raw_HadCM3) in the baseline period 1961–90.
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be demonstrated that the variability only slightly affects

the peak flows simulated by the hydrological models,

because biases between the simulated peak flows with

observed and PRECIS-simulated inputs are not very

large, except those simulated by the SWAT model at

Quzhou and Lanxi stations. Therefore, it can be con-

cluded that using GR4J and GR4J-M models is appro-

priate for simulating peak flows under climate change,

while the SWAT model may overestimate the peak

flows with projected precipitation and temperature by

climate models at Quzhou and Lanxi stations.

It can also be observed from Fig. 8 that high-peak

flows (in the tail) simulated with HadCM3 boundary

data are larger than those simulated with ECHAM5

boundary data. Figure 5 shows that after bias correction,

the maximum daily precipitation predicted by the

PRECIS model with both HadCM3 and ECHAM5

boundary data are very close to the observed ones in the

baseline period. However, one peak flow in day imay be

more related to the rainfall amounts in several consec-

utiveN days (from day i2N1 1 to day i) rather than the

daily rainfall in day i. The numberN is usually related to

catchment characteristics such as size and slope. Figure 9

shows the correlation coefficient between observed

peak flows and observed precipitation at different tem-

poral scales in the baseline period at Quzhou, Jinhua,

and Lanxi stations. It can be observed that the correla-

tion coefficient for Quzhou station increases sharply

withN, varying from 1 to 4, and then becomes relatively

stable. The correlation coefficients for Jinhua and Lanxi

stations reach the crest value whenN is 3. Therefore, it is

concluded that the peak flows are more related to pre-

cipitation amounts in four consecutive days at Quzhou

station and three consecutive days at Jinhua and Lanxi

stations rather than the daily precipitation amount.

Figure 10 shows maximum precipitation over four

consecutive days at Quzhou station and three consecu-

tive days at Jinhua and Lanxi stations calculated based

on the observed, PRECIS-simulated, and bias-corrected

daily precipitation in the baseline period. Although the

daily precipitation is bias corrected, it can be observed

from Fig. 10 that there are small biases in the extreme

heavy precipitation in three or four consecutive days.

The bias-corrected extreme heavy precipitation in three or

four consecutive days simulated with HadCM3 boundary

data is larger than those simulated with ECHAM5

boundary data at all three stations. This is why the extreme

high-peak flows simulated with HadCM3 boundary data

are larger than those simulated with ECHAM5 boundary

data presented in Fig. 8. Overall, most precipitation in

three or four consecutive days simulated by the PRECIS

model perform well after bias correction in accordance

with the observed ones. The peak flows simulated by the

hydrological models with PRECIS-simulated inputs also

perform well in accordance with those simulated with

observed inputs, especially for the GR4J and GR4J-M

models (see Fig. 8). Therefore, it is appropriate to simulate

future peak flows using projected climate data as hydro-

logical model inputs. It should be kept in mind that based

on Fig. 8, the SWATmodel may overestimate future peak

flows at Quzhou and Lanxi stations, and future extreme

high-peak flows may be underestimated with ECHAM5

boundary data while overestimated with HadCM3

boundary data at Lanxi station.

e. Postprocessing results of peak flows under
climate change

In this study, the peak flows are simulated with pro-

jected climate data and then bias corrected by the

postprocessing model both in the baseline period 1961–

90 and the future period 2011–40 to investigate the im-

pact of climate change on peak flows in Lanjiang

catchment. The final postprocessing (PP) model is cho-

sen to be an ensemble model of the three methods

GLMNI, GLMGI, and QM and is defined as a simple

linear combination of the three methods. As the QM

method performs better than the other two, the weights

in the PP model are set to 1/4, 1/4, and 1/2 for GLMNI,

GLMGI, and QM, respectively. Although the choice of

weights seems a little arbitrary here, this will not affect

the main conclusion of this study. More solid methods of

choosing the weights can refer to other works (e.g.,

Cooper et al. 2007; Liang et al. 2011). There are three

models to estimate the peak flows under climate change

in this study, namely, the SWAT model combined with

the postprocessing model (SWAT-PP), the GR4J model

combined with the postprocessing model (GR4J-PP),

and the GR4J-M model.

FIG. 9. Correlation coefficient between observed peak flows and

observed precipitation amounts at different temporal scales in days

in the baseline period at Quzhou, Jinhua, and Lanxi stations.
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Figure 11 shows the peak flows simulated by the three

models with PRECIS-projected input data under

HadCM3 and ECHAM5 boundary conditions both in

the baseline period and the future period at Lanxi sta-

tion taken as an example. For small peak flows simulated

by SWAT-PP with HadCM3 boundary data at Lanxi

station in Fig. 11a, the differences between the baseline

peak flows and future peak flows are very small. How-

ever, when peak flows increase, the differences become

large. The future extreme high-peak flows estimated by

FIG. 10. Annual max precipitation in four consecutive days at (a),(b) Quzhou and three consecutive days at (c),(d) Jinhua and

(e),(f) Lanxi calculated from observed, PRECIS-simulated—under (left) HadCM3 and (right) ECHAM5—, and bias-corrected daily

precipitation in the baseline period 1961–90.
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the three models are all much larger than those in the

baseline period. Furthermore, an overall trend can be

observed that extreme high-peak flows simulated by all

three models under HadCM3 boundary conditions are

much larger than those under ECHAM5 boundary

conditions. This indicates that HadCM3 simulates

more extreme precipitation in Lanjiang catchment

than the ECHAM5 model, as the extreme high flows

are usually caused by extreme precipitation as shown

in Fig. 10.

FIG. 11. Simulated peak flows by the hydrologicalmodels—(top) SWAT, (middle)GR4J, and (bottom)GR4J-M—with projected input

data from the PRECIS model under (left) HadCM3 and (right) ECHAM5 boundary conditions (Raw) and the postprocessed peak flows

(PP) both in the baseline period 1961–90 (BSL) and the future period 2011–40 (FUT) at Lanxi station.
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Table 6 shows the quantitative comparison of three

selected large peaks simulated by three models in the

baseline period and the future period atQuzhou, Jinhua,

and Lanxi stations. The change in peak flows in the fu-

ture period relative to the baseline period varies from

28.2% to 144.1% at Quzhou station, from 11.9% to

138.0% at Jinhua station, and from 17.7% to 87.2% at

Lanxi station. The peak flows simulated by the three

models in the future period are all larger than those in

the baseline period at all three stations under both

HadCM3 and ECHAM5 boundary conditions, reliably

indicating that more frequent and severe floods in the

future period 2011–40 in Lanjiang catchment can be

expected. Decision-makers should take these changes in

extreme precipitation and flows into account in order to

make robust decisions regarding future construction and

water management plans. In the meanwhile, it can be

observed that the variability caused by three models

(SWAT-PP, GR4J-PP, and GR4J-M) is larger than that

by two GCMs, indicating that the model structure and

model calibration may cause large uncertainty in future

peak flow projections. However, only two GCMs are

used in this study, whichmay narrow the uncertainty due

to GCM structure and parameters, since many other

studies show that GCM structure is the largest un-

certainty source (e.g., Kay et al. 2009; Chen et al. 2011;

Woldemeskel et al. 2012). Besides, other uncertainty

sources, such as downscaling methods, may also play a

very important role (Sunyer et al. 2014). It is therefore

proposed that a full-scale uncertainty analysis consid-

ering multiple GCMs, downscaling methods, and hy-

drological models is implemented in future climate

change impact analyses.

5. Conclusions

This study proposed a postprocessing framework to

correct biases in peak flows simulated by hydrological

TABLE 6. Comparison of three selected large peaks (m3 s21) simulated by different models in the baseline period and the future period at

Quzhou, Jinhua, and Lanxi stations.

Peak No.* Period**

HadCM3 ECHAM5

SWAT-PP GR4J-PP GR4J-M SWAT-PP GR4J-PP GR4J-M

Quzhou

70th BSL 2670 1946 1859 2643 1998 1946

FUT 3629 3783 3331 3388 3443 3233

Change (%) 35.9 94.4 79.2 28.2 72.3 66.1

80th BSL 3335 2710 2627 2950 2329 2344

FUT 4505 4274 3779 3833 4216 4256

Change 35.1 57.7 43.9 29.9 81.0 81.6

90th BSL 6513 5999 5583 4694 4310 3928

FUT 11 534 13 394 12 932 8726 10 001 9589

Change (%) 77.1 123.3 131.6 85.9 132.0 144.1

Jinhua

70th BSL 1754 1340 1326 1695 1291 1261

FUT 2513 2606 2269 2224 2041 2199

Change (%) 43.3 94.5 71.1 31.2 58.1 74.4

80th BSL 2384 1533 1612 2160 1559 1411

FUT 3056 3118 2983 2490 2499 2515

Change (%) 28.2 103.4 85.0 15.3 60.3 78.2

90th BSL 4698 3538 3779 3578 2526 2350

FUT 6581 6432 8993 4003 3948 4884

Change (%) 40.1 81.8 138.0 11.9 56.3 107.8

Lanxi

70th BSL 7096 4266 4285 6659 4250 4188

FUT 9589 7580 7331 7840 7207 6838

Change (%) 35.1 77.7 71.1 17.7 69.6 63.3

80th BSL 8977 6055 5623 7839 5136 4658

FUT 11 792 9185 8802 9737 8726 8685

Change (%) 31.4 51.7 56.5 24.2 69.9 86.5

90th BSL 18 459 11 747 11 290 14 121 7050 6896

FUT 26 547 20 731 21 137 18 365 12 794 11 948

Change (%) 43.8 76.5 87.2 30.1 81.5 73.3

* The 70th, 80th, and 90th peak flows are in accordance with Fig. 11, namely the 21st, 11th, and 1st largest peaks, respectively.

** BSL is the baseline period 1961–90 and FUT is the future period 2011–40. Change is the relative change of peak flows in the future

period to the baseline period.
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models under climate change in Lanjiang catchment, the

upstream part of Qiantang River basin, east China. Two

hydrological models, namely, SWAT and GR4J, were set

up to simulate daily flows at three stations in the catch-

ment. The POT method was used to extract peak flows

from the daily flows. Three methods, quantile mapping

and two generalized linear models, were employed to

correct biases in the peak flows. A composite objective

calibration of the GR4J model by taking peak flows into

account is also investigated to compare with the perfor-

mance of the postprocessing methods. Finally, the impact

of climate change on peak flows was evaluated based on

the proposed framework. The following conclusions can

be drawn:

1) The SWAT and GR4J models underestimate peak

flows, which might be due to some specific charac-

teristics of Lanjiang catchment or biases in observed

precipitation, temperature, and discharge. This is the

main motivation to set up the postprocessing model

for simulated peak flows in this study.

2) The quantile mapping method shows a good perfor-

mance in correcting the biases in the simulated daily

precipitation by the PRECIS regional climate model.

In simulating extreme precipitation, the PRECIS

model with HadCM3 boundary data projects higher

values than the one with ECHAM5 boundary data.

3) The three postprocessing models (GLMNI, GLMGI,

and QM) can correct the biases in raw peak flows

simulated by the SWAT and GR4J models effec-

tively. Based on the calibration and validation re-

sults, the QM model is the best one among the three

postprocessing models.

4) Based on the performance of the GR4J-M model in

simulating peak flows, it can be concluded that

combining the peak flows into a composite objective

function can improve the accuracy of peak flows.

However, it may weaken the performance in daily

flow simulation to some extent.

5) Based on the performance of the postprocessing

methods and composite objective calibration, it is

hard to conclude which approach is preferred to

improve the simulation of peak flows. For some

lumped hydrological models such as the GR4J

model, composite objective calibration is an efficient

way to improve the simulation of peak flows as it is

easier to combine more than one objective function

into the calibration process. This is because the codes

of lumped hydrological models are usually shorter

and faster than distributed models, and once the

objective function aiming at peak flows is combined

during model calibration, postprocessing is not really

necessary.

6) Future peak flows estimated by the three hydrolog-

ical models (SWAT-PP, GR4J-PP, andGR4J-M) are

larger than those in the baseline period, especially

themost extreme high-peak flows.Although extreme

precipitation may be overestimated by the PRECIS

model with HadCM3 boundary data, the simulated

peak flows with ECHAM5 boundary data also show

an apparent increase in the future period 2011–40 at

all three stations, indicating that more frequent and

heavy floods in Lanjiang catchment under climate

change can be expected.

Up to now, there are no hydrological models that can

simulate peak flows with an accuracy of 100%. The results

of this study can be generalized to other hydrological

models or other catchments. If there is large over-

estimation or underestimation in most of the simulated

peak flows and the performance of the model is hard to

improve during the calibration process, both the post-

processing and composite objective calibration are good

alternatives to reduce the biases in the simulated peak

flows. In some areas where there are large differences

between high flows and low flows, then the composite

objective calibration may be a priori choice. It is advisable

for researchers to try themethods in this study and develop

other new methods for the postprocessing and composite

objective calibration of a hydrological model.
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