Lockhart, T. P., Manders, W. F. & Schlemper, E. O. (1985). J. Am. Chem. Soc. 107, 7451-7453.

Lockhart, T. P., Manders, W. F., Schlemper, E. O. & Zuckerman, J. J. (1986). J. Am. Chem. Soc. 108, 4074–4078.

Sharma, S., Bohra, R. & Mehrotra, R. C. (1993). Unpublished result.

- Sheldrick, G. M. & Sheldrick, W. S. (1970a). J. Chem. Soc. A, pp. 490-493, 493-497.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Srivastava, T. N. & Bhargava, A. (1978). Indian J. Chem. 16A, 148-151.

Acta Cryst. (1994). C50, 1449-1451

A Salophene–Uranium–Water Complex

Arie Rombertus van Doorn, Willem Verboom and David Nicolaas Reinhoudt

Laboratory of Organic Chemistry, Department of Chemical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Sybolt Harkema

Laboratory of Chemical Physics, Department of Chemical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

(Received 13 October 1992; accepted 4 January 1994)

Abstract

In dioxo{2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(6-methoxyphenolato)(2 –)-N,N',O,O']uraniumwater (2/3), 2[UO₂(C₂₂H₁₈N₂O₄)].3H₂O, the two independent uranium cations have pentagonal bipyramidal coordination.

Comment

Normally, metal cations (Cu^{2+} , Ni^{2+} , Pd^{2+} , Zn^{2+}) in a salophene moiety have square-planar coordination (Holm & O'Connor, 1971; van Staveren, van Eerden, van Veggel, Harkema & Reinhoudt, 1988). As a result of the large radius of the uranium cation, the salophene moiety in the title compound (I) is distorted and pentagonal bipyramidal coordination is found. The bowl-like shape of the salophene moiety is also found in related solid-state structures with angles of the adjacent aromatic rings (50.8– 53.0° and 50.2–52.6°) comparable to those reported previously (van Staveren, van Eerden, van Veggel, Harkema & Reinhoudt, 1988; van Doorn, Bos, Harkema, van Eerden, Verboom & Reinhoudt, 1991; van Doorn, Schaafstra, Bos, Harkema, van Eerden, Verboom & Reinhoudt, 1991). The water molecule at the fifth coordination site can be exchanged for other neutral molecules, which is of critical importance for molecular recognition by metalloreceptors.

Fig. 1. View of the title complex including the atom numbering. The numbering of the second independent molecule is obtained by adding 30 to the numbers given.

Experimental

The title complex was synthesized according to the procedures of van Doorn, Bos, Harkema, van Eerden, Verboom & Reinhoudt (1991), to investigate its structure and coordination. A crystal suitable for X-ray analysis was obtained by slow evaporation of the solvent from a solution in CHCl₃.

Crystal data

$2[UO_2(C_{22}H_{18}N_2O_4)].3H_2O$	Mo $K\alpha$ radiation
$M_r = 1342.9$	$\lambda = 0.7107 \text{ Å}$
Triclinic	Cell parameters from 23
PĪ	reflections
a = 12.056 (6) Å	$\theta = 6 - 12^{\circ}$
b = 12.293 (5) Å	$\mu = 6.88 \text{ mm}^{-1}$
c = 15.843 (6) Å	T = 293 K
$\alpha = 84.01 \ (4)^{\circ}$	Parallelepiped
$\beta = 74.91 \ (6)^{\circ}$	$0.7 \times 0.4 \times 0.1 \text{ mm}$
$\gamma = 86.29 (5)^{\circ}$	Orange
V = 2253 (2) Å ³	-
<i>Z</i> = 2	
$D_x = 1.98 \text{ Mg m}^{-3}$	

2[UO₂(C₂₂H₁₈N₂O₄)].3H₂O

Data col	llection				C21	0.2210 (9)	0.495	8 (9) 0.1238 (7)	3.3 (2)
Enraf-N	onius CAD-4	5771	observed refl	ections	C22 C23	0.2005 (9)	0.576	4 (9) 0.0623 (7) 5 (9)0 0078 (7)	3.6 (2)
diffrac	ctometer	[<i>F</i> .	$\sigma_o^2 > 3\sigma(F_o^2)$		C24	0.1497 (8)	0.443	6(8) -0.0195(6)	2.8 (2)
$\omega/2\theta \sec$	ans [width (1.0	$R_{\rm int} =$	= 0.021		C25	0.1613 (8)	0.359	9 (7) 0.0453 (6)	2.2 (2)
+ 0.34	$4\tan\theta)^\circ$, speed	θ_{\max}	= 25°		C28	0.114(1) -0.019(1)	0.488	(1) $-0.1608(7)$ (1) $0.6476(8)$	5.0 (3)
0.3° s	-']	h = -	$-13 \rightarrow 13$		C33	0.0287 (9)	0.650	7 (9) 0.4905 (7)	3.2 (2)
Absorpti	ion correction:	k = -	$-14 \rightarrow 14$		C34	-0.0802 (9)	0.646	(1) 0.4859 (8)	4.0 (3)
empir	ical (DIFABS;	<i>l</i> = -	$-18 \rightarrow 18$		C35	-0.1094 (9)	0.665	(1) $0.4070(8)$	4.4 (3)
Walke	er & Stuart, 19	83) 3 sta	ndard reflection	ns	C30 C37	0.0903 (8)	0.695	0 (8) 0.3349 (7)	3.3 (2) 2.9 (2)
$I_{\min} =$	$= 0.78, T_{\text{max}} =$	1.24 fre	quency: 60 m	in 1.67	C38	0.1188 (8)	0.673	2 (8) 0.4152 (6)	2.5 (2)
15 UIO I 7975 ind	neasured rened	ctions int	ensity variatio	m: 1.6%	C40	0.1727 (8)	0.723	1 (8) 0.2541 (6)	2.6 (2)
/8/3 mc	lependent rene	ctions			C42 C43	0.3316 (9)	0.749	8 (8) 0.1605 (6) 5 (8) 0.1123 (7)	2.3 (2)
Refineme	ent				C44	0.409 (1)	0.881	6 (9) 0.0334 (7)	3.6 (2)
Refinem	ent on F	Fytin	ction correction		C45 C46	0.508 (1)	0.821	8 (9) 0.0020 (7) 6 (9) 0.0511 (7)	3.7 (3) 3 2 (2)
R = 0.04	600 CH 1	Za	chariasen (196	58)	C47	0.4561 (8)	0.689	0 (8) 0.1292 (6)	2.6 (2)
wR = 0.0	051	Extin	ction coefficie	ent:	C49	0.5271 (8)	0.5094	4 (9) 0.1453 (7)	3.1 (2)
S = 1.83		10	$(1) \times 10^{-8}$		C50 C51	0.5682 (8)	0.410	4 (8) 0.1869 (6) 7 (8) 0.1344 (7)	2.5 (2)
5571 ref	lections	Atom	ic scattering	factors	C52	0.6577 (9)	0.230	0 (9) 0.1660 (8)	3.8 (3)
591 para	umeters	fro	m Internation	al Tables	C53	0.6720 (9)	0.223	6 (8) 0.2501 (8)	3.7 (2)
$w = 4F_{o}$	$/\sigma^2(F_o^2)$	for	· X-ray Crysta	llography	C54 C55	0.6361 (8)	0.3094	4 (8) 0.3016 (7) 3 (8) 0.2733 (7)	3.1(2)
$(\Delta/\sigma)_{\rm ma}$	x = 0.02	(19	974, Vol. IV)		C58	0.708 (1)	0.402	(1) 0.4169(9)	6.6 (3)
$\Delta \rho_{\rm max} =$	$1.8 e Å^{-3}$				Tab	1e 2 Sala	cted acom	atric paramatar	c (Å e)
(close	to U) $102 \circ \lambda^{-3}$					16 2. Sele	2 A77 (9)	C5 C6	1 24 (2)
$\Delta \rho_{\rm min} =$	-1.92 e A				U109		2.477 (8)	C5-C6 C6-C7	1.34 (2)
Table 1	Fractional	atomia acord	inatos and is	otronia on	U1		2.251 (6)	C7C8	1.41 (2)
	. Prachonal		inutes unu is		U1-029		1.791 (6)	C7C10	1.46 (2)
equi	valent isotroj	oic displacem	ent paramete	$rs(A^2)$	U1-030 U1-N11		2.552 (8)	C12—C13 C12—C17	1.38(1)
$B_{\rm iso}$ f	for OW4; $B_{eq} = (3)$	$(8\pi^2/3)\sum_i\sum_j U_{ij}a$	$a^*a_i a_i a_i$ for oth	er atoms.	U1-N18		2.541 (9)	C13-C14	1.38 (2)
. 150		···· / · / ···· / · ···	··· ··· ··· ··· ··· ···	D (D	U31—OW31		2.500 (8)	C14-C15	1.37 (2)
UI	x 0.05450(3)	y 0 12389 (3)	z 0 13452 (2)	B_{iso}/B_{eq}	U31		2.242 (6)	C15C16 C16C17	1.38 (2)
U31	0.38346 (3)	0.59297 (3)	0.34489 (2)	2.239 (7)	U31—O59		1.790 (7)	C19-C20	1.43 (1)
OW1	-0.0751 (6)	0.1284 (6)	0.0358 (5)	4.1 (2)	U31-060		1.780 (7)	C20-C21	1.40(1)
0W31 0W3	0.3746 (8)	0.5235 (7)	0.5004 (5)	5.1 (2)	U31—N41 U31—N48		2.543 (9)	$C_{20} = C_{25}$ $C_{21} = C_{22}$	1.41(1) 1.37(2)
OW4	0.419 (2)	0.319 (2)	0.504 (2)	22.2 (9)	O2C1		1.43 (2)	C22—C23	1.37 (2)
02	-0.2614 (6)	-0.0831 (7)	0.1881 (6)	5.0 (2)	O2—C3		1.37 (2)	C23-C24	1.37 (2)
09	-0.0655 (6)	-0.0136 (6)	0.1888 (4)	3.4 (2)	09		1.30(2)	C24—C25 C33—C34	1.40(1)
020	0.1189 (6)	0.4093 (6)	-0.0897(5)	3.6 (2)	027—C24		1.37 (1)	C33—C38	1.41 (1)
029	0.1517 (6)	0.0307 (6)	0.0689 (4)	3.8 (2)	O27C28		1.42 (1)	C34C35	1.38 (2)
030	-0.0399(6)	0.2185 (6)	0.1996 (4)	3.7 (2)	032 - 031 032 - 033		1.42(1)	C35C36 C36C37	1.36(1)
032	0.0000(7) 0.2234(5)	0.6730(6)	0.3000 (3)	4.2 (2)	O39-C38		1.31 (1)	C37—C38	1.40 (2)
056	0.5440 (5)	0.4816 (6)	0.3274 (4)	3.2 (1)	O56-C55		1.34 (1)	C37—C40	1.43 (1)
057	0.6477 (6)	0.3069 (6)	0.3857 (5)	4.0 (2)	O57C54		1.37 (1)	C42—C43 C42—C47	1.39(1)
059	0.4645 (6) 0.3033 (6)	0.7063 (5)	0.3537 (5)	3.1 (2)	N11-C10		1.45 (1)	C42C47 C43C44	1.40(1)
N11	0.0849 (6)	0.0356 (6)	0.2803 (5)	2.3 (2)	N11-C12		1.43 (1)	C44-C45	1.38 (1)
N18	0.2098 (6)	0.2013 (7)	0.1902 (5)	2.6 (2)	N18-C17		1.42(1)	C45C46 C46 C47	1.41 (1)
N41 N48	0.2848 (7)	0.7111 (6)	0.2422 (5)	2.5 (2)	N41-C40		1.32(1)	C40C47 C49C50	1.39(1)
C1	-0.356(1)	-0.142(1)	0.180(1)	8.3 (4)	N41-C42		1.40 (2)	C50-C51	1.41 (1)
C3	-0.2459 (9)	-0.0779 (9)	0.2703 (8)	3.7 (2)	N48-C47		1.42(1)	C50C55	1.40 (2)
C4	-0.320(1)	-0.107(1) -0.095(1)	0.3472 (9)	4.2 (3)	C3C4		1.29(1)	C51-C52 C52-C53	1.37 (2)
C6	-0.1877(9)	-0.0606 (9)	0.4248 (8)	3.7 (3)	C3—C8		1.42 (2)	C53—C54	1.38 (2)
C7	-0.1090 (9)	-0.0318 (8)	0.3449 (7)	3.0 (2)	C4—C5		1.40 (3)	C54—C55	1.40(1)
C8	-0.1372(8)	-0.0363 (8)	0.2650 (7)	2.9 (2)	OW1-U1-	09	74.3 (3)	060-U31-N41	88.3 (3)
C10 C12	0.1970 (9)	0.0426 (8)	0.3432(7) 0.2931(7)	5.1 (2) 2.7 (2)		026 029	82.8 (3) 90.2 (3)	000-031-N48 N41-031-N48	87.5 (3) 63 3 (2)
C13	0.2431 (9)	-0.0358 (9)	0.3456 (7)	3.2 (2)	OW1-U1-	030	90.4 (3)	C1-02-C3	119(1)
C14	0.3527 (9)	-0.023(1)	0.3542 (7)	4.0 (3)	OW1-U1-	N11	142.8 (2)	C24-027-C28	117.9 (9)
C15	0.4132 (9)	0.067(1)	0.3127 (8)	4.5 (3) 3 8 (3)	0W1 - U1 - 10	N18 26	153.1 (2)	C31-032-C33	117.8 (9)
C17	0.2590 (7)	0.1306 (8)	0.2486 (6)	2.5 (2)	09-U1-02	29	89.1 (3)	C10-N11-C12	117.2 (9) 117.4 (9)
C19	0.2336 (8)	0.3049 (8)	0.1782 (6)	2.4 (2)	09-U1-03	30	92.0 (3)	C17—N18—C19	119.0 (9)
C20	0.2021 (8)	0.3864 (8)	0.1162 (6)	2.4 (2)	09U1N1	11	69.0 (3)	C40-N41-C42	118.0 (8)

O9—U1—N18	132.2 (3)	C47N48C49	119.2 (8)
O26-U1-O29	86.7 (3)	O2C3C4	127 (1)
O26-U1-O30	92.4 (3)	C42C43C44	121 (1)
O26-U1-N11	134.3 (3)	C43-C44-C45	121 (1)
O26-U1-N18	71.1 (3)	C44C45C46	119.0 (9)
029-U1-030	178.8 (3)	C45-C46-C47	121.1 (9)
029-U1-N11	94.9 (3)	N48-C47-C42	117.1 (7)
029-UI-N18	94 1 (3)	N48-C47-C46	123.1 (8)
030-U1-N11	85 1 (3)	C42-C47-C46	119.8 (9)
030_U1_N18	84.8 (3)	N48-C49-C50	127 (1)
N11_U1_N18	63 2 (2)	C49_C50_C51	117 1 (9)
OW31_U31_O30	75 2 (2)	C49_C50_C55	122 6 (9)
OW31_U31_056	78 8 (2)	07-03-08	110.9 (9)
OW21 U21 050	90.6 (3)	C4_C3_C8	122 (1)
OW31-031-039	90.0 (J)	$C_{4} - C_{5} - C_{6}$	122(1)
OW31_U31_N41	146.0 (2)	C4-C5-C6	120 (2)
OW31-031-N41	140.0(2)	C_{5}^{-} C_{5}^{-} C_{7}^{-}	120(2) 120(1)
0// 1/21 056	152.0 (2)	$C_{5} = C_{0} = C_{7}$	120 (1)
039-031-050	133.7 (2)	$C_{0} = C_{7} = C_{10}$	110 (2)
039-031-039	90.0 (3)	$C_{0} - C_{7} - C_{10}$	119 (2)
039031060	90.5 (3)	$C_{0} = C_{1} = C_{1}$	119.9 (0)
039—031—N41	/0.8 (2)	09-08-07	120 (2)
039—031—N48	134.1 (2)	09-08-07	123.3 (9)
056-031-059	90.4 (3)	C3-C8-C/	116.2 (9)
056-031-060	89.7 (3)	NII-CIO-C/	127(2)
O56	135.2 (2)	N11-C12-C13	122.5 (8)
O56	72.0 (2)	N11-C12-C17	116.2 (9)
O59—U31—O60	178.8 (3)	C13C12C17	121 (1)
O59—U31—N41	90.7 (3)	C12-C13-C14	118.6 (9)
O59U31N48	91.3 (3)	C13-C14-C15	120 (2)
C14-C15-C16	121 (1)	C34—C35—C36	120 (2)
C15-C16-C17	120(1)	C35—C36—C37	121 (1)
N18-C17-C12	117.7 (9)	C36—C37—C38	119.4 (8)
N18C17C16	123.1 (8)	C36-C37-C40	117 (1)
C12C17C16	119.1 (9)	C38C37C40	123.3 (9)
N18-C19-C20	127 (1)	O39—C38—C33	118.3 (9)
C19-C20-C21	117 (1)	O39-C38-C37	124.1 (8)
C19-C20-C25	122.8 (9)	C33-C38-C37	117.5 (9)
C21-C20-C25	119.6 (9)	N41-C40-C37	124.7 (9)
C20-C21-C22	120 (2)	N41-C42-C43	124.2 (8)
C21-C22-C23	121 (2)	N41-C42-C47	116.5 (8)
C22-C23-C24	121 (1)	C43—C42—C47	119.3 (8)
027-C24-C23	125.4 (9)	C51-C50-C55	120.1 (9)
027 - C24 - C25	114.6 (9)	C50-C51-C52	121 (2)
C23-C24-C25	120(2)	C51-C52-C53	120 (2)
0.26 - C.25 - C.20	122.2 (8)	C52-C53-C54	121 (1)
026-C25-C24	119.3 (9)	057	122.9 (9)
C_{20} C_{25} C_{24}	118 5 (9)	057	1154(9)
$C_{20} - C_{23} - C_{24}$	1256(9)	C53_C54_C55	122 (2)
032 - 033 - 034	1127(0)	056-055-050	124 1 (8)
032 - 033 - 038	112.7 (7)	056 C55 C54	118 3 (0)
C34-C33-C38	122 (2)	C50 C55 C54	117.2 (9)
C33-C34-C35	121(1)	C30-C33-C34	117.3 (9)

Data were corrected for Lorentz and polarization effects. The unit cell contains two independent salophene-uraniumwater complexes (1:1:1) and an isolated water molecule. The uranium cations were located by the Patterson method and the rest of the non-H atoms by successive Fourier syntheses. Weights for each reflection were calculated from $w = 4F_o/\sigma^2(F_o^2)$ and $\sigma^2(F_o^2) = \sigma^2(I) + (pF_o^2)^2$; the value of the instability factor p was determined to be 0.04. In the difference Fourier map two peaks were found which were attributed to water O atoms. One of the O atoms (OW3) gave a reasonable displacement parameter; the displacement parameter for the other water O atom (OW4) became very large (B > 20) on refinement. From the large value of B, we concluded that the position of the second water molecule is only partially occupied (the latter has not been included in the formula). OW4 was refined isotropically, all other non-H atoms were refined anisotropically. H atoms were treated as riding on their parent atom at a distance of 0.95 Å, except for the water H atoms which were not located and therefore not included in the refinement. Calculations were performed using SDP-Plus (B. A. Frenz & Associates, Inc., 1983).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1037). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates, Inc. (1983). SDP-Plus Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Doorn, A. R. van, Bos, M., Harkema, S., van Eerden, J., Verboom, W. & Reinhoudt, D. N. (1991). J. Org. Chem. 56, 2371-2380.
- Doorn, A. R. van, Schaafstra, R., Bos, M., Harkema, S., van Eerden, J., Verboom, W. & Reinhoudt, D. N. (1991). J. Org. Chem. 56, 6083-6094.
- Holm, R. H. & O'Connor, M. J. (1971). Prog. Inorg. Chem. 14, 241-401.
- Staveren, C. J. van, van Eerden, J., van Veggel, F. C. J. M., Harkema, S. & Reinhoudt, D. N. (1988). J. Am. Chem. Soc. 110, 4994–5008.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1994). C50, 1451-1456

Racemic Chloro[tris(2-aminoethyl)amine]zinc(II) Chloride Trihydrate, $[ZnCl(C_6H_{18}N_4)]Cl.3H_2O$

Armando Marzotto

Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, Via Loredan 4, 35100 Padova, Italy

DORE AUGUSTO CLEMENTE

Dipartimento di Scienza dei Materiali, Facoltà di Scienze, Università di Lecce, Via Monteroni, 73100 Lecce, Italy

AND GIOVANNI VALLE

Centro di Studio sui Biopolimeri, CNR, Università di Padova, Via Marzolo 1, 35100 Padova, Italy

(Received 6 April 1993; accepted 16 November 1993)

Abstract

The synthesis and the crystal and molecular structure of the five-coordinate racemic $[Zn(tren)Cl]Cl.3H_2O$ complex $[tren = tris(2-aminoethyl)amine, C_6H_{18}N_4]$ are reported. The coordination polyhedron around