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We present, perhaps for the first time, a stochastic
search algorithm in quantitative photoacoustic tomography
(QPAT) for a one-step recovery of the optical absorption
map from time-resolved photoacoustic signals. Such a di-
rect recovery is free of the numerical inaccuracies inherent
in conventional two-step approaches that depend on an ac-
curate estimation of the absorbed energy distribution. The
absorption profile parameterized as a vector stochastic
process is additively updated over time recursions so as
to drive the measurement-prediction misfit to a zero-mean
white noise. The derivative-free additive update is a
welcome departure from the conventional gradient-based
methods requiring evaluation of Jacobians at every recur-
sion. The quantitative accuracy of the recovered absorption
map from both numerical and experimental data is good
with an overall error of less than 10%. © 2016 Optical
Society of America
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Photoacoustic tomography (PAT) is a noninvasive hybrid tech-
nique combining high optical contrast with superior ultrasound
resolution in imaging soft tissues [1,2]. The absorption of short
near-infrared (NIR) pulses (700–1100 nm) primarily by
cancerous regions generates sources of pressure in the object
through heating and thermo-elastic expansion. The initial pres-
sure rise propagates across the tissue as an acoustic wave and is
recorded by wideband ultrasonic transducers resident outside
the tissue [3]. In order to simulate the received photoacoustic
(PA) signal, apart from the basic PA process, one needs two
propagation models: one for light and the other for the acoustic
waves. The ultimate goal of PAT is to invert the time-resolved
PA signals to recover the optical absorption coefficient map that

can directly provide functional images [4]. This is usually done
in a two-step process: the first step reconstructs the acoustic
sources or equivalently the absorbed energy map, h�r�, which
is proportional to the product of the optical absorption coef-
ficient, μa�r�, and the integrated optical fluence, ϕ�r�, within
the pulse; the second step reconstructs μa�r� from h�r�. A ma-
jor limitation of a two-step process stems from the dependence
of h�r� on the optical source positions. Consequently, increas-
ing the number of source-detector views to tackle the so-called
ill-posedness unwittingly increases the dimension of the prob-
lem and aggravates the situation further. A direct recovery of μa
is ideal as the invariance of this parameter, with respect to the
source locations, keeps the number of unknowns unchanged.
Notwithstanding this and other advantages [5] and the signifi-
cance of μa�r� in functional and diagnostic imaging, research
effort in PAT has mostly been on developing algorithms for the
recovery of h�r� [6–8]. A direct recovery of μa�r� from the PA
measurements renders the inverse problem nonlinear and has
not yet been attempted in time-domain PAT. A possible reason
could be the computationally intensive Jacobian calculations
demanded in gradient-based techniques, commonly employed
en route to solving such nonlinear inverse problems. The lim-
ited work on quantitative PAT (QPAT), reported in the liter-
ature, either lacks an algorithm for direct μa recovery or has not
been tested satisfactorily under clinically relevant conditions
[9–15]. Although a direct recovery of μa has been attempted
in the frequency-domain [5,16,17], it has since been pointed
out that the reconstructions obtained in the time-domain have
better quantitative accuracy and signal-to-noise ratio [18]. The
present work puts forth an evolutionary stochastic search algo-
rithm, fashioned after the principles of generalized Bayesian up-
dates, that enables a direct recovery of the optical absorption
map from the recorded PA signals. Within a Bayesian setting,
the parameters to be recovered are treated as random variables
and the a priori information, if any, available on the parameters
could be incorporated in their prior distributions [19]. Ideally,
each realization (also called a particle) from the prior distribu-
tion is assigned a corresponding weight which reflects the error
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between the available measurements and the predictions from
the forward model. The particle-weight pair constitute the up-
date, wherein the best fit realization attains the highest weight
and vice versa. In such a scheme, the whole weight could be
asymptotically assigned to a single particle thereby disabling
any non-trivial updates. Prevention of such “particle impover-
ishment” or weight degeneracy, and hence of the contingency
of a prematurely converged incorrect solution, generally neces-
sitates an exponential increase of ensemble size with increasing
system dimension [20]. Such a scenario is avoided in our search
algorithm by converting the multiplicative weights into addi-
tive corrections to be applied to the particle locations in the
parameter space [21].

The time evolution of PA wave fields can be modeled using
equations of linear acoustics. For soft biological tissues, it is
assumed that the medium is isotropic and quiescent, the pres-
sure flow is irrotational and the shear waves are negligible [7].
The wave propagation equation in a lossless medium, D, may
then be written as

∇2p�r; t� − 1

c2
∂2p�r; t�

∂t2
� 0; (1)

with the initial condition ∂p0�r�∕∂t � 0, where p0�r� is the
initial pressure rise, c is the speed of sound in the medium,
and p�r; t � 0�≔p0�r�. Moreover, p0�r� is related to μa�r�
through

p0�r� �
�
βc2

Cp

�
μa�r�ϕ�r� � Γh�r�; (2)

where β is the isobaric volume expansion coefficient, Cp is the
specific heat and Γ � βc2∕Cp is the Grüneisen coefficient. The
wave equation is solved along with an absorbing boundary
condition (BC), [18] which is ∇p�r; t� · n � − 1

c
∂p�r;t�
∂t − p�r;t�

2r ,
where n is the unit normal to the boundary, ∂D, and r, the
object radius. The integrated optical fluence ϕ�r� in Eq. (2)
is the solution to the photon diffusion equation (DE) [22]:

−∇:κ∇ϕ�r� � μa�r�ϕ�r� � S�r�; (3)

and Robin BC, ϕ�r� � 2κA ∂ϕ�r�
∂n � 0 [22]. (Since the time-

scale at which an acoustic response is generated is approxi-
mately three orders of magnitude larger than the timescale
of the optical pulse, we note that only the time-independent
ϕ�r� needs to be propagated, which obeys the continuous wave
DE.) Here, A is the Fresnel reflection coefficient, κ is the dif-
fusion coefficient given by κ � �3�μa � μ 0

s ��−1 where μ 0
s is the

reduced scattering coefficient, and S�r� is the strength of the
incident optical source. The forward model described by
Eqs. (1)–(3), coupled with the corresponding BCs is discretized
using the finite element method to arrive at fpt ignti�1 � F �μ�,
where p≔p�r�, μ≔μa�r�, r ∈ D and t1;…; tnt are the sampling
time points at which measurements are recorded. The details of
the basis functions used in the finite element discretizations of
the acoustic and optical models may be found in Refs. [18,22].

The inverse problem of QPAT is to recover μ from a finite
set of boundary measurements, p�r 0; t�, r 0 ∈ D 0 ⊂ ∂D, hence-
forth denoted as fmtignti�1. Let μ ∈ Rnμ and mti ∈ Rnm

∀ i � 1;…; nt , where nμ is the number of nodes in the finite
element discretization of the object, D, and nm, the number of
detectors placed around it. Our stochastic search approach to
solve the inverse problem, similar to any other Bayesian scheme
[20], consists of a prediction-update strategy applied to a set of

realizations of the parameter random vector at every iteration
[19,21]. However, in order to assimilate the time-varying PAT
data, here, the parameter vector is modeled as a stochastic
process rather than a vector random variable having no tempo-
ral evolution. Nevertheless, being inherently non-dynamic in
nature, the parameter vector must also be so evolved as to at-
tain, perhaps asymptotically, a time-invariant steady state upon
assimilating all the available data. Thus as a first step in con-
structing the Bayesian update dynamics, temporal fluctuations
in the parameter vector are modeled using a Brownian motion:

μti�1
� μ̂t i � ΔBt i ; (4)

where μt i�1
and μ̂t i denote the predicted and updated

parameter vectors respectively at times ti�1 and ti, ΔBt i �
Bti�1

− Bti , and Bt ∈ Rnμ is a Brownian motion with mean zero
and covariance σBσ

T
B ∈ Rnμ×nμ . The measurement equation

mapping the optical absorption to the boundary pressure
may be written as

mt i�1
� F �μti�1

� �Wt i�1
; (5)

where F describes the operator which converts the input ab-
sorption profile into a pressure distribution on the boundary
using Eqs. (1)–(3) and Wt ∈ Rnm is the measurement noise
with mean zero and covariance σW σTW ∈ Rnm×nm .

The stochastic search (SS) for a nonlinear problem is imple-
mented in a Monte Carlo (MC) setup at the time instants when
the measurements are available, that is, at t1;…; tnt . Let the
initial ensemble of μ, that is, fμ̂0�j�gnej�1 be generated from a
prior distribution, say a uniform or Gaussian distribution.
Here, ne denotes the ensemble size. Then, given the updated
ensemble, fμ̂i�j�gnej�1, at time, t i, the SS should be in the
form of a recursive prediction-update scheme to arrive at
fμ̂i�1�j�gnej�1. Note that, for notational convenience, the sub-
script t i has been replaced by i and so on. The particle-wise
prediction equation follows from Eq. (4) as

μi�1�j� � μ̂i�j� � ΔBi�j�; j � 1;…; ne: (6)

The update step assimilates the available measurements to
estimate the posterior parameter distribution and in the proc-
ess, drives the measurement-prediction misfit (or the innova-
tion vector), mt − F �μt�, to a zero-mean noise. Kalman
filters [23] provide optimal state estimates when the measure-
ments are linear and Gaussian. The current update has a struc-
ture similar to the Kalman update and may be considered a
nonlinear ensemble version of the same [21,24,25].
Specifically, the update equation is given by

μ̂i�1�j� � μi�1�j� �Gi�1�mi�1 − F �μi�1�j���;
j � 1;…; ne; (7)

where G ∈ Rnμ×nm is a gain matrix given by Gi�1 �
Qi�1RT

i�1�Ri�1RT
i�1 � σW σTW �. Here Q ∈ Rnμ×ne and R ∈

Rnm×ne are the parameter and measurement ensemble per-
turbation matrices, respectively. Specifically, Qi�1� 1ffiffiffiffiffiffiffi

ne−1
p

�μi�1�1�− 1
ne

Pne
j�1μi�1�j�;…;μi�1�ne�− 1

ne

Pne
j�1μi�1�j��. The

expression for Ri�1 may be obtained by replacing μi�1 with
F �μi�1� in Qi�1. The form of the right hand side of
Eq. (7) is reminiscent of a quasi-Newton update with Gi�1 ap-
parently playing the role of a regularized Frèchet derivative,
even though its evaluation here requires only sample moment
information and no derivatives. The parameter estimate at

Letter Vol. 41, No. 18 / September 15 2016 / Optics Letters 4203



any time instant may be computed as the empirical mean given
by

μi�1 �
1

ne

Xne
j�1

μ̂i�1�j�: (8)

A more detailed exposition of the proposed scheme may be
found in Ref. [21]. Nevertheless, a step-by-step algorithm is
given below for further clarity.

Algorithm

Given the set of measurements, mi � �m1
i ;…; mnm

i � at any time
instant t i , the objective is to estimate the parameter vector,
μi � �μ1i ;…; μnμi �. Input the covariance matrices, σBσTB and σW σTW .
Presently, they are scalar matrices with small positive entries. Also,
set the ensemble size, ne .
1. Generate the initial ensemble of parameters, fμ̂0�j�gnej�1, say from a
Gaussian prior with zero mean and an assumed covariance. Set
i � 0; t0 � 0.
2. Propagate the parameter process to time t i�1 using Eq. (6).
3. Input each realization of the parameter process, μi�1�j�; j �
1;…; ne to the forward model described by Eqs. (1)–(3) and solve
using the finite element method to computeF �μi�1�j��; j � 1;…; ne .
4. Compute the ensemble perturbation matrices Qi�1 and Ri�1 and
then use them to compute the gain matrix, Gi�1.
5. Update each realization, fμi�1�j�gnej�1, using Eq. (7).
6. Obtain the parameter estimate, μi�1, using Eq. (8).
7. Set i → i � 1. If i � nt , terminate the algorithm; otherwise, go to
step 3.

For the numerical simulations, we first consider a circular
object of radius 12 mm with three anomalous inclusions of
radii 1 mm each as shown in Fig. 1(a). The background μa
is 0.01 mm−1 and μ 0

s is 1 mm−1 throughout the object, making
it a predominantly scattering medium. The lower two inclu-
sions have a μa of 0.05 mm−1, while that of the upper one
is 0.04 mm−1. Γ is assumed to be 1 and c is 1500 ms−1.
The object is illuminated laterally generating a non-uniform
fluence distribution inside as evident from the absorbed energy
map in Fig. 1(b). This indicates that an h�r� recovery would
have provided an inaccurate quantitative distribution of the
absorbers, and this is also clear from the relative contrast of
the central anomaly in Fig. 1(b). To record the PA signals,
384 detectors are placed equidistant at a radius of 50 mm from
the center of the object. Here, the medium between the object
and the detectors is assumed to be water, as in our experiments.
The signals were collected for a total duration of 60 μs at a

sampling rate of 50 MHz. The ‘numerical measurements’ were
generated by adding 1% Gaussian noise to the recorded PA
waves and convolving the resulting noisy signals with a
Gaussian filter centered at 5 MHz to simulate the response
of our actual detectors. While we used a mesh consisting of
7633 nodes and 14976 triangular elements to generate the
measurements, the reconstructions are performed on a coarser
mesh of 1243 nodes and 2376 elements. Figure 2(a) shows
the reconstructed μa map with a cross-sectional plot given
in Fig. 2(b). We also employ the proposed scheme to compare
our results with a two-step recovery, the details of which may be
found in Ref. [14]. For brevity, we only show the cross-sectional
plots of the two-step recovery in Fig. 2(b). Clearly, a direct re-
covery results in a better quantitative accuracy, especially at the
center, since it avoids the pitfalls of a non-uniform fluence dis-
tribution apparent in a two-step scheme [see also Fig. 1(b)].
A two-step method also causes μa to overshoot near the boun-
dary owing to the numerical division of h�r� by ϕ�r�.

In order to study the effect of measurement noise on the
recovered image, we also invert measurements generated as
above, but with 4%, 7%, and 10%Gaussian noises. For brevity
again, only a cross-section of the reconstruction for the 10%
noise case is given in Fig. 2(b). Our next numerical object
is the more complex Shepp–Logan phantom (SLP), as shown
in Fig. 3(a). The numerical setup for the SLP data generation is
the same as in the previous case. While the forward data is gen-
erated on a mesh consisting of 14,893 nodes and 29,376 ele-
ments, the reconstruction is performed on a coarser mesh of
4903 nodes and 9576 elements. A one-step reconstruction
of the SLP for the 1% noise case is given in Fig. 3(b).

Fig. 1. (a) μa map of the numerical object taken as the reference.
For all grayscale μa images, the x and y axes are in m, and the color map
is in mm−1. (b) The absorbed energy map in Jm−3 of the numerical
object.

Fig. 2. (a) Reconstructed μa map corresponding to the object in
Fig. 1(a) for the 1% noise case and (b) the cross-sectional plot through
x � 2y comparing the results of a direct recovery (SS-1) and a two-step
method (SS-2) for the 1% noise case. Also shown in the same figure is
the cross-sectional plot corresponding to a one-step recovery for the
10% noise case.

Fig. 3. (a) μa map of the Shepp–Logan phantom (SLP).
(b) Reconstructed μa map of the SLP using the one-step method.
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A schematic representation of the experimental setup and
the object, with its optical properties is in Fig. 4. We have con-
sidered a small-size phantom, keeping in mind small animal
imaging and also our ongoing work on human finger-joint im-
aging [26]. Also, the choice of the 800 nm wavelength is to
ensure high penetration depth as might be required in animal
oncology research. At each detector, the signals are recorded for
a duration of 44.56 μs at a sampling rate of 50 MHz. The
reconstructions were performed on a mesh consisting of
2773 nodes and 5376 elements using an ensemble size of
800, the same as that used for the numerical simulations.
Although it took 3.5 h on a hexacore i7 machine for the in-
version to finish, a properly configured multi-processor cluster
system will require only a few minutes or perhaps less. The
reconstructed μa map of the phantom and a cross-sectional plot
are shown in Figs. 5(a) and 5(b), respectively. The estimated
absorption values of the anomalies were 0.038 mm−1,
0.034 mm−1, and 0.052 mm−1 resulting in errors of 5%,
17.5%, and 5%, respectively. Note that the results reported
here are insensitive to the initial distribution of μ, unlike those
reported in Ref. [5], where the reconstructions, based on a
regularized Gauss–Newton search, though similar in quantita-
tive accuracy, showed sensitive dependence on the initial
absorption profile.

In conclusion, we have reported a SS algorithm for the direct
recovery of the optical absorption map from the measured
acoustic pressure. A key aspect of this work is the proposal
of an easy-to-implement, derivative-free numerical scheme,

the first of its kind for one-step QPAT. A possibly naive, if
straightforward, extension of this work could be to recover
the chromophore concentrations in tissues by gathering the
PA data at multiple optical wavelengths and solving for μa
at each wavelength. But then, such a two-step process would
have similar ill-posedness issues as discussed earlier since the
optical absorption varies with wavelength. In the future, we
intend to address this issue through a one-step recovery of
the chromophore concentrations from spectral PA data.
Additional constraints appearing in the recovery of functional
parameters such as the total hemoglobin concentration may be
readily incorporated within the innovation vector of the pro-
posed update scheme. This should again be contrasted with
gradient-based approaches requiring regularization to incorpo-
rate such constraints, thus adding to the computational over-
head caused by the Jacobian calculations.
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Fig. 4. (a) Schematic representation of the experimental setup. The
phantom is illuminated with six static optical fiber bundles carrying
6 ns pulses at 800 nm. The 64-element curved ultrasound detector
(5 MHz, 4 cm radius) rotates around the phantom and measures
the PA signals in six views. (b) Schematic diagram and optical proper-
ties of the experimental phantom. The background material is agar gel
with an aqueous solution of Intralipid and dye. The cylindrical inclu-
sions were made from agar and an aqueous solution of dye without
Intralipid.

Fig. 5. (a) Reconstructed μa map and (b) the cross-sectional plot
through y � 1.26x corresponding to the experimental phantom.
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