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Abstract

An analytical approximation is developed for the magnetization of an infinitely long superconductor with an elliptical

transverse cross-section. The superconductor is modeled in the critical state with a critical current density that is not

dependent on the magnetic field. The aspect ratio of the ellipse is varied from one (¼ circle) to infinitely large. The

magnetic field is applied perpendicular or parallel to the broadest face. The analytical expression is compared with a

more detailed model that utilizes a numerically optimized contour for the boundary of the saturated zone. The two

methods are compared and the maximum error is estimated at 2% for the optimized contour approach and 5% for the

analytical approximation. The analytical model is compared with a magnetization loss measurement on a high-Tc

superconducting tape with an aspect ratio of nearly 20. A good agreement is obtained for a magnetic field pointing

perpendicular as well as parallel to the broadest face of the tape. An interesting result for the magnetic behavior de-

termined for the ellipse is that it contradicts with the behavior that is predicted for an infinitely thin strip in perpen-

dicular field. The difference is attributed to the two specific assumptions made in the thin strip model: the constant

critical current density distribution across the tape and the magnetic-field profile that does not exclude unsaturated

currents in the shielded zone.
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1. Introduction

A significant part of the energy loss in super-
conductors in technical applications is caused by
the magnetization loss. The typical voltage current
relation of a superconductor leads to a hysteretic

magnetization curve. The magnetization loss due
to this hysteresis can be modeled with an analytical
expression in some specific cases. The critical state
model proposed by Bean assumes that the mag-
nitude of the current density ðJÞ is always equal to
the critical current density ðJcÞ and that the sign of
J is equal to the sign of the last non-zero electrical
field that was present. According to this model the
situation J ¼ 0 only occurs in the (shielded) vol-
ume where the electrical field is kept equal to zero
all the time [1].
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Several specific geometries have been evaluated
with the critical state model (see Fig. 1). The
magnetization can be expressed exactly for an in-
finitely large slab with finite thickness in a parallel
magnetic field [1]. The critical state approach is
also applied to infinitely long structures with a
various cross-sections. A very specific geometry
that has been considered is the infinitely thin strip
in perpendicular field, where analytical expressions
are derived for the magnetization and the AC loss
[2,3]. Conductors with circular and elliptical cross-
sections have been analyzed in different styles
[4–6]. This case can also be treated as a special case
of the three dimensional ellipsoids [7,8].

For the magnetization of a circular cylinder in a
perpendicular field analytical approximations have
been presented. In these calculations the shape of
the contour between the saturated area ðJ ¼ �JcÞ
and the shielded area ðJ ¼ 0Þ is described with an
approximated expression [4,5]. Additionally there
are many numerical models that have been devel-
oped to describe specific conductor geometries or
deviations from the critical state, such as an arbi-
trary voltage current relation or a field dependent
critical current density [9–14].

The development of high-Tc superconductors has
increased the interest for the magnetic behavior of
conductors with a high aspect ratio. Bi2Sr2Ca2

Cu3Ox tapes with a Ag matrix are produced as flat
tapes with an aspect ratio typically between 15 and
20 [15]. For coated YBa2Cu3Ox superconductors
the aspect ratio of the superconducting cross-sec-
tional area can be more than 1000 [16,17]. Despite
all these new materials with a high aspect ratio the

typical magnetic behavior predicted for an infi-
nitely thin strip in a perpendicular field has not
been experimentally verified yet. In particular in
high-Tc tapes and coated conductors the predicted
fourthpowerdependenceforthelossinsmallperpen-
dicular magnetic fields is not observed yet [18–22].

The materials development in high-Tc super-
conductors and the experimental results men-
tioned above call for a more dedicated description
of the magnetization in a superconductor with a
large aspect ratio in the range from 10 to 104. It is
interesting to determine the aspect ratio that is
required in order to obtain the typical magnetic
behavior derived for an infinitely thin strip in a
perpendicular field [2,3]. An important assumption
in this thin strip model is that gradients in the
perpendicular field are neglected across the thick-
ness of the strip. This assumption leads to an av-
eraged current density in the shielded central zone
of the strip below the critical current density. In
the critical state concept any current density 0 <
jJ j < Jc will always arrange itself in a very thin
saturated layer at the surface of the conductor.
In the articles that present the strip model it is
argued the precise current profile within the thick-
ness is not significant for the magnetic behavior
and as a consequence the typical aspects of the
strip model are attributed to the constant product
of Jc and thickness over the width of the strip,
similar as in a rectangular conductor.

In this study the magnetization of an infinitely
long superconductor with an elliptical cross-sec-
tion is investigated in the critical state. Particular
attention is paid to the case of a high aspect ratio
in perpendicular magnetic field in order to be able
to describe the loss in high-Tc superconducting
tapes and coated conductors. A new analytical
approximation is developed that is based on the
onset of the magnetization curve on one hand and
the state at full penetration on the other hand.

This description is compared with a more de-
tailed model with a numerically optimized contour
for the saturated zone. The magnetization loss is
calculated and verified with a dedicated experi-
ment on a superconducting tape where the field
dependence of Jc is suppressed by a DC back-
ground field. Finally the validity of the approxi-
mation for the elliptical shape and the existing

Fig. 1. Three geometries that have been evaluated with the

critical state model: infinite slab in a parallel field (left), a cyl-

inder in perpendicular field and an infinitely thin strip in per-

pendicular field (right). The graph J=Jc shows the current

distribution along the strip, with 0 < jJ j < Jc in the center.
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model for an infinitely thin strip is discussed for a
high-Tc coated conductor with a finite thickness.

2. Analytical approximation

In the following approximate calculation an el-
liptical cross-section is considered with a physical
width d and height da, so that the aspect ratio is a
or 1=a. For the calculations a normalized coordi-
nate system is used in which the ellipse has a width
of 2 along the x-direction and a height 2a in the
y-direction, which is also the direction for the ap-
plied magnetic field (see Fig. 2). First the magne-
tization ðMÞ and the internal magnetic field ðBÞ are
calculated for a fully penetrated ellipse. The sec-
ond step is to derive the slope of the magnetization
curve MðBÞ in the limit for small fields starting
from the virgin state. These conditions are used as
constrains for an approximation of the entire
magnetization curve.

2.1. Full penetration

The penetration field of an ellipse is the mag-
netic field in the center pointing in the y-direction,
when the two half sections are filled with a con-
stant current density J ¼ �Jc. The integral form of
Biot–Savart for one quadrant determines the pen-
etration field as

BpðaÞ ¼
l0Jcd

p

Z a

0

Z xb

0

x
x2 þ y2

dxdy;

xb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðy=aÞ2

q
;

ð1Þ

where xb defines the outline of the ellipse in nor-
malized units. The integration results in a shape
factor that depends only on the aspect ratio:

BpðaÞ
Bp;c

¼ affiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p

¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p ln
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p
 !

and

Bp;c ¼
l0Jcd

p
: ð2Þ

This shape factor is exactly one for a ¼ 1,
showing that Bp;c represents the penetration field in
a circle. For an infinitely large ellipse in parallel
field ða ¼ 1Þ the shape factor is p=2 and the
penetration field is equal to the Bp of a slab in
parallel field. The second formulation of the shape
factor avoids imaginary intermediate results for
a < 1. The magnetization in a fully penetrated
ellipse is

Mp ¼ 2Jcd
pa

Z a

0

Z xb

0

xdxdy ¼ 2

3p
Jcd: ð3Þ

Note that due to the rounded edges, the mag-
netization in the limit for large a is different from
the magnetization in the infinite slab in parallel
field.

2.2. Small applied field

For a circular cross-section a ‘‘cosðhÞ’’ profile
for the surface current is the well known solution
to shield a homogenous external field perfectly,
which can be generalized for an ellipse with arbi-
trary aspect ratio [4]. In an elliptical cross-section
with an external field pointing in the y-direction,
this is equal to a surface current at a position on
the border x ¼ xb that is proportionally to the
value of this x-coordinate. The shielded magnetic
field ðBsÞ in the center is then calculated as an in-
tegral over the outline xb, where C represents the
magnitude of the surface current and the path
length in a section dy is dy=xb:

BsðaÞ ¼
l0d
p

Z a

0

Cxb 
 xb

x2
b þ y2

dy
xb

¼ C
l0d
p

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðy=aÞ2

q
1 � ðy=aÞ2 þ y2

dy;Fig. 2. The geometry of the ellipse, the direction of the applied

field and the definition of the normalized coordinate system.
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BsðaÞ ¼ C
l0d
2

a
1 þ a

: ð4Þ

The magnetization for such a current profile is

Ms ¼
2dC
pa

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðy=aÞ2

q
dy ¼ C

d
2
: ð5Þ

When the two equations above are combined with
Bs ¼ �B the slope dM=dB can be calculated ex-
actly for an applied field, in the limit for small B.
After a normalization in M and B the following
result is obtained for the slope ðm0

0Þ:

b ¼ B
BpðaÞ

; m ¼ M
Mp

and

m0
0 ¼ �MsBpðaÞ

MpBsðaÞ

¼ � 3

2

a þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
; ð6Þ

where the imaginary results for the root can be
avoided with the substitution shown in the ex-
pression for the field of full penetration (Eq. (2)).

2.3. Approximated magnetization

The obtained results for the magnetization of an
ellipse can be combined into a single expression for
mðbÞ in the following way:

mðbÞ ¼ ½ð1 � bÞ�m0
0 � 1


for 06 b6 1 and

mðbÞ ¼ �1 for b > 1: ð7Þ

This expression satisfies the four constrains at
b ¼ 0 and 1:

mð0Þ ¼ 0; mð0Þ0 ¼ m0
0;

mð1Þ ¼ �1 and mð1Þ0 ¼ 0; ð8Þ

where m0
0 is the only a dependent parameter. This

analytical expression lacks a physical background
for the exact shape in the intermediate regime. In
the case of a circular cross-section where m0

0 ¼ �3
this method is presented earlier by Hartmann [10].
In an accurate comparison with a numerical model

he shows that the absolute error in the normalized
magnetization is smaller than 0.015 at b ¼ 0:5.

3. Magnetization with an optimized contour

The analytical formulation for mðbÞ presented
above cannot be accepted as a precise approxi-
mation without a more detailed investigation
of the magnetic properties of an elliptical su-
perconductor. The magnetization of an elliptical
cross-section is investigated in a more detailed
approximation with the critical state model. The
precise values for M and B are calculated by as-
suming a particular contour that separates the
zone with J ¼ �Jc from the central zone where
J ¼ 0. The precise shape of the contour is deter-
mined by minimizing the shielded field numerically
at selected positions in the cross-section, equiva-
lent to a minimization of the Gibbs free energy
[4,5]. This approach is expected to produce a more
accurate result for extreme values of the aspect
ratio (e.g. a � 1), compared to the existing nu-
merical methods that require a full and dense
discretization of the cross-section.

3.1. The approximated current contour

A contour is defined that crosses the x-axis at
1 � b. In that case b represents the fraction of the
conductor on the x-axis that is filled with current
ðJ ¼ �JcÞ and b can be defined as the penetration
depth. The y-axis crossing is defined at y ¼ a, in-
dicating that the contour always passes through
the top center of the ellipse:

xcðyÞ ¼
½1 � ðy=aÞ2
1=pð1 � b2Þ
½1 � ðy=aÞ2
1=ð2pÞ þ b

: ð9Þ

This formulation includes an exponent p that
can be used as an additional degree of freedom to
shape the contour ð0 < p6 1Þ. The value of p is
determined by the condition that the field at the
center (x ¼ 0, y ¼ 0) and at the edge of the pene-
trated zone (x ¼ 1 � b, y ¼ 0) are both exactly
cancelled for all levels of penetration. Because of
the symmetry in the y-direction the magnetic field
in a point on the axis is expressed as
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Bða; x0Þ ¼ l0Jc

p

Z a

0

Z �xc

�xb

�ðx� x0Þ
ðx� x0Þ2 þ y2

dx

"

þ
Z xb

xc

ðx� x0Þ
ðx� x0Þ2 þ y2

dx

#
dy: ð10Þ

The integration in x is done analytically and this
result is used to evaluate the entire integral in a
relatively fast procedure to determine the exponent
p as function of the relative height and the level of
penetration numerically. The obtained values for p
are depicted in Fig. 3 and the shape of the contour
for a wide range of aspect ratios is presented in
Fig. 4.

The approximated contour shows some inter-
esting features that can be discussed by consider-
ing the behavior of the exponent p that determines
the precise shape of the contour near the y-axis.
The largest dependence on the aspect ratio occurs
for large values of the penetration. In Fig. 4 the
contours are clearly separated for b ¼ 0:8, where p
ranges from 0.29 (a ¼ 100) to 0.68 (a ¼ 1=100).
For a smaller value for the penetration (b < 0:2)
the variation in the exponent is relatively small
(0:9 < p < 1) and the dependence of the contour
on the aspect ratio is therefore hardly visible.

3.2. Magnetization as a function of field

The current profiles that are derived in the op-
timized contour approximation are used to deter-
mine the magnetization curve mðbÞ for different
values of the aspect ratio. The integrals for the
magnetic field in the center and the magnetization
are calculated (partly) numerically for all levels of
penetration (06 b6 1). In Fig. 5 the magnetization
curves obtained with the optimized contour are
compared with the analytical expression that is
presented earlier (Eq. (7)).

In general the resemblance between the different
methods is very good for the entire range consid-
ered. The analytical expression correctly describes
all the important features of the magnetization
curve. The largest deviation is visible at aP 0:01
and m > 0:4, where the analytical expression is

Fig. 3. The calculated values for the exponent p that determine

the shape of the contour as function of the relative height a and

the level of penetration b. The value for p is determined by

minimizing the difference in field at x ¼ 0 and x ¼ 1 � b on the

x-axis numerically.

Fig. 4. The calculated shape of the contour at selected values

for the penetration b and for three values of the relative height.

The y-axis is normalized to the relative height.

Fig. 5. The magnetization curves calculated with the analytical

approximation (––) and with a numerically optimized contour

(- - -) for different values of the relative height from a ¼ 10�4 to

100.
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slightly too large (maximum difference 2%) com-
pared to the second order approximation. The
largest error in m occurs in the limit for a very
small relative height (a < 0:01) where a negative
difference (maximum 3%) occurs for small values
of b and m. However, it can be stated that the
differences between the two approximations are
very small.

An interesting feature is the magnetic behavior
for large aspect ratios (a � 1 or a � 1). Because
of the numerical calculation of the field and mag-
netization integrals the optimization in p can lead
to instable results in these two extreme cases. In
the limit for large a the field on the x-axis becomes
uniform for all levels of p. Therefore the numerical
calculation of this exponent becomes inaccurate
for a > 104 in our case. However, because the
condition of field homogeneity on the x-axis is
already satisfied, an accurate result is obtained if
the values for p, as derived for a ¼ 100, are used to
calculate the mðbÞ curve. In this limit the reduced
magnetization is constant for all a > 100. In the
limit for small a the calculation of the field integral
can lead to a numerical error. However, the value
of the exponent p saturates in this limit for small a.
In our case the accuracy of the result in m or b is
not reduced if the values for p, as derived for
a ¼ 10�4, are used to calculate the mðbÞ curve
for all a < 10�4. Then the initial slope in mðbÞ is
a function of a according to the approximation
for m0

0 that is used in analytical expression (Eq.
(7)).

3.3. Error approximation

For the error approximation it is important to
consider the accuracy of the optimized contour
approximation in detail. For this analysis we use
the averaged absolute field error on the symmetry
x-axis, in the zone where the magnetic field is
shielded (0 < x < 1 � b). For a round wire this
field error at b ¼ 0:5 is 0.14% of the shielded field.
This factor can be compared with numerical re-
sults on a round wire that are obtained relatively
accurate already many years ago: mð0:5Þ ¼
�0:8603 [10]. It appears that the error in m is only
0.08% in this case, which is nearly two times
smaller than the average error in the shielded field

on the symmetry axis. The field error in the shiel-
ded zone is calculated for all the considered aspect
ratios. The maximum relative error occurs for
small b and small a, in the limit for a small a this
converges to 2%. Similar as in the round wire
at b ¼ 0:5 it is expected that the error in m is
smaller than the average error in the shielded
field. Therefore it is concluded that the error in m
is smaller than 2% in the optimized contour
approximation. Finally this results in an estima-
tion for the relative error of 5% and the abso-
lute error of 0.03 in the analytical expression for
mðbÞ.

4. The AC loss

The normalized energy loss per cycle is directly
calculated with the virgin mðbÞ curve (see e.g. Ref.
[10]):

qðbÞ ¼ 4

Z b

0

½mðbÞ � 2mðb0Þ
db0: ð11Þ

This integral can be solved analytically for the
approximation (Eq. 7) that is considered here:

qðbÞ ¼ 4
2

1 � m0
0

ðð1
�

� bÞ1�m0
0 � 1Þ

þ bðð1 � bÞ�m0
0 þ 1Þ

	
for 06 b < 1;

ð12aÞ

qðbÞ ¼ 4 b
�

� 2

1 � m0
0

	
for bP 1: ð12bÞ

The reduced loss is expressed in physical units
with:

QðBÞ ¼ MpBpðaÞqðbÞ: ð13Þ
A useful formulation is the loss function (C) that
determines the ratio of the energy loss in the
considered volume and the energy contents of an
identical volume in vacuum:

CðBÞ ¼ l0

QðBÞ
2B2

¼ l0

Mp

2BpðaÞ
qðbÞ
b2

¼ 1

3

Bp;c

BpðaÞ
qðbÞ
b2

: ð14Þ
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The shape of the loss function can be considered
with the function qðbÞ=b2. The behavior of qðbÞ=b2

is depicted in Fig. 6. Note that the normalization
of b and q depends on the aspect ratio with BpðaÞ.

The shape of the function qðbÞ=b2 for the ana-
lytical approximation shows several interesting
features:

1. For a relative height equal or larger to one the
shape of the loss function is in good agreement
with the well-known behavior of a cylinder and
an infinitely large slab in parallel fields. For
b � 1 the slope in a double logarithmic plot
is 1 (q / b3) and for b � 1 the slope is �1
(q / b). However, due to the rounded edges
the magnetization of an ellipse is always slightly
different from a slab, even at full penetration.

2. For a small relative height (a � 1) the shape of
the function is only slightly changed compared
to the circle. In particular it should be noted
that the slope of 1 for b � 1 remains intact, also
for very small values of the aspect ratio. In the
limit for small fields it can be derived that
q ¼ ð2=3Þm0

0ð1 þ m0
0Þb3 for all values of a.

3. The position of the peak in qðbÞ=b2 is changed,
for a small a it shifts to a lower value of b. This
shift can be understood if the mðbÞ curve of the
cross-section is considered (see Fig. 3). The po-
sition of the largest curvature is shifted towards
a lower value of b in this function too.

4. The maximum in qðbÞ=b2 increases for a small
relative height ða < 1Þ. This increase is due to
the increase in the demagnetization factor, that

represents the magnetized volume outside the
considered cross-section.

4.1. The loss in physical units

Because of the aspect ratio dependence in the
normalization of b and q it is interesting to con-
sider the loss function C separately. In Fig. 7 an
example is presented for a conductor with Jc ¼ 100
A/mm2 and a cross-sectional area determined by
width � height is 1 mm2.

For a large relative height ða � 1Þ the loss
curves translate towards smaller field values, com-
pared to the loss function for a circle (a ¼ 1). This
is due to the reduction of the penetration field
proportional to the reduction of the width
(d / 1=

p
a, for a constant cross-sectional area).

The magnitude of the maximum in the loss func-
tion is nearly constant for a large relative height.

For a small a the magnitude of the maximum in
the loss function increases nearly proportional to
1=a, due to the increase of the demagnetization
factor. The position of this maximum shifts to-
wards a smaller B for a small a too. This typical
behavior can be understood if the limiting cases
for large and small field are considered. In the limit
for small field and small aspect ratio the loss is
proportional to B3=a

p
a. For large B the loss is

proportional to B=
p

a for all aspect ratios. The
combination of these two dependencies leads to a

Fig. 6. The function qðbÞ=b2 in the analytical approximation

for different values of the relative height from a ¼ 10�3 to 100.

Fig. 7. The loss function C in the analytical approximation for

a constant cross-sectional area (d � da ¼ 1 mm2) with different

values of the relative height a ¼ 10�3 to 1000.
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shift of the maximum in C that is proportional top
a for the smallest relative height.
Due to the typical behavior for large aspect ra-

tios the maximum in C occurs at nearly the same
position for a relative height of a and 1=a. This
leads to the approximate relation: Cð1=aÞ � aCðaÞ,
that is valid exactly for B � Bp but is typically up
to 50% wrong for small values of B. In an AC loss
measurement this resembles a 90� rotation in the
field, around the current axis of the sample.

5. Comparison with experimental results

A magnetization experiment is performed with a
Bi2Sr2Ca2Cu3Ox tape. The filamentary section in
this tape sample is 3.36 mm wide and 0.174 high,
which resembles an aspect ratio of 19.3. The crit-
ical current of the tape in self-field is 57 A at an
electrical field of 10�4 V/m at 77 K. The AC loss is
measured in a dipole set that can apply a magnetic
field in any direction perpendicular to the current
axis of the tape [23]. A common procedure is fol-
lowed where the loss per cycle is measured in two
directions of the magnetic field, parallel (a ¼ 19:3)
and perpendicular (a ¼ 1=19:3) to the tape surface
at 48 Hz and 77 K. At this frequency the (un-
twisted) filaments can be considered as fully cou-
pled. A small DC magnetic field is applied in the
direction perpendicular to the tape surface to in-
vestigate the role of the self-field, which influences
the Ic that is measured with a transport current.
The magnetization measurement is presented as
the loss function C in Fig. 8 in combination with
the analytical approximation, for both directions
of the field.

A good agreement is observed with the dis-
cussed model if the loss is calculated with the
geometrical dimensions and the measured Ic as
listed above. The position of the peak in field level
and magnitude closely agrees with the model. The
largest deviation occurs in parallel field with no
DC background field. In that case the deviation is
significant at low fields (<10 mT). This deviation
is attributed to the field dependence of Jc that is
neglected in our model. It can be explained if the
critical current density at 1 mT is approximately 2
times larger than in self-field with the Ic measure-

ment. The loss measurement in a DC background
field of 5 mT supports this explanation. At this
level of the perpendicular DC field the loss is in
better agreement with the critical state model and
it is concluded that Jc is reduced to the same level
as in the Ic measurement.

The results of the elliptical model and the ex-
perimental results are in good agreement with each
other for a typical superconducting tape. How-
ever, a significant disagreement is observed with
the existing model for an infinitely thin strip in
perpendicular field that predicts a loss propor-
tional to B4 for a small applied field. It could be
stated that the aspect ratio of the tape is not suf-
ficiently small to fulfill the condition of an infi-
nitely thin strip or that the product of critical
current density times thickness at the edges of the
tapes is reduced. The model for the elliptical cross-
section that is considered here does not predict
such a B4 behavior in the limit for small a. It is our
expectation that the typical behavior of an infi-
nitely thin strip will occur in a superconducting
plane with a more distinct two-dimensional nature,
where the superconducting current cannot be
concentrated in a saturated layer on the surface
(e.g. a small set of Cu–O layers). In the original
papers [2,3] it is claimed that a constant current

Fig. 8. The loss function CðBÞ in a high-Tc tape measured for

two directions of the field combined with the analytical ap-

proximation. The points with black markers are measured in an

AC magnetic field only. The open symbols represent the points

measured with a small DC background field of 5 mT in the

perpendicular direction. The thin strip model in perpendicular

field [2,3] is plotted with the dashed line.
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density times thickness profile across the width is
crucial for the typical behavior of the strip model.
As a consequence it becomes more important to
compare the magnetic behavior of the newest
generation of high-Tc coated conductors accurately
with the strip model and the model for a very thin
ellipse as presented here.

6. Conclusion

The magnetization of a superconducting ellipse
with an arbitrary aspect ratio is approximated
analytically with the critical state model. A second
model with a numerically optimized contour is
developed in order to obtain a more accurate
result. Both models can be applied to structures
with moderate and large aspect ratios (10–104) that
occur in newest generation of high-Tc tapes and
coated conductors.

Based on the analysis of the shielding error in the
contour approach and the difference in the results
between the two methods it is concluded that the
maximum error for the magnetization calculated
with the optimized contour is better than 2% and in
the analytical expression better than 5%.

The predicted magnetization loss in an ellipse is
compared with experimental results on a high-Tc

tape conductor with an aspect ratio of approxi-
mately 20. A good agreement is observed between
the analytical model and the measurements in
parallel and perpendicular magnetic fields if the
filamentary zone is modeled as a single ellipse with
fully coupled filaments.

The largest deviation between the experimental
results for the AC loss of high-Tc tapes and the
model for the ellipse occurs due to the field de-
pendence of the critical current density. This de-
viation can be suppressed in the experiment by
applying a background (DC) magnetic field on the
tape.

The model calculations and the experimental
results presented here do not agree with the model
for an infinitely thin strip in a perpendicular field.
The difference is attributed to the specific as-
sumptions made to solve the thin strip model with
an analytical method, in particular the constant
critical current density distribution across the tape

and the magnetic-field profile that does not ex-
clude unsaturated currents in the shielded zone.
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