
The Simple TimesTM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTSSM

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol (SNMP). In each issue, The Simple
Times presents: a refereed technical article, an industry
comment, and several featured columns. In addition,
some issues include brief announcements, summaries
of recent publications, and an activities calendar. For
information on submissions, see page 12.

In this Issue:

Technology and Commentary
Technical Article : : : : : : : : : : : : : : : : : : : 1
Industry Comment : : : : : : : : : : : : : : : : : 4

Featured Columns
Applications and Directions : : : : : : : : : : : : 4
Ask Dr. SNMP : 5
Security and Protocols : : : : : : : : : : : : : : : 7
Standards : 8

Miscellany
Activities Calendar : : : : : : : : : : : : : : : : : 11

Publication Information 12

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents. However, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available via both electronic
mail and hard copy. For information on subscriptions,
see page 12.

Technical Article
Aiko Pras and Jacques Togtema
Twente University of Technology

In this issue: SNMPv2 at Twente University
The management group at Twente University in the

Netherlands is currently developing SNMPv2 software.
The purpose of this article is to provide an overview of
this development and give future plans. It is not the
intention to go into to much detail — the last section of
this article tells how to obtain more detailed information.

Background

The last couple of years the network management
group of our university has participated in a number
of European RACE and Esprit projects. We worked
on management architectures and, as most Europeans,
concentrated on OSI and TMN.

After some time however it became clear to us that we
needed more experience to judge the merits of the various
architectural concepts. This resulted in a decision to
start our own implementation project. Given the growing
importance of Internet management and the different
“atmosphere” of the Internet world, we decided to start
implementing the complete SNMPv2 Framework (RFCs
1441–1452). Since we weren’t involved in the definition
of SNMPv2, our work would reveal whether SNMPv2
is sufficiently defined to allow implementation by non-
adepts.

Goals

Our first goal was to learn through experience. To
achieve this goal, we decided to discuss and implement
all aspects of SNMPv2 ourselves. For example, we
implemented the Basic Encoding Rules from scratch,
although we could have started from one of the existing
SNMPv1 packages.

Our second goal is to share our ideas with the
community. We therefore make our software freely
available and invite others to comment.

It should be noted that we’re not working on a
commercial product. If, for example, we have to choose
between clarity and performance, we choose clarity.

The Simple Times 2

Features

The two main differences between our implementation
and those of others (e.g., CMU and 4BSD/ISODE), is our
multi-process structure and our high-level programming
interface (API). We will discuss each of them in a
separate section.

Multi-process Structure

Our software development takes place on SUN Sparc-
stations running UNIX (SunOS 4.1 and Solaris 2) using
the GNU C compiler. Although we can’t really test our
software on other UNIX systems, we try to keep our
software portable.

As UNIX allows multiple processes to cooperate, we
decided to use this facility and develop a structure in
which a single process, called the SNMPv2 Protocol Ma-
chine (SPM), serves multiple management applications.

The SPM is responsible for the transfer of SNMPv2
management information between systems and has no
knowledge of management application issues. The SPM
is therefore not bothered with MIB issues and things
like Textual Conventions. The attractive property of
our structure is that the SPM can be the same for
the manager and agent side: it is the management
application that determines whether a system acts in
a manager or agent role.

Modification of this role is easy, since other applica-
tions (playing different roles) can be connected to the
same SPM. Development of dual-role intermediate-level
managers (e.g., to support the Manager-to-Manager
MIB), is therefore straightforward.

transport (e.g., UDP)

SPM

management
application

X

Communication between SPM and management ap-
plications uses interprocess communication, such as
TLI and sockets. As such, it is even possible to run
management applications on different machines. Of
course there is a performance penalty in having this
multi-process structure with IPC. We believe however
that this performance penalty is sufficiently compensat-
ed by the improved flexibility and the lower complexity.

As the first management application becomes active,
the SPM is automatically started. The SPM initializes by
reading a configuration file and is then ready to serve the
application. If other management applications become
active, they will be connected to the same SPM. The SPM
remains active until all management applications have
terminated. Upon termination, the SPM saves a copy of
the recent configuration information to disk.

The SPM is implemented in a single-threaded fash-
ion, although we originally considered a multi-threaded
approach. The advantage of a multi-threaded approach
is that messages can be processed in different threads
independent from each other. It guarantees that large
messages that require authentication and encryption
will not delay the processing of small messages that
do not have security requirements. However, after an
investigation of DES and MD5 processing times and after
we understood the complexity associated with multi-
threaded design, we decided to use a single-threaded
approach.

Implications

The decision to have a multi-process structure and to
separate management transfer functions from manage-
ment application functions, has important implications.
Let’s discuss two of them.

The first implication is that management of SNMPv2
itself (meta-management) should not be performed by
the SPM, but by special (meta-management) applica-
tions. As a consequence, the SPM is not bothered with
issues such as maintaining the Party, SNMPv2 and
Manager-to-Manager MIBs. This is equivalent to the
approach followed with other protocols, such as IP and
TCP. Implementors of IP and TCP are not bothered with
MIB issues either; it is sufficient if they provide a local
interface that allows reading and writing of IP and TCP
variables by a special management process. It is the task
of this special process to transform local information into
the form required by the MIB-II and check the validity
of the management operations.

transport (e.g., UDP)

SPM

management
application

X

meta-management
application

Y

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 3

To illustrate the functioning of our meta-management
application (MMA), consider the example of changing a
party’s authentication clock. To change this clock, a set
PDU must be received by the MMA via the same IPC
port (e.g., X) as used for other application exchanges.
The MMA (and not the SPM!) implements the rules (as
specified by the Party-MIB) for changing clocks: the
MMA therefore checks whether the received PDU also
changes the authentication key. If this is the case, the
MMA uses the local interface port (e.g., Y) to perform the
actual clock change.

A second implication is that proxy relationships will
not be performed by the SPM, but by special proxy
applications. This makes the design of proxy agents
straightforward: it is sufficient to understand the
management API, it is not necessary to know the details
of SNMPv2.

Application Programming Interface

The main difference between our implementation and
other implementations (e.g., CMU and 4BSD/ISODE)
is the programming interface. As opposed to other
implementations, our API hides most of the complexity
of SNMPv2 from the management applications. Writers
of management applications need little knowledge of
SNMPv2, which makes development of applications
easier.

Our API is actually a library of C-functions, which
must be included in every management application.
Details of the IPC mechanism are handled within the
API and are therefore not visible to the writer of
management applications.

The API functions can be divided into two categories:
functions necessary for initialization and termination
purposes and functions necessary for sending and re-
ceiving SNMPv2 PDUs. To initialize, the application
calls the snmpOpen function. This function starts, if
necessary, the SPM and connects the application to it. To
terminate, the application calls the snmpClose function.

This function removes the connection with the SPM —
if no other applications are connected to the SPM, the
SPM will terminate too.

Most of the API functions are used for sending and
receiving SNMPv2 PDUs. Most “service elements” (e.g.,
get) require four function calls: two for sending (Request
and Response), and two for receiving (Indication and
Confirm). The Response and Confirm function calls are
necessary for sending and receiving Response PDUs.
Although it is possible to use the same Response and
Confirm functions for all ‘service elements’, we decided
(primarily for clarity reasons) to introduce separate
function calls for each individual “service element”.

Since the application can not know in advance to
which “service element” a received PDU will belong, the
application precedes each Indication and Confirm call
with a snmpLook call. This call tells the application the
type of service element that has been put into the IPC
queue by the SPM and must therefore be handled first.

The table below shows all API calls that can be used
to send and receive SNMPv2 PDUs. Note that because
the SPM translates, at the agent’s side, a get-bulk into
a number of get-next calls, there are no Indication and
Response calls for get-bulk. The table also shows that
the SPM, upon receipt of an inform PDU from another
SPM, automatically generates the response PDU.

Req Ind Res Con
+=======+=======+=======+=======

get | x | x | x | x
get-next | x | x | x | x
get-bulk | x | | | x
set | x | x | x | x
inform | x | x | | x
trap | x | x | |

Of course, associated with each function call are a
number of parameters, including:

� the IP address of remote system;

� the list of variable bindings;

� the request ID;

� the requested security, i.e., “none”, “auth” (MD5 is
used), or “priv” (MD5 and DES is used); and,

� a string that helps to determine the context, which
may be empty.

Status

The first version of our software was released in Novem-
ber 1993. The major part of this software was written
by a single student as part of his M.Sc. thesis. This
first release should be considered as a “statement of
direction” — although it can be used to manage SNMPv2
systems, it is not yet complete, e.g., there are no
meta-management applications, so it is not yet possible
to modify the Party, SNMPv2 and Manager-to-Manager
MIBs.

Experience

At the beginning of our project we assumed SNMPv2
would be simple and easy to implement. This assumption
proved to be wrong. SNMPv2 is complex for the following
reasons:

VOLUME 3, NUMBER 1 FEBRUARY, 1994

The Simple Times 4

The demands put on SNMPv2 are much stronger than
those put on SNMPv1. This inherent complexity appears
for instance from the fact that 12 RFCs were needed to
specify SNMPv2.

SNMPv2 has been specified as a monolithic whole —
little attempt has been made to decompose SNMPv2
into a number of building blocks with clearly defined
interfaces. We believe that a decomposition of SNMPv2
into transfer, application, meta-management and proxy-
oriented parts (along the lines of our approach) would
have made SNMPv2 easier to understand.

The RFCs describe various mechanisms into great
depth, but they hardly explain their purpose and the
way they should be used (this is particularly true for
SNMPv2’s administrative model). It would for instance
be helpful to see a description of how to search through
the party, context, access control, and view table to
determine the party and context identities that must be
included with the PDU.

Still no real problems were encountered. Interoper-
ability testing against the CMU package went smoothly.
We may therefore conclude that it is possible for non-
adepts to implement SNMPv2.

Future

After our first release demonstrated that it was possible
to develop SNMPv2 software, we formed a project team
to continue this development for at least another year.
Our new team is much bigger than the one we had last
year, so we expect to complete all aspects of the SNMPv2
framework, including meta-management, this year. Our
plan is to make new versions available on a regular
basis (e.g., every three months) Our sources can be
obtained via anonymous FTP from ftp.cs.utwente.nl
in the directory pub/src/snmp. Our email address is:
snmp@cs.utwente.nl. Further information, including all
project documentation, is made available via our WWW
server:

http://snmp.cs.utwente.nl:8001/snmp/html/homepage.html

Industry Comment
Marshall T. Rose

Welcome to the third year of The Simple Times.
With this issue, we’re moving to a quarterly distri-

bution cycle. The reason is simple: the coordinating
editor simply doesn’t have enough time to put together
six issues each year. So, we’re going to try four issues a
year.

As a consequence of this, the Working Group Synopsis
column is discontinued. Although Fred Baker, Deidre
Kostick, and Kaj Tesink have done a wonderful job with
each issue, the column will lose too much of its value with
a longer distribution cycle. Fortunately, each of these
contributors has promised to write a technical article
later on for The Simple Times!

Applications and Directions
Steven L. Waldbusser

In this issue: Deploying SNMPv2

As people have been tracking the progress of SNMPv2
deployment they have wondered about where the bot-
tlenecks in the deployment process are, what is driving
the process, and where products will materialize most
quickly. Of course, this is a chicken and egg problem, so
the answer to the question “Will the deployment be led
by managers or agents?” is largely “Yes!”. In an attempt
to be a bit more accurate than this, we will compare the
current scenario with the deployment of SNMPv1, and
then make some observations about the current situation
and predictions of the future.

SNMP (version 1) Deployment

In 1988, as the first SNMP specifications were finished,
there were two interesting things about the industry:
there were very few network management applications
or protocols available, and much of the networking
infrastructure (gateways and servers) was built on UNIX
platforms. The first point created an incredible vacuum
that was filled by SNMP. The second meant that a few
free and commercial UNIX products easily built a critical
mass of deployed products. This was followed fairly
quickly by many embedded (i.e., non-UNIX) agents as
vendors realized it was quite inexpensive to add an
agent to a product and provide another check-off item
for customers who had been loudly demanding network
management capabilities.

Applications and platforms of varying sophistication
came later, and when vendors realized the complexity of
building a platform, many scaled back to only providing

VOLUME 3, NUMBER 1 FEBRUARY, 1994

