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Abstract

A classification method is presented for adaptive classification testing with a multidimensional
item response theory (IRT) model in which items are intended to measure multiple traits, that
is, within-dimensionality. The reference composite is used with the sequential probability ratio
test (SPRT) to make decisions and decide whether testing can be stopped before reaching the
maximum test length. Item-selection methods are provided that maximize the determinant of
the information matrix at the cutoff point or at the projected ability estimate. A simulation study
illustrates the efficiency and effectiveness of the classification method. Simulations were run with
the new item-selection methods, random item selection, and maximization of the determinant
of the information matrix at the ability estimate. The study also showed that the SPRTwith mul-
tidimensional IRT has the same characteristics as the SPRTwith unidimensional IRTand results in
more accurate classifications than the latter when used for multidimensional data.
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Computerized adaptive testing (CAT) estimates ability precisely or makes accurate classifica-

tion decisions while minimizing test length. Much is known about unidimensional CAT

(UCAT), and several classification methods are available (Eggen, 1999; Spray, 1993; Weiss &

Kingsbury, 1984). However, knowledge about multidimensional CAT (MCAT) is still expand-

ing, and classification methods are available only for some situations.

Seitz and Frey (2013) developed a multidimensional classification method that makes a deci-

sion for each dimension for items that are assumed to measure only one trait. Spray, Abdel-

Fattah, Huang, and Lau (1997) investigated classification testing for items that are assumed to
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measure multiple traits and concluded that this was not feasible. A new method was developed

to make decisions for items that measure multiple traits. The advantages of making multidimen-

sional classification decisions are that the multidimensional structure of the data is respected,

adaptive testing principles can be used, and test length is reduced even more than in MCAT for

estimating ability.

Item response theory (IRT), which is often used for CAT, is discussed in the

‘‘Multidimensional Item Response Theory’’ section of this article. IRT relates the score on an

item, based on the item parameters, and the examinee’s ability (van der Linden & Hambleton,

1997). In multidimensional IRT (MIRT), multiple person abilities describe the skills and

knowledge the person brings to the test (Reckase, 2009). Classification methods are then dis-

cussed. These methods decide whether testing can be finished and which decision is made

about the examinee’s level (e.g., insufficient/sufficient). A new classification method for

MCAT is proposed. Item-selection methods are discussed in the ‘‘Item-Selection Methods’’

section of this article. These methods select the items based on a statistical criterion or on the

examinee’s responses to previously administered items. New item-selection methods are pro-

posed for multidimensional computerized classification testing (MCCT). The efficiency and

effectiveness of the new classification and selection methods are shown using simulations in

the ‘‘Simulation Study’’ section. In the ‘‘Discussion and Conclusion’’ section, remarks are

made about MCCT and directions for future research.

Multidimensional Item Response Theory

CAT requires a calibrated item pool suitable for the specific test for which the model fit is

established, item parameter estimates are available, and items with undesired characteristics are

excluded (van Groen, Eggen, & Veldkamp, 2014a). MIRT assumes that a set of p abilities

accounts for the examinee’s responses to the items. The multidimensional dichotomous

two-parameter logistic model (Reckase, 1985) describes the probability of a correct answer to

item i by

Pi uð Þ= P Xi = 1jai, di, uð Þ=
exp a

0

iu + di

� �
1 + exp a

0
iu + dið Þ : ð1Þ

Pi(u) is the probability of a correct answer Xi = 1, ai is the vector of the discrimination para-

meters, di denotes the easiness of the item, and u is the vector of the ability parameters. Items

with multiple nonzero parameters ai measure multiple abilities, the so-called within-item dimen-

sionality (W.-C. Wang & Chen, 2004). If just one discrimination parameter is nonzero for all

items, this is called between-item dimensionality. Item parameter estimates are assumed to be

precise enough to fix them during testing (Veldkamp & van der Linden, 2002).

The likelihood of a set of observed responses xj to items i = 1, . . . , k for examinee j with abil-

ity uj is the product of the probabilities for the responses (Segall, 1996):

L ujjxj

� �
=
Yk

i = 1

Pi uj

� �xij
Qi uj

� �1�xij
, ð2Þ

where Qi(uj) = 1� Pi(uj). The values û = (û1, . . . , ûp) that maximize the likelihood function

become the ability estimate for uj (Segall, 1996). An iterative search procedure, such as the

Newton–Raphson method, is used because the equations for finding maximum likelihood (ML)

estimates have no closed-form solution (Segall, 1996). This procedure is described for weighted
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maximum likelihood (WML) in the appendix. WML estimation, as developed by Tam (1992),

reduces the bias in the ML estimates.

Classification Methods

Classification methods determine whether testing can be stopped and which decision is made

before the maximum test length (van Groen et al., 2014a). The existing literature about classifi-

cation methods for MCAT is described, and then a new classification method is proposed.

Existing Multidimensional Classification Methods

Two studies about making classification decisions using MIRT exist. These studies concern

MCAT with multiple unidimensional decisions for between-dimensionality (Seitz & Frey,

2013) and the use of the sequential probability ratio test (SPRT) for within-dimensionality

(Spray et al., 1997).

MCAT for between-dimensionality. Seitz and Frey (2013) used the SPRT to make multiple unidi-

mensional decisions using the fact that, for between-dimensionality, the multidimensional two-

parameter logistic model is a combination of UIRT models (W.-C. Wang & Chen, 2004). Seitz

and Frey implemented the SPRT for each dimension. The SPRT (Wald, 1947/1973) was

applied to classification testing using IRT by Reckase (1983). A cutoff point is set for the

SPRT between adjacent levels with a surrounding indifference region. The region accounts for

the uncertainty of the decisions, owing to measurement error, for examinees with an ability

close to the cutoff point (Eggen, 1999). Two hypotheses are formulated for the cutoff point, uc,

using the boundaries of the indifference region (Eggen, 1999):

H0 : uj \ uc � d; ð3Þ

Ha : uj . uc + d, ð4Þ

in which d is half the size of the indifference region. The likelihood ratio between the likeli-

hoods after k items for the bounds of the region is calculated (Eggen, 1999):

LR uc + d; uc � dð Þ=
L uc + d; xj

� �
L uc � d; xj

� � , ð5Þ

in which L(uc + d; xj) and L(uc � d; xj) are calculated using the unidimensional version of

Equation 2. Decision rules are used to decide to continue testing or to decide that the student’s

ability is below or above the cutoff point (Eggen, 1999):

administer another item if b= 1� að Þ\LR uc + d; uc � dð Þ\ 1� bð Þ=a;

ability below uc if LR uc + d; uc � dð Þ � b= 1� að Þ;
ability above uc if LR uc + d; uc � dð Þ � 1� bð Þ=a,

ð6Þ

where a and b specify the acceptable classification error rates (Spray et al., 1997). A maximum

test length is set to ensure that testing stops at some point (Eggen, 1999). At this point, the

examinee passes the test if the log of Equation 5 is larger than the midpoint of the log of the

interval on the first line of Equation 6 (Eggen, 1999) if no decision has been made yet.
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Seitz and Frey (2013) implemented the SPRT by setting cut scores, ucl, for all dimensions

l = 1, . . . , p, with surrounding indifference regions. The SPRT is calculated for each dimension

p using

LR ucl + d; ucl � dð Þ=
L ucl + d, ûjc�l, x
� �

L ucl � d, ûjc�l, x
� � , l = 1, . . . , p, ð7Þ

in which ucl � d and ucl + d are imputed for dimension l and ûjc�l denotes the provisional esti-

mates for all dimensions except dimension l. Because no decision is required on the other

dimensions when making the decision for dimension l, ability estimates are imputed for the

other dimensions (Seitz & Frey, 2013). In the case of between-dimensionality, Equation 7

reduces to

LR ucl + d; ucl � dð Þ=
L ucl + d; xj

� �
L ucl � d; xj

� � , l = 1, . . . , p: ð8Þ

If the items load on multiple dimensions, Seitz and Frey’s (2013) method cannot be used

because the ratio does not reduce to Equation 8. Furthermore, the method requires an additional

decision rule if a decision on all or a set of dimensions is to be obtained. This implies that Seitz

and Frey’s method can be used only for between-dimensional tests with no decisions based on

multiple or all dimensions.

MCAT for within-dimensionality. Spray et al. (1997) investigated the possibility of using the SPRT

for MCAT. They specified a passing rate on a reference test with a standard setting method and

obtained an equivalent latent passing score by solving for u. The ability values that resulted in

the passing rate defined the curve in the multidimensional space that divided the space into two

mutually exclusive regions (Spray et al., 1997). Surrounding this curve, the curves denoting the

indifference region were formed. According to Spray et al. (1997), the ability values that satis-

fied these curves did not necessarily result in constant probability values for each item. This

implies that the likelihood ratio cannot be updated with a unique value for each item; thus, the

SPRT cannot be extended to MCAT.

A Classification Method for Within-Dimensionality

Because the SPRT requires unique values for updating the ratio, a method should be developed

that results in unique values if the SPRT is to be applied. The reference composite (RC;

Reckase, 2009; M. Wang, 1985, 1986) reduces the multidimensional space to a unidimensional

line. By using the RC, the likelihood ratio can be updated with unique values after an extra item

is administered.

RC. The RC relates the multidimensional abilities to a unidimensional line in the multidimen-

sional space (Reckase, 2009). This line describes the characteristics of the discrimination para-

meter matrix for the item set. All u points can be projected on the RC. Using projection,

examinees are ranked on the RC. A higher RC value denotes a student who is more able than a

lower RC value. Ability as projected on the RC is called proficiency j. The direction of the RC

is given by the eigenvector of the aa0 matrix that corresponds to the largest eigenvalue of this

matrix (Reckase, 2009). The p elements of the eigenvector are the direction cosines ajl for the

angle between the RC and the dimension axes. The line is drawn in the multidimensional space

through the origin with the direction cosines specifying the precise position. To calculate jj, a
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line Lj is drawn through the u point and the origin (Reckase, 2009). The length of Lj for exami-

nee j from the origin to the ûj point is

Lj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiXp

l = 1

û2
jl

vuut , ð9Þ

and the direction cosines for the line are calculated using (Reckase, 2009)

cos ajl =
ûjl

Lj

, l = 1, . . . , p, ð10Þ

in which ajl is the angle between axis l and Lj. The angle, ajj = ajl � ajl, between Lj and the

RC is used to calculate the estimated proficiency ĵj on the RC (Reckase, 2009):

ĵj = Lj cos ajj: ð11Þ

Multidimensional decision making using the RC. Using the RC, abilities can be ranked on a unidi-

mensional line. The position of the RC is fixed before administration based on all items in the

item pool. By fixing the RC, ability is measured on the same scale for all examinees, and cutoff

points can be set.

The SPRT requires specifying a cutoff point, jc, and the surrounding indifference region.

The cutoff point and dj are set on the RC. The boundaries of the indifference region are trans-

formed to u points using

ujc + d
= cos aj3 jc + dj

� �
; ð12Þ

ujc�d
= cos aj3 jc � dj

� �
, ð13Þ

where aj includes all angles between the RC and the dimension axis. The likelihood ratio in

Equation 5 becomes

LR ujc + d
; ujc�d

� �
=

L ujc + d
; xj

� �
L ujc�d

; xj

� � , ð14Þ

which can be used to make classification decisions with the following decision rules:

administer another item if b= 1� að Þ\ LR ujc + d
; ujc�d

� �
\ 1� bð Þ=a;

ability below jc if LR ujc + d
; ujc�d

� �
� b= 1� að Þ;

ability above jc if LR ujc + d
; ujc�d

� �
� 1� bð Þ=a:

ð15Þ

Item-Selection Methods

Selecting the correct items is important, because items that are too hard or too easy or provide

little information result in tests that do not function well (Reckase, 2009). Several methods are

available for MCAT (e.g., Luecht, 1996; Reckase, 2009; Segall, 1996) and for unidimensional

computerized classification testing (UCCT; for example, Eggen, 1999; Spray & Reckase,

1994). However, item-selection methods for MCCT are scarce. Seitz and Frey (2013) selected

items using Segall’s (1996) method for MCAT for estimating ability. This method is discussed

van Groen et al. 391

 at Universiteit Twente on September 1, 2016apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


in the next section. Item-selection methods for UCCT are described, and then these methods

are adapted for MCCT using Segall’s method.

An Item-Selection Method for MCAT for Ability Estimation

The method that maximizes the determinant of the Fisher information matrix was developed

for MCAT to estimate ability (Segall, 1996). This matrix is a measure of the information in the

observable variables on the ability parameters (Mulder & van der Linden, 2009). The elements

of p 3 p matrix I(u) for dimensions l and m are defined as follows (Tam, 1992):

I ul, umð Þ=
Xk

i = 1

∂
∂ul

Pi uð Þ3 ∂
∂um

Pi uð Þ
Pi uð ÞQi uð Þ =

Xk

i = 1

ailaimPi uð ÞQi uð Þ: ð16Þ

Segall’s (1996) method is based on the relationship between the information matrix and the

estimates’ confidence ellipsoid (Reckase, 2009). The method selects the item that results in the

largest decrement in the volume of the confidence ellipsoid (Segall, 1996). As the size of the

confidence ellipsoid can be approximated by the inverse of the information matrix, the item is

selected that maximizes (Segall, 1996)

max det
Xk

i = 1

I ûj, xij

� �
+ I ûj, xk + 1, j

� � !
, for k + 1 2 Vk + 1, ð17Þ

which is the determinant of the information matrix of the administered items and the potential

item k + 1. The next item is administered that, when added to the information matrix, results in

the largest determinant of the matrix. This implies that the volume of the confidence ellipsoid is

minimized (Reckase, 2009).

Item-Selection Methods for UCAT for Classification Testing

In UCCT, two methods are commonly used in addition to random selection. The first method

maximizes Fisher information at the ability estimate by minimizing the confidence interval

around the ability estimate using

max Ii ûj

� �
, for i 2 Va, ð18Þ

where Va denotes the set of items still available for administration. The second method maxi-

mizes Fisher information at the cutoff point, which results in

max Ii ucð Þ, for i 2 Va: ð19Þ

In unidimensional settings with the SPRT, maximizing information at the cutoff point is con-

sidered the most efficient (Eggen, 1999; Spray & Reckase, 1994).

Item-Selection Methods for MCAT for Classification Testing

Segall’s (1996) method selects the item with the largest determinant of the information matrix

at the ability estimate. This method can also be used for MCCT. This method will be referred to

as the method that maximizes the determinant of the information matrix at the ability estimate.
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The method is adapted to select items that maximize on some fixed point on the RC, analogous

to the methods for UCCT.

The first new item-selection method for MCCT maximizes the determinant of the informa-

tion matrix at the projected ability estimate. The rationale is that interest is limited here to the

points that fall on the RC but not on the other points in the multidimensional space. The ability

estimate is estimated using WML estimation (see the appendix). The estimate can be projected

on the RC using Equation 11. To calculate I, ĵj is transformed to its corresponding point in the

multidimensional space using uĵj
= cosaj3ĵj. The selection function becomes

max det
Xk

i = 1

I u
ĵj

, xij

� �
+ I u

ĵj
, xk + 1, j

� � !
, for k + 1 2 Vk + 1: ð20Þ

The second new item-selection method for MCCT maximizes the determinant of the infor-

mation matrix at the cutoff point on the RC. This value is on the RC but has to be transformed

to the multidimensional u space using

uc = cos aj3jc: ð21Þ

The resulting objective function is

max det
Xk

i = 1

I uc, xij

� �
+ I uc, xk + 1, j

� � !
, for k + 1 2 Vk + 1: ð22Þ

Simulation Study

The effectiveness and the efficiency of the classification and item-selection methods were inves-

tigated using simulations. The results with MCCT were evaluated on well-known characteristics

of the unidimensional SPRT. A well-known characteristic of the unidimensional SPRT is that

increasing a and b often does not influence the accuracy, but shortens the test considerably

(Eggen & Straetmans, 2000). Increasing d also results in shorter tests, but does not influence

accuracy (Eggen & Straetmans, 2000). The three discussed item-selection methods were com-

pared with random selection. It was expected that maximizing the determinant of the informa-

tion matrix at the ability estimate, the projected ability estimate, or the cutoff point would result

in shorter and more accurate tests than random selection.

Simulation Design

An item pool from the ACT Assessment Program, which was used by Ackerman (1994) and

Veldkamp and van der Linden (2002), was used to evaluate MCCT. The item pool consisted of

180 items, previously calibrated with a two-dimensional compensatory IRT model with within-

dimensionality using NOHARM II (Fraser & McDonald, 1988). The fit of the MIRT model

was established (Veldkamp & van der Linden, 2002). The means of the discrimination para-

meters were 0.422 and 0.454 with standard deviations 0.268 and 0.198. The observed correla-

tion between the parameters was .093, which is explained by the orthogonal constraint in the

calibration. The mean of the easiness parameter was 20.118 with a standard deviation of 0.568.

The matrix of the discrimination parameters resulted in angles between the Dimension Axes 1

and 2 with the RC of 44.621 and 45.379 degrees.

Simulations were run for four item-selection methods: random selection (RA) and maximi-

zation of information at the cutoff point (CP), the projected ability estimate (PA), and the
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ability estimate (AE). The maximum test length was set at 50 items, following Veldkamp and

van der Linden (2002). The acceptable decision error rates a and b were set at 0.05 and 0.10

with d = 0:1, 0:2, and 0:3. The chosen values for a and b are commonly found in UCCT. In

each condition, 1,000 simulees were generated from a multivariate standard-normal distribu-

tion. The correlation between the dimensions was varied, r = 0:0, 0:3, and 0:6. The cutoff

point was set at 0:0 on the RC, which implied ujc
= f0:0, 0:0g, which was the midpoint of the

ability distribution. Each simulation condition was replicated 100 times.

A well-known characteristic of the unidimensional SPRT is that as ability becomes closer to

the cutoff point, the test length increases (Eggen & Straetmans, 2000), and the proportion of

correct decisions (PCD) nears 0.5 (van Groen & Verschoor, 2010). Additional simulations were

run to investigate the effect of the distance between ability and the cutoff point. This study used

372,100 simulees: 100 at each of 61 evenly spaced points on u1 from �3 to 3 with the same

number of points on u2. The maximum test length was set at 50 items. a = b = 0:10, d = 0:20,

the cutoff point was set at 0:0, and the items were selected by CP.

The classifications using multidimensional and unidimensional IRT were compared in a third

simulation series. Although a two-dimensional model was required for model fit, which implied

the use of MCCT, a comparison was made with UCCT. One hundred thousand simulees were

generated using a multivariate standard-normal distribution with r = 0:0. For each simulee, 180

responses were generated. The cutoff point for the true classification of each simulee was set at

the 50th percentile of the observed proficiency distribution on the RC. These true proficiencies

were computed based on the true abilities. The same cutoff point was used as the cutoff point

for the MCCT. This observed distribution was also used to compute d for the MCCT. In all,

1.25, 2.50, and 5.00 percentile points were added and subtracted from the cutoff point to com-

pute d. a and b were set at 0.05 and 0.10. Because the size of the indifference regions and the

cutoff points are different in the third simulation series, the results for these simulations are

not necessarily comparable with the results of Simulation Series 1 and 2. After 180 responses

were generated per simulee, a maximum of 50 items were selected for each simulee RA, AE,

and CP.

The classifications with multidimensional and unidimensional IRT were compared.

Unidimensional item parameters were obtained for the generated multidimensional data set

using BILOG. The cutoff point and d were generated using the 50th percentile of the estimated

ability distribution based on 180 items per simulee. d was calculated using this distribution, and

the same percentile points as for MCAT were added and subtracted. Comparability between the

UCAT and MCAT simulations was ensured by using the same distribution percentiles to com-

pute the cutoff points and the values for d. Items were selected in the unidimensional case by

RA, AE, and CP.

Dependent Variables

The efficiency of MCCT was evaluated with the average test length (ATL), which was calcu-

lated per condition as the mean test length over 100 replications with each 1,000 simulees.

Although reducing the test length reduces respondent burden, test development costs, and test

administration costs, effectiveness was considered more important. Effectiveness was investi-

gated using the PCD, which was calculated per condition as the mean of the PCD for each

simulation over 100 replications. The PCD compared the true classification based on the true

proficiency, with the decision by the SPRT. The PCD for UCCT compared the true classifica-

tions based on the proficiency on the RC with the observed classifications.
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Simulation Results

Table 1 presents the ATL for different SPRT settings and the four selection methods. The per-

formance of RA, AE, PA, and CP was evaluated. RA resulted in the highest ATL. CP resulted

in the lowest ATL. An increase in a and b decreased the ATL with several items. An increase

in d resulted in a lower ATL. If r was increased, the ATL decreased.

The effectiveness of the classification method is shown in Table 2. The PCD is given for

simulations with different SPRT settings and four item-selection methods. RA was the least

accurate method. The PCD was lower for the simulations with a = b = :05 than was specified

beforehand. The simulations with the other three item-selection methods were more accurate,

and the differences between them were negligible. a, b, and d appeared to have no influence

on the PCD. If the r was higher, the PCD was higher.

Simulations were run to investigate whether the ATL and the PCD depended in the same

way on the distance between ability and the cutoff point as in UCAT. In Figure 1, the ATL and

the PCD are shown for different combinations of ability. The ATL increased considerably when

the projection of the ability on the RC was close to the cutoff point and the PCDs decreased

considerably and became close to 0.50 or lower.

The ATL is shown in Table 3 for simulations in which classifications with UCAT and

MCAT were compared for tests with a flexible test length. The ATL for the UCAT simula-

tions was often lower than for the MCAT simulations. RA resulted in the highest ATL and

CP in the lowest ATL. As shown in Table 4, the shorter UCAT tests were accompanied by a

lower PCD than for MCAT. The decisions with MCAT and an information-based item-selec-

tion approach resulted in 5% higher accuracy than in UCAT. MCAT combined with CP

resulted in the most accurate decisions followed by AE. RA resulted in 3% less accurate

decisions for MCAT. In contrast, RA resulted in the most accurate decisions for UCAT, fol-

lowed by CP.

Table 1. Average Test Length for Different SPRT Settings and Item-Selection Methods.

r = :05

a = 0:05 a = 0:10

d = 0:1 d = 0:2 d = 0:3 d = 0:1 d = 0:2 d = 0:3

Random item selection
0.0 50.000 48.404 43.598 49.916 45.303 38.431
0.3 49.999 47.778 42.383 49.850 44.217 36.949
0.6 49.998 47.186 41.324 49.752 43.218 35.725

Item selection by maximization at the ability estimate
0.0 49.996 43.165 35.065 48.792 37.411 28.624
0.3 49.993 41.819 33.541 48.341 35.918 27.318
0.6 49.989 40.785 32.310 47.887 34.674 26.188

Item selection by maximization at the projected estimate
0.0 49.990 43.362 35.359 48.898 37.673 28.893
0.3 49.992 43.911 35.965 49.165 38.261 29.824
0.6 49.981 43.045 34.890 48.952 37.160 28.739

Item selection by maximization at the cutoff point
0.0 49.531 40.851 32.337 47.269 34.733 25.840
0.3 49.234 39.264 30.660 46.268 33.022 24.230
0.6 48.901 37.815 29.120 45.399 31.541 22.956

Note. SPRT = sequential probability ratio test; r = correlation between the abilities; a = b = acceptable error rates;

d = distance between the cutoff point and the boundary of indifference region.
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Discussion of the Results

The main aim of the simulations was to investigate whether typical SPRT characteristics for

UCAT also applied to the SPRT for MCAT. An increase of a and b in the SPRT for UCAT

led to shorter tests, but accuracy was not influenced (Eggen & Straetmans, 2000). The

Table 2. Proportion of Correct Decisions for Different SPRT Settings and Item-Selection Methods.

r

a = 0:05 a = 0:10

d = 0:1 d = 0:2 d = 0:3 d = 0:1 d = 0:2 d = 0:3

Random item selection
0.0 0.865 0.866 0.868 0.866 0.867 0.867
0.3 0.880 0.882 0.882 0.883 0.882 0.882
0.6 0.892 0.894 0.893 0.893 0.893 0.890

Item selection by maximization at the ability estimate
0.0 0.895 0.896 0.897 0.895 0.896 0.895
0.3 0.908 0.907 0.906 0.909 0.908 0.908
0.6 0.918 0.917 0.918 0.916 0.915 0.915

Item selection by maximization at the projected estimate
0.0 0.896 0.895 0.895 0.897 0.895 0.894
0.3 0.903 0.901 0.904 0.904 0.904 0.901
0.6 0.910 0.912 0.912 0.912 0.912 0.911

Item selection by maximization at the cutoff point
0.0 0.898 0.896 0.898 0.897 0.898 0.897
0.3 0.909 0.910 0.909 0.908 0.910 0.909
0.6 0.919 0.920 0.918 0.917 0.919 0.919

Note. SPRT = sequential probability ratio test; r = correlation between the abilities; a = b = acceptable error rates; d =

distance between the cutoff point and boundary of the indifference region.

Figure 1. Average test length and proportion of correct decisions with maximization at the cutoff point.
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simulations with the SPRT for MCAT demonstrated similar effects on the PCD and the ATL.

Another characteristic of the SPRT is that if the indifference region is increased, the ATL

decreases, and the PCD is not influenced (Eggen & Straetmans, 2000). The same was found for

the SPRT for MCAT. A third characteristic typical of the SPRT is inaccuracy if ability

approaches the cutoff point (van Groen & Verschoor, 2010). The simulations showed that the

tests were considerably longer if the distance between the cutoff point and proficiency on the

RC became very small. In MCAT, this finding applied to all ability values that resulted in pro-

ficiency on the RC that was close to the cutoff point.

The simulation results were in line with previous unidimensional findings by Spray and

Reckase (1994), Eggen (1999), and Thompson (2009), in which item selection by CP was the

Table 3. Average Test Length for Different SPRT Settings for UCCT and MCCT.

Condition

a = 0:05 a = 0:10

d� = 1:25 d� = 2:50 d� = 5:00 d� = 1:25 d� = 2:50 d� = 5:00

Random item selection
MIRT 50.000 50.000 49.961 50.000 50.000 49.378
UIRT 50.000 50.000 49.772 50.000 50.000 48.474

Item selection by maximization at the ability estimate
MIRT 50.000 50.000 49.384 50.000 50.000 46.280
UIRT 50.000 50.000 48.044 50.000 49.979 45.116

Item selection by maximization at the cutoff point
MIRT 50.000 50.000 47.944 50.000 49.945 44.041
UIRT 50.000 49.855 43.902 50.000 48.730 38.366

Note. Simulations for classifications with UIRT and MIRT with a flexible test length. SPRT = sequential probability ratio

test; UCCT = unidimensional computerized classification testing; MCCT = multidimensional computerized

classification testing; MIRT = multidimensional item response theory; UIRT = unidimensional item response theory;

a = b = acceptable error rates; d� = percentile point that was used to calculate the boundary of the indifference

region.

Table 4. Proportion of Correct Decisions for Different SPRT Settings for UCCT and MCCT.

Condition

a = 0:05 a = 0:10

d� = 1:25 d� = 2:50 d� = 5:00 d� = 1:25 d� = 2:50 d� = 5:00

Random item selection
MIRT 0.865 0.866 0.865 0.866 0.865 0.865
UIRT 0.850 0.851 0.851 0.848 0.850 0.850

Item selection by maximization at the ability estimate
MIRT 0.894 0.894 0.894 0.894 0.894 0.894
UIRT 0.837 0.838 0.837 0.837 0.837 0.837

Item selection by maximization at the cutoff point
MIRT 0.895 0.895 0.895 0.895 0.895 0.895
UIRT 0.845 0.845 0.845 0.845 0.845 0.845

Note. Simulations for classifications with UIRT and MIRT with a flexible test length. SPRT = sequential probability ratio

test; UCCT = unidimensional computerized classification testing; MCCT = multidimensional computerized

classification testing; MIRT = multidimensional item response theory; UIRT = unidimensional item response theory;

a = b = acceptable error rates; d� = percentile point that was used to calculate the boundary of the indifference

region.
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most efficient. Selecting items using the CP on the RC resulted in MCAT in the shortest tests.

As expected, the other methods outperformed RA.

In the third series, the SPRT for MCAT was compared with the SPRT for UCAT. It might

be unexpected that the SPRT resulted, on average, in shorter tests in UCAT. This can be

explained by the simpler structure of the likelihoods that are used for the SPRT. The CP

resulted in the shortest tests for UCAT and MCAT. Although a reduced test length has a

practical value, accuracy is often considered to be more important. MCAT resulted in more

accurate decisions than UCAT. For MCAT, the CP resulted, as expected, in the most accurate

decisions followed by the AE. Surprisingly, RA resulted in the most accurate classification

decisions with the SPRT for UCAT. This is probably the result of optimization at incorrect

points on the scale by the information-based methods or the reduced test length. Given the

importance of making accurate decisions, if an MIRT model improves model fit for a specific

data set, these item parameters should be used to make classifications instead of unidimen-

sional parameters.

Discussion and Conclusion

A classification method was developed to make classification decisions in tests with items that

are intended to measure multiple traits. The method can be used in testing situations in which

the construct of interest is modeled using an MIRT model. A RC is constructed in the multidi-

mensional space and is used to make classification decisions with the SPRT.

Segall’s (1996) item-selection method was adapted to select items that had the largest deter-

minant of the information matrix at either the cutoff point or the current projected ability esti-

mate. The methods use the u-point that corresponds to the intended point on the RC.

For item-selection methods that use an ability estimate, WML estimation was used. WML

estimates (Tam, 1992) have a smaller bias than ML estimates. The Newton–Raphson method

was used to find the estimates (see the appendix).

Simulations were used to investigate the ATL, the PCD, and the characteristics of the classi-

fication method. The efficiency and the accuracy were compared for different item-selection

methods and different settings for the classification method. Independent of the settings for the

SPRT, the classification method resulted in accurate decisions.

The differences in efficiency and effectiveness between the item-selection methods are

small. The settings of the classification method had more influence on the ATL than on the

PCD. Tests could be shortened considerably without much effect on the accuracy of the deci-

sions. It was shown that the new classification method had the same characteristics as the

unidimensional SPRT; when the projection of ability on the RC becomes close to the cutoff

point, test length increases, and the PCD nears 0.5. The settings of the new SPRT had the

same influence as in unidimensional IRT.

When compared with the SPRT with unidimensional IRT, the SPRT with MIRT resulted in

longer tests but decisions that are more accurate. Given the importance of making accurate clas-

sification decisions, the SPRT should be used with MIRT when model fit for the data set is

improved by MIRT.

Future Directions and Further Remarks

If the items load on one dimension, the new classification method cannot be used. If each item

measures just one dimension, the non-diagonal elements of the aa0 matrix are zero. The eigen-

values and the eigenvectors of such a matrix do not make sense, and its classifications are
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solely based on the most discriminating dimension. Thus, Seitz and Frey’s (2013) classification

method could be used to make classifications for each dimension or the expanded version (van

Groen, Eggen, & Veldkamp, 2014b) of that method for making classifications on the entire

test.

Simulations were run with an item pool that was calibrated with a two-dimensional model.

The classification method can be applied to models with additional dimensions. A fixed test

length can also be used.

Decisions were made based on the total set of items administered. Reckase (2009) showed

that RCs can be constructed for underlying domains as well. Investigating whether it is possible

to classify on these domains as well would be interesting. Such classifications can provide infor-

mation regarding the level of the examinees for the underlying domains.

The current version of the SPRT is used to classify into one of two levels. It is expected that

the method can be adapted to classify examinees into one of multiple levels, such as basic, pro-

ficient, and advanced.

The simulations used an item bank in which the dimensions were restricted to be orthogonal

at each other. The SPRT can also be used if orthogonality is not assumed. The effects of fitting

an orthogonal model and a non-orthogonal model to the same data set should be investigated,

and the best fitting model should be used.

A WML estimator was used in the current study. The effectiveness and efficiency of the

estimator have not been intensively studied and should be compared with other estimators. If

this estimator is used for other studies, the researchers should investigate the appropriateness of

using the estimator for their study.

In testing programs, constraints have to be met for the test content, and attention has to be

paid to item exposure. The effects of content and exposure control should be investigated before

the classification method for within-dimensionality is applied in actual testing programs.

Appendix

Weighted Maximum Likelihood (WML) Estimation

Ability can be estimated using WML. Tam (1992) developed a WML estimator for multidimen-

sional item response theory (MIRT) based on Warm’s (1989) unidimensional WML estimator.

It reduces the bias in the estimates (Tam, 1992). In WML estimation, the following equations

are solved (Tam, 1992):

∂

∂u
ln L ujxð Þ½ �+ ∂

∂u
ln w uð Þ½ �= 0, ðA1Þ

in which the first part denotes the derivatives of the natural logarithm of Equation 2 and the

second part the weights that reduce the bias in the estimates. The set of likelihood equations is

(Segall, 1996)

∂

∂u
ln L ujxð Þ½ �=

∂
∂u1

ln L ujxð Þ
..
.

∂
∂up

ln L ujxð Þ

2
664

3
775: ðA2Þ

In the two-parameter MIRT model, the partial derivatives for ul reduce to
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∂

∂ul

ln L(ujx)½ �=
Xk

i = 1

ail xi � Pi(u)½ � l = 1, . . . , p, ðA3Þ

in which ail denotes the discrimination parameter for dimension l for item i.

The weighting function that Tam (1992) developed is given by

∂

∂u
ln w uð Þ½ �= � I uð Þ3B uð Þ, ðA4Þ

in which B(u) denotes the factor that reduces the bias. This factor for dimension l is given by

(Tam, 1992)

B(ul) =
�J(ul)

2I(ul, ul)
2

l = 1, . . . , p, ðA5Þ

where J(ul) is an element of a p31 matrix J (Tam, 1992):

J ulð Þ=
Xk

i = 1

∂
∂ul

Pi uð Þ3 ∂2

∂u2
l

Pi uð Þ
� �

Pi uð ÞQi uð Þ =
Xk

i = 1

a3
ilPi uð ÞQi uð Þ2 � a3

ilPi uð Þ2Qi uð Þ: ðA6Þ

The set of Equations A1 that has to be solved becomes

Xk

i = 1

ail xij � Pi uð Þ
� �

�
Xp

m = 1

I ul, umð Þ3 �J umð Þ
2I um, umð Þ2

" #
= 0 l = 1, . . . , p: ðA7Þ

The equations for finding the (W)ML estimates have no closed-form solution; therefore, an

iterative numerical procedure is used (Segall, 1996). The Newton–Raphson (NR) method and

the false positioning method were used here. Segall (1996) used NR to find ML estimates. To

find the WML estimates, the procedure was adapted to include the weighting part of Equation

A7. The NR method does not converge when the second derivatives of the functions are infinite

(Hambleton & Swaminatan, 1985). As an indication of a possible lack of convergence, the dif-

ference between iterations is used. A small comparison study showed that the NR method

resulted in estimates that were more accurate than those provided by the false positioning

method. However, if the NR method did not converge, the estimation algorithm was switched

toward the false positioning method. The estimation method also changed if the iteration differ-

ence was very large. Both methods are described next.

WML Estimation Using the NR Method

The update function for the NR method for iteration j + 1 has the general form (Segall, 1996):

u j + 1ð Þ = u jð Þ � D jð Þ, ðA8Þ

in which D(j) is described by Segall (1996) as

D jð Þ =
f uð Þ

∂
∂u f uð Þ½ � , ðA9Þ

in which
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f uð Þ= ∂

∂u
ln L xjuð Þ½ �+ ∂

∂u
ln w uð Þ½ �, ðA10Þ

and

∂

∂u
f uð Þ½ �= ∂2

∂u2
ln L xjuð Þ½ �+ ∂2

∂u2
ln w uð Þ½ �: ðA11Þ

The elements of the second partial derivative for dimension l of the likelihood part in

Equation A11 are given by

∂2

∂u2
l

ln L ujxð Þ½ �= ∂

∂ul

Xk

i = 1

ail xij � Pi uð Þ
� �" #

=
Xk

i = 1

�a2
ilPi uð ÞQi uð Þ l = 1, . . . , p, ðA12Þ

and the elements of the second partial derivative of the weighting part become

∂2

∂u2
l

ln w uð Þ½ �= ∂

∂ul

Xp

m = 1

I ul, umð Þ3� J umð Þ
2I um, umð Þ2

 !" #

=
Xp

m = 1

2I ul, umð ÞJ umð Þ ∂
∂ul

I um, umð Þ½ �
2I um, umð Þ3

�
Xp

m = 1

∂
∂ul

I ul, umð Þ½ �J umð ÞI um, umð Þ
2I um, umð Þ3

�
Xp

m = 1

I ul, umð Þ ∂
∂ul

J umð Þ½ �I um, umð Þ
2I um, umð Þ3

:

ðA13Þ

The remaining elements of Equation A13 are specified by

∂

∂ul

I ul, umð Þ½ �=
Xk

i = 1

∂

∂ul

ailaimPi uð ÞQi uð Þ½ �

=
Xk

i = 1

a2
ilaimPi uð ÞQi uð Þ2 � a2

ilaimPi uð Þ2Qi uð Þ,
ðA14Þ

and

∂

∂ul

I um, umð Þ½ �=
Xk

i = 1

∂

∂ul

a2
imPi uð ÞQi uð Þ

� �

=
Xk

i = 1

aila
2
imPi uð ÞQi uð Þ2 � aila

2
imPi uð Þ2Qi uð Þ,

ðA15Þ

and

∂

∂ul

J umð Þ½ �=
Xk

i = 1

aila
3
imPi uð ÞQi uð Þ3 � 4aila

3
imPi uð Þ2Qi uð Þ2 + aila

3
imPi uð Þ3Qi uð Þ: ðA16Þ

The iterations of the NR procedure continue until the iteration differences become very small

(e.g., 0.0001). If the NR method does not converge, the false positioning method can be used.
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WML Estimation Using the False Positioning Method

Another numerical iterative procedure for finding the WML estimates is the false positioning

method, or regula falsi. This method searches iteratively on an interval consisting of a set of

two reasonable values for u (van Ruitenburg, 2006) for each dimension; for example, the vector

ul = � 5 contains reasonable values for the left boundary of the interval and ur = 5 for the right

boundary. The derivative of the WML Equation A10 is calculated for each dimension m using

∂

∂uml

f uð Þ= ∂

∂uml

ln L ujxð Þ½ �+ ∂

∂uml

ln w uð Þ½ � m = 1, . . . , p, ðA17Þ

and

∂

∂umr

f uð Þ= ∂

∂umr

ln L ujxð Þ½ �+ ∂

∂umr

ln w uð Þ½ � m = 1, . . . , p: ðA18Þ

In each iteration, a straight line is drawn through the points (uml;
∂

∂uml
f (u)) and (umr;

∂
∂umr

f (u))

for each dimension m (van Ruitenburg, 2006). A new replacement point us is determined for

each dimension based on the point where the line meets the dimension axis using (Press,

Flannery, Teukolsky, & Vetterling, 1989)

ums = uml �
∂

∂uml
f umlð Þ½ � umr � umlð Þ

∂
∂umr

f umrð Þ½ � � ∂
∂uml

f umlð Þ½ �
m = 1, . . . , p: ðA19Þ

The slopes are calculated at point us for all dimensions:

∂

∂ums

f uð Þ = ∂

∂ums

ln L ujxð Þ½ �+ ∂

∂ums

ln w uð Þ½ � m = 1, . . . , p: ðA20Þ

If the slope for dimension m is positive, point ums replaces the left boundary on the interval

for dimension m. If the slope is negative, the right boundary is replaced. After replacement, a

new point ums is calculated. Iteratively, the procedure is repeated until the size of the interval

becomes very small (e.g., \0:0001) for each dimension. The point ums is then used as the abil-

ity estimate.
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