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We present from simulations and experiments results on the linear and nonlinear rheology of a mod-
erate functionality, low molecular weight unentangled polystyrene (PS) star melt. The PS samples
were anionically synthesized and close to monodisperse while their moderate functionality ensures
that they do not display a pronounced core effect. We employ a highly coarse-grained model known
as Responsive Particle Dynamics where each star polymer is approximated as a point particle. The
eliminated degrees of freedom are used in the definition of an appropriate free energy as well as de-
scribing the transient pair-wise potential between particles that accounts for the viscoelastic response.
First we reproduce very satisfactorily the experimental moduli using simulation. We then consider
the nonlinear response of the same polymer melts by implementing a start-up shear protocol for a
wide range of shear rates. As in experiments, we observe the development of a stress overshoot with
increasing shear rate followed by a steady-state shear stress. We also recover the shear-thinning na-
ture of the melt, although we slightly overestimate the extent of shear-thinning with simulations. In
addition, we study relaxations upon the removal of shear where we find encouraging agreement be-
tween experiments and simulations, a finding that corroborates our agreement for the linear rheology.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895610]

I. INTRODUCTION

Complex entangled branched polymers have been the
subject of increased research because of their modern indus-
trial significance.1 There are many variants of branched poly-
mers including star polymers,2 H polymers,3 and combs.4 Star
polymers, which are the simplest branched polymers, repre-
sent an interesting form of soft matter in that their behaviours
are intermediate between those of linear polymers and hard
colloids.2, 5, 6 They consist of a number of arms or linear poly-
mers f (also referred to as the functionality) covalently bonded
at one end to a common centre. The degree of interpene-
trability between adjacent stars is dependent on f as well as
on the number of monomers associated with each arm. As
f → 1 or 2, their properties are similar to those of linear poly-
mers while for f → ∞, the particles tend towards sterically
stabilized spherical colloidal particles, thus mimicking hard
spheres with extensive excluded volume effects. The dynam-
ics of star polymers is significantly different to that of linear
polymers due to the presence of a single branch point which
prevents reptation.7, 8 Rather, star dynamics are governed by
the relaxation of the star arms by contour length fluctuations
(CLF). CLF is an entropically unfavorable process and is ex-
ponentially dependent on the number of arm entanglements

a)Electronic addresses: barry.w.fitzgerald@gmail.com and b.fitzgerald@
utwente.nl.

or constraints for well-entangled star arms.9, 10 Consequently
star polymers can be viewed as soft colloids that bridge the
behaviours of linear polymer chains and hard spheres.

The linear rheological response of star polymer melts
is well known in that there are two separate relaxation pro-
cesses; arm relaxation (polymeric), which is independent of f,
and structural or centre of mass relaxation (core), which is a
function of f and star polymer size.6 However, like with many
branched polymers the nonlinear flow behaviours of star poly-
mers are less understood. Yet, a combination of experiments
and computer simulations can provide deeper insight into the
rheological responses of star polymers.

To properly characterise the long time response of dense
star polymer systems requires a simulation approach capable
of accessing extensive time and length scales. Coarse-grained
models are ideally suited for this purpose where polymers are
represented as a series of beads,11–13 with each bead repre-
senting a group of monomers, or where each polymer is rep-
resented by a single point.14 The latter case forms the basis
of the Responsive Particle Dynamics (RaPiD) algorithm, a
highly coarse-grained model which has been successfully ap-
plied to simulate a variety of linear and nonlinear fluid be-
haviours in solutions and melts.15–19

Recently a mean-field coarse-grained model where
chains are represented as random walks of a particu-
lar step length has been applied to predict the nonlinear

0021-9606/2014/141(11)/114907/11/$30.00 © 2014 AIP Publishing LLC141, 114907-1
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viscoelastic response of star melts with a small number of
entangled arms, i.e., f = 4.20 However, the RaPiD algorithm,
with its particular coarse-grain approach, can serve as a bridge
between polymers (low f) and colloids (high f) and addition-
ally predict the response of both unentangled and entangled
polymer systems. This combination underlines the strength of
the RaPiD approach and is tested here with new experimental
data on the linear and the nonlinear viscoelastic response of
a polystyrene (PS) star melt. The PS stars have low Ma (be-
low the entanglement limit and thus unentangled), moderate
functionality, and are effectively monodisperse. For the sim-
ulations, we select an appropriate potential of mean force for
star polymers and unlike in a previous RaPiD study on high f
star polymers,16 we account for distance dependent relaxation
times between neighbouring stars.

There have been some experimental21, 22 and
numerical23, 24 studies on unentangled or slightly entan-
gled star polymer systems but the number of such studies is
small in comparison to those for entangled star polymers.
For example, experiments on moderate to high functionality
unentangled star melts21 show a viscoelastic response consis-
tent with the Rouse-Zimm model25 for unentangled polymer
chains. In addition, previous studies have focused primarily
on the linear viscoelastic response with little or no results
on the nonlinear response of unentangled stars. In this study,
through a combination of simulations and experiments, we
address the shortfall of investigations on unentangled star
melts by studying both their linear and nonlinear rheology.

This paper is arranged as follows. In Sec. II we present
the star polymer sample used as well as the experimental mea-
surements of the linear rheology. We then outline the RaPiD
algorithm and the specifications made for the simulation of
star polymer melts in Sec. III. We present a comparison of
the linear rheology between experiments and simulations in
Sec. IV where we find very satisfactory quantitative agree-

ment. In Sec. V we study the response of the star polymer
melts subject to a series of start-up shear protocols and the
subsequent relaxation of shear stress upon the removal of
shear. Finally we discuss the significance and perspectives of
this work in Sec. VI.

II. EXPERIMENTS

A. Sample

Polystyrene star samples with f = 16 unentangled arms
were anionically synthesized with a polydispersity index
(PDI) < 1.1 and thus represent a well defined model polymer.
The synthetic approach is the same as those used in Refs. 26
and 27. The molecular characteristics of the polymer are pre-
sented in Table I. The hydrodynamic radius Rh was estimated
from light scattering experiments for star polymers in toluene,
an athermal solvent. As an approximation we assume the arms
do not significantly retract under melt conditions such that Rh
remains effectively constant in the absence of solvent. This
approximation is supported by previous experiments on lin-
ear PS polymers where a negligible change in Rh is observed
for low Mw polymers in both solvents and melts.28 Using Rh
we calculate the overlap concentration c* (see Table I). Using
Rh we can also estimate both the radius of gyration Rg and the
corona diameter σ s. The corona diameter is the only relevant
length scale for star polymers and represents the spatial ex-
tension of monomers on each arm from the central branching
point as described by the Daoud-Cotton model.29 As the arms
of the PS stars are not extensively large, they may only sat-
isfy the intermediate region of the density profile proposed in
the Daoud-Cotton model.29 Experiments on large functional-
ity stars, i.e., f ≥ 64 show that the ratio between the hydrody-
namic radius and the radius of gyration is Rh/Rg ≈ 1.3.26 We
apply this relationship as an approximation for the PS stars in

TABLE I. Molecular characteristics, set parameters and simulation parameters for the f = 16 polystyrene (PS)
star polymer.

Symbol Value Unit

Molecular characteristics
Molecular weight per arm Ma 13.2 kg/mol
Polydispersity Index PDI (=M

w
/M

n
) 1.02 . . .

Hydrodynamic radius Rh 9 nm
Radius of gyration Rg 6.92 nm

Corona diameter σ s 9.23 nm
Overlap concentration c* 329.16 kg/m3

Mass density/concentration c 1250 (3.8c*) kg/m3

Set parameters
Number of particles N 1250 . . .
Length of system cube side L 71.92 nm
Temperature T 403 K
Typical star-star distance (From CMA simulations) rt

ij 0.75σ s nm

Absolute number of constraints na
0 2.0 . . .

Simulation parameters
Entanglement number deviation α 30 kBT

Entanglement friction ξ e 6 · 10−6 kg/s
Maximum τ τ 0 25 s
Decay length of τ λ 0.15 σ s
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this study. We estimate σ s using this expression and the rela-
tion σs ≈ 4

3Rg which has been derived from simulations.30

B. Rheology

The linear viscoelastic response of the PS star poly-
mer melt was measured experimentally using both frequency
sweep (FS) and stress relaxation measurement approaches.
First FS measurements were performed on a ARES 2kFRTN1
strain-controlled melt rheometer (TA Instruments) over a tem-
perature range 110 ◦C–160 ◦C with a parallel plate geom-
etry of 8 mm diameter. Temperature control was ±0.1 ◦C
and all measurements were performed in a nitrogen environ-
ment to reduce the risk of degradation. The lower tempera-
ture limit is determined by the glass transition temperature
of well entangled PS stars (approximately 100 ◦C) while the
upper temperature limit is set by the final relaxation time of
the sample as well as the accuracy of the transducer. Sam-
ples were subject to frequency sweeps consistent with small
amplitude oscillatory shear (SAOS). Time-temperature su-
perposition (TTS) was performed at a reference temperature
Tref = 130 ◦C and the Williams-Landel-Ferry model (WLF)
were calculated in order to generate a master curve. Verti-
cal shift factors were calculated from the density compensa-
tion: bT = ρ(Tref)(Tref + 273.15)/(ρ(T)(T + 273.15)) where
ρ(T) = 1250.3 − 0.605(273.15 + T) with ρ in kg/m3.31 On
the other hand the horizontal shift factors aT result from two-
dimensional minimization whose variation is described by the
WLF equation: log (aT) = −C1(T − Tref)/C2 + T − Tref.

10 The
WLF parameters were obtained by fitting the variation of aT
with the WLF equation. The horizontal and vertical shift fac-
tors for the PS stars are shown in Fig. 1. The data and WLF fits
are consistent with other PS architectures and molar masses
referred to the same temperature.27, 32

At low frequencies in the FS measurements, large errors
in the storage modulus G′ can develop at high phase angles
(approaching 90◦) where the loss modulus G′′ far exceeds G′.
In this regime, only a small amount of the response signal
is associated with G′ and as such a slope characteristic of
terminal relaxation for G′ may be absent. To achieve better
accuracy at low frequencies, we performed stress relaxation
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FIG. 1. WLF shift factors horizontal (symbols) and vertical (full line) for the
PS star polymer superimposed with a WLF fit to the horizontal shift factors
calculated for linear, star, ring, and H polymer PS samples32 (dashed line).
Shift factors for the PS star polymer melt were obtained between the range
110 ◦C and 140 ◦C. For the WLF fit: C1 = 5.6, C2 = 120, and Tref = 170 ◦C.
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FIG. 2. Main figure: Storage (G′(ω)) and loss (G′′(ω)) moduli for the
f = 16 PS star polymer melt. The simulation data is represented by the solid
lines (G′(ω) in black and G′′(ω) in red) and obtained through the Fourier
transform of G(t) using Eq. (10) and Eq. (11). Moduli measured in exper-
iments using frequency sweep (circles) and stress relaxation (squares) are
also shown with the open symbols representing G′(ω) and the filled symbols
G′′(ω). Inset figure: tan of the phase angle δ as measured in experiments.

measurements in the linear regime. The stress relaxation mea-
surements of samples were performed on a Anton Paar Phys-
ica MCR 501 stress-controlled rheometer with 8 mm parallel
plates. A temperature control of ±0.1 ◦C was attained with a
Peltier system in a nitrogen atmosphere. The conversion of
G(t) from stress relaxation to G′(ω) and G′′(ω) was done with
a commercial software package. The linear rheology for the
PS star polymer melt from experiments are shown in Fig. 2.
The stress relaxation measurements clearly resolve the termi-
nal region thus alleviating any potential issues with measure-
ments at low frequencies. The inset of Fig. 2 shows the varia-
tion of the tan of the phase angle, tan(δ) = G′′(ω)/G′(ω). For
branched polymers the tangent of the phase angle can be more
sensitive towards identifying specific relaxation processes.32

For the PS star, the minimum in tan(δ) is indicative of the
onset of single branch point relaxation which continues for
longer times.

For nonlinear measurements, the application of large,
rapid shear deformations on polymeric systems in rotational
rheometers leads to nonlinear flow instabilities such as melt
fracture. Nonlinear start-up shear and subsequent steady state
relaxation measurements were performed on the PS star for
a large range of shear rates using a special cone-partitioned
plate (CPP) equipped with temperature control.33 The CPP
apparatus consists of a 25 mm stainless steel cone with an an-
gle of 0.1 rad, a stainless steel parallel plate 6 mm in diameter
and a custom-built stainless steel partitioned plate with a gap
of 0.15 mm. For further details see Ref. 33. A temperature
control of ±0.1 ◦C was achieved with a home-made ceramic
oven custom-made to fit around the CPP. The CPP setup de-
lays edge fracture as only the central portion of the sample
contributes to the measurement and thus it requires some time
before the edge fracture propagates towards the sample center.

III. RAPID ALGORITHM

To simulate the dynamical properties of the PS star poly-
mer melts we use the RaPiD algorithm14, 16, 19 which is based
upon a classical Brownian Dynamics approach. RaPiD has
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been previously applied to study shear banding,19 particle
alignment in viscoelastic fluids,34 highly entangled polymer
melts,15 nonlinear rheology,17 and polymer chain diffusion.35

In RaPiD, each fluid constituent, i.e., polymer, is coarse
grained to a single particle whose position is described by just
its centre of mass. The remaining degrees of freedom are used
to account for an appropriate potential of mean force and tran-
sient pair-wise forces. It is the latter contribution that provides
a viscoelastic description for particle interactions with the up-
dated position of any particle being dependent on previous
polymer conformations.

A. Potential of mean force

A potential of mean force suitable for star polymers
has been derived using a scaling theory approach36 and the
Daoud-Cotton blob model for star polymer conformations.29

This potential has been validated using small angle neutron
scattering data from experiments5 and Molecular Dynamics
(MD) simulations.30 The potential of mean force (or free en-
ergy) is approximated as a pairwise potential for stars that is
valid for f > 10. In effect, the stars can be viewed as hybrid en-
tities coupling a polymeric nature with the influence of a core
region, where the latter is more prevalent for large f. In this
study of moderate functionality PS stars (f = 16), the poly-
meric nature dominates albeit with some influence of a very
small core region. Excluded volume effects are implicitly in-
cluded in the potential. For two star polymers whose centres
are separated by a distance rij the potential is expressed as

βVss(rij )= 5

18
f 3/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ln

(
rij

σs

)
+ 1

1 + ψ
rij ≤ σs

1

1 + ψ

σs

rij

exp(ψ − rij κ) else

,

(1)
where σ s is the corona diameter, β = (kBT)−1, κ

= (2σs/
√

f )−1, and ψ = σ sκ . Here κ represents the decay
length or the diameter of the outermost blobs of the star poly-
mer arms as depicted in the Daoud-Cotton model.29 For rij
≤ σ s, the potential is that derived by Witten and Pincus36

while for rij > σ s, where interactions are due to a diffuse layer
of fluctuating chains, the potential has a Yukawa form37, 38

whose amplitude is determined by the criterion of continuity
at rij = σ s. As for large rij the potential is effectively zero, we
use a cutoff distance of rc = 3σ s such that Vss(r > rc) = 0.
Fig. 3 shows the ultra-soft nature of the star polymers for
moderate functionality stars while a core effect manifests it-
self for f = 128. In the limit f → ∞, the potential diverges
for r < σ s while tending to zero for r > σ s. Previous MD
simulations39 reveal that many-body forces for concentrations
up to four or five times the overlap concentration are negligi-
ble. For the PS stars in this study we are within this regime
where c ≈ 3.8c*. Therefore, it is appropriate to use the pair-
wise potential of mean force given by Eq. (1) in this study
since many-body forces can safely be excluded.

B. Transient potential

Consider the same two star polymers we used in the def-
inition of the potential of mean force. The stars find them-
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20
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FIG. 3. Potential of mean force for star polymers with f = 16, 32, and 128.
Note that inter-star distance r is scaled by the corona diameter, σ s.

selves in an equilibrium state with the centres separated by
rij but with rij < rc. In this state they have overlapped or in-
terpenetrated leading to constraints due to interdigitation of
the arms of the individual stars. For the PS star in this study
Ma < Me where Me is the entanglement mass. Thus rather
than entangling neighbouring PS stars interpenetrate leading
to the development of topological constraints. In the equilib-
rium state we denote the number of constraints for these stars
as n0(rij) while in general nij is the number of constraints be-
tween the stars when out of equilibrium. Once perturbed, a
transient attractive potential t develops originating from a
separation of time scales, namely, the relaxation time for the
small scale polymer configuration and the time for the cen-
tres of mass to move an appreciable distance. This transient
potential is described by a quadratic function,

t = 1

2
α(nij − n0(rij ))2, (2)

which has been introduced by van den Noort et al.19 In effect
t develops due to deviations of nij from n0(rij) while α deter-
mines the allowed fluctuations in nij. Since α appears in the
product αn0(rij)

2 we fix the variation of one variable while
using the other as a fitting parameter. Here we assume that
n0(rij) scales with the number of contacts between the arm
monomers of neighbouring stars. In accordance with a previ-
ous approach for star polymer solutions16 we use a Gaussian
dependence for n0(rij) such that

n0(rij ) = na
0 exp

(
− r2

ij

σ 2
s

)
, (3)

where na
0 is a prefactor which sets the absolute number of

constraints. In simulations on f = 128 polybutadiene (PB)
star polymer solutions, na

0 = 10 was chosen such that n0(rij)
≈ 1 at the typical star-star distance rt

ij .16 Here we use results
from cooperative motion algorithm (CMA) simulations40, 41

to estimate rt
ij and then with Eq. (3) we calculate n0

a for the
PS star polymer samples. These values are listed under “set
parameters” in Table I. Having fixed the variation of n0(rij)
we only need tune α to determine the allowed fluctuations in
the transient potential. For rij > rc we assume n0(rij) = 0.
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C. Propagator for particle motion

Particle positions are updated using a Brownian Dynam-
ics propagator19 which is derived from methods used to ob-
tain the Smoluchowski equation.42, 43 Over the Smoluchowski
time scale where the average velocity is zero, the displace-
ment of a particle is given by

dri = 1

ξi

∑
j

{
−dVss

drij

+ α(nij − n0(rij ))
dn0

drij

}
rij

rij

dt

+∇i(kBT /ξi)dt + �i

√
2kBT dt/ξi + V (y)êdt, (4)

where ξ i is the particle-dependent friction parameter. In previ-
ous RaPiD approaches the friction was composed of the back-
ground solvent friction and the constraint friction. For the star
polymer melts we need only consider the contribution from
star polymer constraints such that ξ i is given by

ξi = ξe

∑
j

√
nijn0(rij ), (5)

where ξ e is the friction per constraint; notice that its value de-
pends on the normalization of n0(rij). In Eq. (4) the first term
accounts for the potential of mean force and transient poten-
tial. As the friction for any particle depends on the position of
its neighbours (Eq. (5)), particle diffusion is not constant and
must be corrected for by including the second term. The third
term in Eq. (4) represents the Brownian motion of the parti-
cles where �i is a time-dependent Markovian random vector
of unit variance and zero mean, with three independent com-
ponents and with no correlations across particles. The final
term accounts for the average flow field due to an applied
shear flow. Details for the calculation of V (y) are presented
at the end of this section.

Particle constraints undergo relaxation towards their re-
spective equilibrium value n0(rij) as described by

dnij = − 1

τ
(nij − n0(rij ))dt + �ij

√
2kBT dt

ατ
, (6)

where �ij is a random number with unit variance, zero mean,
and without correlations across particle pairs. The first term
on the right hand side describes the rate at which nij ap-
proaches n0(rij) subject to a characteristic relaxation time τ .
The second term is a stochastic term describing Brownian
fluctuations in the number of constraints which will persist
even when nij = n0(rij). As star separation decreases, con-
straints due to interdigitation between neighbouring stars in-
creases and thus require longer times to relax. Hence a dis-
tance dependence for τ is included and given by

τ (rij ) = τ0 exp

(
− rij

λ

)
, (7)

where τ 0 is a time constant and λ is the decay length for the
relaxation time. Unlike the particle displacement propagator
in Eq. (4), there is no spurious drift term in Eq. (6) since τ

is independent of nij. That τ depends on rij (Eq. (7)) is not of
relevance in this respect.

All simulations are carried out in a cubic box subject
to periodic boundary conditions. Each initial configuration
consists of 1250 particles distributed randomly throughout

the system but subject to a maximum pair potential between
neighbouring stars βV m

ss = 80 kBT. The length of a cube side
is a function of the mass density (1250 kg/m3) and molecu-
lar weight of the star (fMa). To study the nonlinear response
of the star polymer melts, a shear flow is applied along the
x-direction with a velocity gradient γ̇ in the y-direction by
using Lees-Edwards boundary conditions.44 The equation of
motion has been adapted to account for the inclusion of these
boundary conditions. At every time step, the instantaneous
flow field in the x-direction is calculated for a set of planes
that are equally spaced on the y-axis by distributing the dis-
placements of each particle to its two adjacent planes using a
lever-rule. An average flow velocity V (y) at time t is then cal-
culated at each plane by averaging previous velocities at time
t′ with a weight function proportional to exp (−(t − t′)/τ ) with
τ = 10−3 s.

D. Comment on model parameters

The RaPiD algorithm is based upon a phenomenological
description of polymers at the mesoscopic scale. Associated
with this description are the transient potential parameters α,
ξ e, τ 0, and λ, as well as the equilibrium number of constraints
n0(rij) which have been introduced in Subsections III B and
III C. A link between these RaPiD parameters and underlying
polymer molecular characteristics may be provided through
both simulation or theory. A recent study on low functionality
star polymer melts has yielded these parameters from small
scale simulation.45 However, a theoretical prediction of these
parameters will be the subject of a future study.

We now quickly review the influence of the polymer ar-
chitecture on the parameters. First consider n0(rij), the equi-
librium number of constraints. Low f-high Ma star polymers
represent open structures that can easily interpenetrate neigh-
bouring stars, similar in effect to linear polymers. With in-
creasing distance between stars n0(rij) would be expected to
quickly decay, possibly as a linear function. At the other
extreme, high f stars with short arms (low Ma) are more
compact objects similar to hard colloids.46 Inside the corona
radius of the object the monomer density is high and approx-
imately linear with distance, while beyond the corona radius
the monomer density has a Gaussian decay.46 For these enti-
ties n0(rij) can be approximated by a Gaussian function. For
moderate f stars such as the PS stars in this study, n0(rij) is
approximated as a Gaussian function given that these stars
would include the contribution of a small localised core re-
gion. The recent bottom-up approach mentioned above has
been applied to low f star polymer melts to extract values for
some of the transient parameters in RaPiD. The parameter α is
related to the normalization of n0(rij) and describes the result-
ing fluctuations in nij as given by Eq. (2). In small scale simu-
lations, α was calculated from the variance in constraint num-
bers using equipartition theorem.45 An estimate of τ 0 can be
made from the crossing frequency of the experimental mod-
uli. Inherent to many polymer systems, however, is a range of
frequencies originating in some part from the polymer molec-
ular characteristics. Therefore, the crossing frequency yields
only an estimate of the dominant relaxation time. The pa-
rameter λ is linked to the magnitude of polymer overlap. For
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large rij the degree of overlap between particles is small, and
hence the decay to n0(rij) will be faster than at small rij. Es-
sentially, λ dictates how quickly the relaxation time of the
nij decreases with increasing distance. Finally, the friction per
polymer constraint ξ e can be estimated by studying fluctua-
tions in forces from small scale simulations.47 However, mea-
suring ξ e using this approach requires a large data set due
to the fast fluctuating interactions represented by both ran-
dom forces and frictions.47 In the small scale simulations of
star polymer melts,45 the authors instead adjusted ξ e to tune
the diffusion coefficient from RaPiD simulations to that from
small scale simulations.

IV. SIMULATING LINEAR RHEOLOGY

A. Method

As outlined in Sec. III, each star polymer is subject to
two potentials; a potential of mean force (Eq. (1)) and a tran-
sient potential (Eq. (2)). The potential of mean force, which
determines the equilibrium structural properties, is a function
of the molecular characteristics such as the corona diameter
σ s and functionality f. These parameters are listed in Table I.
For the transient potential we have introduced a number of
simulation parameters in Table I which are associated with the
constraint dynamics. These parameters, α, ξ e, τ 0, and λ, along
with n0(rij) account for the coupling between the dynamics of
the eliminated and retained coordinates. These parameters are
to be adjusted to match the experimental rheology as closely
as possible.

In RaPiD one of the main observables is the shear relax-
ation modulus G(t) which is calculated from the autocorrela-
tion of the shear stress σ xy using

G(t) = βV 〈σxy(t)σxy(0)〉, (8)

where V is the volume of the simulation system. The shear
stress is calculated according to the expression

σxy(t) = − 1

V

∑
i,j

(ri,x − rj,x)Fij,y, (9)

where Fij, y is the y-component of the total force acting on par-
ticle i due to the presence of particle j, both from the potential
of mean force and the transient force.

In experiments, the storage and loss moduli are the stan-
dard linear rheological measurements. These quantities are re-
lated to the shear relaxation modulus by

G′(ω) = ω

∫ ∞

0
sin(ωt)G(t)dt, (10)

G′′(ω) = ω

∫ ∞

0
cos(ωt)G(t)dt. (11)

Thus by first calculating G(t) we can estimate from simula-
tions the experimental moduli. We obtain an estimate of G(t)
from the experimental moduli by approximating the moduli
with a Generalised Maxwell model consisting of n modes in
parallel over the entire experimental frequency range. The re-
sulting G(t) curve provides an approximation that can be used
for a quick comparison of the experimental and simulation

results during the fitting procedure. However, the final quality
of the model should be judged on the comparison of G′(ω)
and G′′(ω). The values of the “simulation parameters” in
Table I are estimated by using the approach presented in
Ref. 17. First α is varied until we obtain good agreement in
G(t) at low times. The relaxation of G(t) is then obtained by
simultaneously varying τ 0 and λ. The tail of G(t) is dependent
on λ such that for decreasing λ the tail becomes less abrupt.
Finally, we vary the constraint friction parameter ξ e to adjust
G(t) to the correct time scale. We refer the reader to Ref. 17
for further details on this approach.

B. Recovering experimental moduli

In Fig. 2 we compare the storage and loss moduli calcu-
lated from simulations with measurements from experiments.
The RaPiD parameters for the moduli are α = 30 kBT, τ 0
= 25 s, λ = 0.15 Rg, and ξ e = 6 × 10−6 kg/s. From ex-
periments the response is consistent with that of the Rouse
model, which is applicable to both unentangled linear48 and
star polymers49 in solutions and melts, and is characterised
by a number of relaxation modes. For ω < 1/τR, where τR is
the longest or first relaxation mode for Rouse polymers (also
the Rouse time), we find G′(ω) ∝ ω2 and G′′(ω) ∝ ω, consis-
tent with the emergence of a terminal relaxation regime. For ω

≥ 1/τR or the higher Rouse mode, G′(ω) and G′′(ω) are almost
indistinguishable and parallel such that G′(ω) � G′′(ω) ∝ ω0.5

which is consistent with observations for linear polymers and
theoretical expectations for star polymers.23, 49 The simula-
tions recover the terminal region for ω < 1/τR, while above
1/τR we find good agreement between experiment and simu-
lation up to ω ≈ 100 rad/s. Agreement is not expected in the
high frequency range, i.e., ω > 100 rad/s. The RaPiD model
cannot adequately resolve this range as the model has coarse
grained all local degrees of freedom corresponding to the high
frequency response.

V. SHEAR PROTOCOLS

In Sec. IV we recovered the linear rheology of the PS
star polymer melt and in the process found the RaPiD “simu-
lation parameters.” In this section we present results on start-
up shear protocols and cessation or shut down and compare
simulation output with experiment. All nonlinear shear ex-
periments were undertaken at 130 ◦C, which is the reference
temperature Tref used to generate the TTS master curve as out-
lined in Sec. II.

A. Start-up shear stress

For a start-up shear protocol, samples are subject to a
constant shear rate γ̇ commencing at t = 0 s where γ̇ = 0 s−1

for t < 0 s. Fig. 4 shows the start-up shear stress, σ+, for
different shear rates from experiments and simulations. For
all shear rates simulations match the initial transient shear
stress to at least approximately 0.08 s. Beyond this time
the level of correspondence is dependent on the shear rate.
At low shear rates (γ̇ < 5.62 s−1), σ+ first increases before

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.45.179 On: Wed, 15 Apr 2015 09:35:29



114907-7 Fitzgerald et al. J. Chem. Phys. 141, 114907 (2014)

0.01 0.1 1
time [s]

0

50

100

150

σ+
[k

P
a]

3.16 s
-1

1 s
-1

5.62 s
-1

(a)

0.01 0.1 1
time [s]

0

100

200

300

σ+
 [

kP
a]

10 s
-1

17.8 s
-1

(b)

FIG. 4. Start-up shear stress σ+ for the PS star polymer melt for a number
of different applied shear rates γ̇ . The black curves represent the simulation
data while the red curves come from experiments. Shear rates are indicated
on the figures. Each simulation curve represents the ensemble average of 10
independent simulations.

reaching a steady-state response after 0.5 s, an experimen-
tal behaviour recovered to good agreement by simulation
(Fig. 4(a)). However, for γ̇ = 5.62 s−1 simulations predict a
stress overshoot at approximately 0.2 s with this feature ab-
sent experimentally. For γ̇ = 10 s−1 and 17.8 s−1 (Fig. 4(b)),
both experiments and simulations display an obvious stress
overshoot although simulations underestimate both the mag-
nitude of the overshoot and the steady-state response of the
system. Simulations also predict that the overshoot occurs at
a slightly earlier time than found experimentally. In the case
γ̇ = 17.8 s−1, there is significant disagreement with regards
to the nature of the steady-state response. Due to sample size
constraints in experiments, the stress response was measured
for only 1 s at high shear rates by which time a steady-state
response is evident.

In Fig. 5 we plot the total stress as well as the contribu-
tions arising from the potential of mean force Vss and the tran-
sient potential t for γ̇ = 1 s−1 and γ̇ = 10 s−1. The stress
contribution from the transient potential is strongly correlated
with the total stress for both shear rates, an observation con-
sistent with coarse-grained simulations of high-functionality
star polymer solutions.16 For γ̇ = 1 s−1, where simulations
agree with the experimental response, the total stress is almost
entirely described by the transient potential with the poten-
tial of mean force only relevant at steady-state. At γ̇ = 10 s−1

the qualitative features of a stress overshoot followed by a
steady-state regime are recovered with simulations. An ini-
tial shear stress increase towards overshoot is accounted for
by the stress contribution from the transient potential until
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FIG. 5. Total stress σ+(t, γ̇ ) (black) separated into the contributions from
the potential of mean force (blue) and the transient potential (green) for (a)
γ̇ = 1 s−1 and (b) γ̇ = 10 s−1. Experimental data (red) is included in each
plot. Each simulation curve represents the ensemble average of 10 indepen-
dent simulations.

t ≈ 0.1 s after which quantitative differences become most
prominent. These differences might be attributed to the ab-
sence of particle deformation in the particle description of the
RaPiD model implemented here. We will comment on this
further in relation to the nonlinear flow curves.

To construct nonlinear flow curves from the start-up
shear response, we extracted both the maximum stress at
overshoot σ max and the steady state stress σ steady. Using
these measures we calculated the maximum shear viscos-
ity as ηmax = σmax/γ̇ and the steady-state shear viscosity as
ηsteady = σsteady/γ̇ for a number of shear rates. The flow
curves are shown in the main figure of Fig. 6. For ηsteady, the
simulated shear viscosity qualitatively recovers the shear thin-
ning behaviour of the melt. We find good correspondence at
low shear rates, where shear thinning effects are small, while
at higher shear rates where shearing effects are prominent the
viscosity decays steeper than in experiments.

A scaling analysis theory for unentangled polymer melts
predicts the emergence of shear thinning, which decreases by
a power law with exponent −2/3, provided the finite extensi-
bility of the polymer chains is considered explicitly.51 In an-
other theoretical approach based upon the Rouse model, the
shear thinning regime declines with an exponent of −1/2 and
is applicable to monodisperse unentangled polymer melts and
polymer solutions52. From Fig. 6 the experimental decay is
similar to the theoretical prediction, however the shear thin-
ning curve from simulations differs from theory (with an ex-
ponent ≈−1.22). Direct comparison with theory is tentative
as both theories51, 52 apply to linear polymer chains. With such
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FIG. 6. Main figure: Comparison of viscosity measures, ηsteady and ηmax,
from experiments and simulations for the f = 16 PS star polymer melt. Simu-
lation results are represented in black (closed diamonds for ηsteady and closed
squares for ηmax) while the experimental data are shown in colour. ηsteady
from simulations (closed diamonds) is fitted with the Cross model.50 The re-
maining solid lines are included as guides for the eye. The dashed line is a
scaling analysis prediction for unentangled polymers.51 Inset: ηmax/ηsteady as
a function γ̇ for both experiments and simulations.

a decrease in the shear thinning curve, i.e., steeper than –1, we
expect shear banding effects,53 but this is not seen here during
simulation. The absence of shear banding may be attributed to
the finite size of the simulation box.54

This steeper decay in the viscosity is also reminiscent
of RaPiD simulations on polymer solutions where the shear
thinning behaviour, although recovered, was also too steep.34

The faster shear thinning effect is related to the absence of
polymer deformation that would facilitate particle elongation
and subsequent re-emergence of constraints between particles
in their neighbourhood. A recent variant of the RaPiD algo-
rithm, where polymers may deform, has shown that for linear
polymers both the linear and nonlinear rheology can be re-
covered when particle elongation is incorporated.17 Here, we
also qualitatively recover the trend of an increasing maximum
viscosity which is indicative of an increasing stress overshoot
with γ̇ . At the higher shear rates there is a slight underesti-
mate from simulations for ηmax.

The relationship between ηmax and ηsteady is shown in
inset of Fig. 6. We note that the increase in ηmax/ηsteady oc-
curs at the same rate, i.e., γ̇ = 10 s−1 where the onset of
shear thinning becomes obvious. The slope of ηmax/ηsteady

from γ̇ = 10 s−1 for the experimental data is very close to
that observed for low functionality highly entangled polyiso-
prene (PI) star polymer melts.27 The difference in the sim-
ulation data can be attributed as above for the steeper shear
thinning to the absence of polymer deformation. We also cal-
culated γ max which is the strain where ηmax for the shear thin-
ning regimes. For 10 s−1≤ γ̇ ≤ 60 s−1, we found 2.4 < γ max
< 3 for experiments, while for simulations 1.3 < γ max < 1.5.
For linear polymers where stretching is absent, it has been
predicted that γ max = 2.3.55 For the experimental data we
are above this strain for all shear rates, thus suggesting poly-
mer stretching is connected with the onset of shear thinning.
However, the simulation data is below the prediction for linear
polymers. This is a tentative comparison, however, since the
PS stars here are of moderate f (distant from linear) and they

consist of unentangled arms in contradiction to the entangled
PI star melts.27

B. Cessation

To study the relaxation of stress from the steady state,
σ−, the applied shear was removed such that γ̇ = 0 s−1 at t
≥ 0 s. In order to compare the relaxation process for differ-
ent shear rates we normalised each time series with the initial
stress state where σ norm = σ−(t)/σ (t = 0). In Fig. 7(a) we plot
the variation of σ norm for different shear rates from simula-
tions. We also include the relaxation of σ norm as calculated
for G(t) from simulations for an equilibrium system, or the
linear regime, using the expression

σnorm(t) = 1 −
∫ t

0 dt ′G(t ′)∫ ∞
0 dt ′G(t ′)

. (12)

In effect this represents the relaxation of a system that prior
to cessation was subject to infinitesimal shear. With the re-
moval of shear the system approaches an equilibrium state.
However, the relaxation for systems initially subject to shear
is notably faster than for the equilibrium case. All curves are
effectively relaxed after 1 s and for γ̇ > 10 s−1 the relaxation
curves are almost indistinguishable. In Fig. 7(b) we show the
variation of σ norm from experiments for a subset of the shear
rates presented in Fig. 7(a). Comparison of the curves shows
that the simulations recover the qualitative form of the stress
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FIG. 7. The relaxation of the normalised shear stress σ norm from simulations
(a) and experiments (b) for a number of different shear rates. The dashed line
in both figures represents σ norm as calculated from G(t) from simulations us-
ing Eq. (12). t is the time after which the imposed shear rate was removed.
Each simulation curve (in (a)) represents an ensemble average over 10 simu-
lations.
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relaxations for the real melt. Comparing with Fig. 7(a) we
note that the relaxations for γ̇ = 1 s−1 in experiments are
closer to the equilibrium relaxation curve (dashed line) than
in the case of simulations. With increasing γ̇ the difference
between the experimental and simulation curves decreases.
These results suggest that for the lower shear rates the simu-
lations slightly overestimate the relaxation process.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented results from experiments
and highly-coarse grained simulations, using the RaPiD algo-
rithm, on both the linear and nonlinear rheology of a moderate
functionality PS star polymer melt. In RaPiD, each polymer
entity is viewed as a single particle where all eliminated de-
grees of freedom are used to define a free energy and transient
pair-wise potential. For star polymers, a free energy pair-wise
function for high functionality stars is already available5, 29

while the transient potential used here is an improved ver-
sion of a potential implemented for star polymer solutions.16

The PS samples were anionically synthesized having a func-
tionality f = 16 with a low molecular weight per arm of Ma
= 13.2 kg/mol as well as being a well defined polymer with
a very low polydispersity. RaPiD presumes all polymer fluids
are perfectly monodisperse.

For the linear rheology, we have recovered, through sim-
ulation, the experimental moduli to good agreement. We also
replicated the terminal response of the melt at low frequen-
cies. Having identified the RaPiD “simulation parameters” (as
listed in Table I) that reproduce the linear rheology, we then
focused on the response of the PS star polymer melt to sim-
ple shear, and upon removal of shear, the ensuing relaxation.
First we have simulated the qualitative features of a stress
overshoot followed by a steady-state response at high shear
rates. Best correspondence is found at low shear rates, where
a stress overshoot is absent, and where agreement between
experiments and simulations is excellent. However, with in-
creasing shear rate, the RaPiD simulations underestimate both
the peak in the overshoot and the steady-state response. These
differences are summarised in the nonlinear flow curves
(Fig. 6) where the steady-state and maximum viscosity from
experiments are plotted. The overshoot behaviour from both
experiments and simulations can also be presented in terms
of the start-up viscosity η+ with strain as in Fig. 8. In both
experiments and simulations we see behaviours reminiscent
of soft particles as opposed to hard colloids. For simulations
(Fig. 8(a)), we observe the overshoot at γ ≈ 1.5, which is a
higher strain than for hard colloids where the overshoot peak
develops below γ = 1.56 From the experimental curves in
Fig. 8(b) we notice that the overshoot peaks occur at γ

� 2, corroborating with recent experiments on low function-
ality polyisoprene star melts.27 In RaPiD, overshoots occur
when the flow brings the particles out of equilibrium, which
takes at least one strain unit to occur. These curves serve as
motivation for the inclusion of a description of particle defor-
mation in subsequent simulations.

By applying a cessation or shut-down protocol we stud-
ied the relaxation process in systems that were initially subject
to shear (Fig. 7). For shear rates where some degree of shear-

0.01 0.1 1 10
γ [-]

0

10

20

30

40

η+
 [

kP
a.

s]

1 s
-1

3.16 s
-1

5.62 s
-1

10 s
-1

17.8 s
-1

(a)

0.01 0.1 1 10
γ [-]

0

10

20

30

40

η+
 [

kP
a.

s]

(b)

FIG. 8. Start-up viscosity η+ = σ+/γ̇ plotted against strain γ for the PS star
polymer melt from simulations (a) and experiments (b) for a number of differ-
ent shear rates. Dashed line in both figures represents η+ as calculated from
G(t) from simulations using the expression η+(t) = ∫ t

0 dt ′G(t − t ′). Each
simulation curve (in (a)) represents an ensemble average over 10 simulations.

thinning is already observed, we find that stress relaxations
are notably faster than those for systems in the linear regime.
In addition, simulations recover the qualitative features of the
relaxation process for all shear rates with the best agreement
observed at higher shear rates (Fig. 7). Simulation results pre-
dict that the overshoot and the steady-state shear response are
almost entirely associated with the transient potential (Fig. 5).
In a previous study on high Mw, high functionality en-
tangled star polymers solutions, the conservative potential
(Eq. (1) in this paper) contributes an appreciable fraction of
the steady-state response.16 The small contribution of the con-
servative potential towards the steady-state shear stress for the
star polymer melts in this study (Fig. 5) is consistent with
the Rouse-like behaviour, i.e., entangled, of the star arms.
Although entanglements are absent and stars are constrained
through interpenetrating with their neighbours, the pair-wise
conservative potential implemented here may underestimate
equilibrium interactions. As such an adjustment to the con-
servative potential to account for many-particle interactions in
the melt state may be used in a future study to improve upon
the depiction of the equilibrium state and thus the respective
contribution of the transient and conservative interactions to-
wards the steady-state shear response.

Although we have found the shear-thinning behaviour
of the real melt, we slightly overestimate the shear thin-
ning effect at shear rates γ̇ > 10 s−1. We propose that this
steeper shear thinning effect may be due to the absence of a
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description of particle deformation in the model. RaPiD simu-
lations of linear polymer solutions where such deformation is
described have fully recovered the shear-thinning behaviour
as well as the linear rheology.17 For those simulations, each
deformable particle consists of two coarse-grained particles
or components that can both entangle with surrounding de-
formable particles. Deformability is captured by introducing a
FENE (Finite-Extensible Non-Linear Elastic) potential which
allows the distance between components to vary and also acts
as a penalty for the free energy.

In this study we considered a PS star melt, far above the
overlap concentration which may have repercussions for the
degree of polymer deformation and resulting conformational
changes when subject to shear. Recent studies have provided
further insight into the conformational properties of star poly-
mers, both entangled and unentangled, subject to shear. First,
simulations using a coupled MD – multiparticle collision dy-
namics (MPCD) approach have shown that unentangled stars
with large f in solutions of varying concentrations, both below
and far above the overlap concentration, are less deformed
and less aligned than low f star polymers.57 A simple calcu-
lation based on the Rouse model for linear polymers, where
the polymers can be viewed as stars with f = 1, 2, by Colby
et al.52 reveals that the shear thinning regime develops due to
the stretching of the Rouse chains as they are perturbed by the
shear flow. Although a Rouse model has been developed for
star polymers,23 it has yet to be employed to study the sig-
nificance of particle deformation on the rheological response.
Finally, experiments on highly entangled low functionality (f
< 10), high Ma PI star polymer melts and solutions reveal ori-
entation also plays an important role in the stress overshoot (in
that particular case it clearly dominated over stretching).27 In
all cases, the degree of deformation and orientation would be
moderated by the presence of a branching point and the degree
of functionality of the stars. These findings from simulations
and experiments provide further justification for need to in-
clude a description of particle deformation in a RaPiD model
for star polymers.

In the current version of RaPiD it is also impossible to
decipher the emergence of particle alignment as all particles
are spherical whereas simulations with the deformable parti-
cles show that particle alignment is amplified at high shear
rates for the case of linear polymers in solution.17 Using
deformable particles would differentiate between the impor-
tance of particle alignment and particle deformation towards
the development of the stress overshoot in star polymer melts,
as well as possibly correct for the steeper shear-thinning effect
predicted by the current simulations. As a result this would
demonstrate the universal prediction of the linear and nonlin-
ear response for unentangled and entangled star polymers (all
of which interpenetrate) using RaPiD.
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