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a b s t r a c t

In this paper the influence of external vibrations on the measurement value of a Coriolis mass-flow
meter (CMFM) for low flows is investigated and quantified. Model results are compared with
experimental results to improve the knowledge on how external vibrations affect the mass-flow
measurement value. A flexible multi-body model is built and the working principle of a CMFM is
explained. Some special properties of the model are evaluated to get insight into the dynamic behaviour
of the CMFM. Using the model, the transfer functions between external vibrations (e.g. floor vibrations)
and the flow error are derived. The external vibrations are characterised with a PSD. Integrating the
squared transfer function times the PSD over the whole frequency range results in an RMS flow error
estimate. In an experiment predefined vibrations are applied on the casing of the CMFM and the error is
determined. The experimental results show that the transfer functions and the estimated measurement
error correspond with the model results.

The agreement between model and measurements implies that the influence of external vibrations
on the measurement is fully understood. This result can be applied in two ways; firstly that the influence
of any external vibration spectrum on the flow error can be estimated and secondly that the
performance of different CMFM designs can be compared and optimised by shaping their respective
transfer functions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A Coriolis mass-flow meter (CMFM) is an active device based
on the Coriolis force principle for direct mass-flow measurements
with a high accuracy, range-ability and repeatability [1]. The
working principle of a CMFM is as follows: a fluid conveying tube
is actuated to oscillate with a low amplitude at a resonance
frequency in order to minimise the amount of supplied energy.
A fluid flow in the vibrating tube induces Coriolis forces, propor-
tional to the mass-flow, which affect the tube motion and change
the mode shape. Measuring the tube displacement, such that the
change of its mode shape is determined, allows calculating the
mass-flow.

Besides the sensitivity for a mass-flow, there are many factors
influencing the measurement value. Anklin et al. [1] mentioned
several factors: the effect of temperature and flow profiles on the
sensitivity and measurement value, external vibrations and flow
pulsations. More factors are investigated by Enz et al. [2]: Flow

pulsations, asymmetrical actuator and detector positions and
structural non-uniformities. And more recent also by Kazahaya
[3]: uneven flow rates in two flow tubes, vibration effects,
temperature effects and the inner pressure effects. Further Bobov-
nik et al. [4] studied the effect of disturbed velocity profiles due to
installation effects and other influencing factors like two-phase or
even three-phase flow effects were studied by Henry et al. [5].

In our research we focus mainly on the effect of floor/mechan-
ical/external vibrations. These vibrations create additional compo-
nents in the CMFM sensor signals [6], those additional components
can introduce a measurement error. The effect of mechanical
vibrations on the sensor response of a CMFM is also studied by
Cheesewright [7,8]. The analytical study showed that external
vibrations at the meter's drive frequency produces a measurement
error, regardless of the flow measurement algorithm. There is no
attempt made to quantify the error in any particular meter, since
such an error depends on dimensions, type of actuators and sensors
and the used flow measurement algorithm.

A solution to reduce the influence of external vibrations is to
apply a robust balancing system. (e.g. a twin tube configuration)
[1,3]. There are many types of CMFMs available, whereby the size
depends on the flow range. One category is the CMFM for low
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flows [9]. For low flows, the Coriolis force induced motion is
relatively small compared to external vibrations induced motions,
thus CMFM's designed to be sensitive to low flows is rather
sensitive to external vibrations. Applying a twin tube configuration
is not an option, because some structural non-uniformities [2] can
lead to large differences between the two tubes, due to their small
dimensions. This has a negative impact on the measurement
sensitivity of the instrument and reduces the decoupling of
external vibrations to the internal measurement system.

A quantitative model of the influence of external vibrations is
not yet available. In this study the effect of external vibrations on
the measurement error is quantified using an experimentally
validated model. The results presented in this study are an
extension of previous work [10]. First, a model of a CMFM is
derived, using the multi-body package SPACAR [11] resulting in a
linear state space representation [12]. In the modelling, a tube-
element [13] is used to model the inertial interaction between
flow and the tube dynamics. Secondly, the model is extended to be
able to predict the influence of external vibrations, with the
eventual goal to find and test designs that reduce the influence
of external vibrations on an erroneous mass-flow reading.

2. Modelling method

In this section, the Finite Element Method (FEM) model is
explained. Subsequently, the system equations are derived and the
inputs and outputs are defined to derive the input–output rela-
tions. This results in a state space representation of a CMFM in the
final subsection.

2.1. Coriolis mass-flow meter

For this research a functional model of the patented design
[9,14] (see Fig. 1) is used. First, a FEM model is derived, using the
multi-body package SPACAR [11]. The graphical representation of
the model is shown in Fig. 2. The model consists of a tube-window,
conveying the fluid flow, which is actuated by two actuators act1
and act2. The displacements of the flexible tube-window are
measured by two displacements sensors s1 and s2. On the casing
a vector a0, representing the external vibrations and consisting of
three translation and three rotational movements, is imposed. The
model is made out of multi-body beam, truss and tube elements.
The beam elements are used to model the rigid casing and the
truss elements to measure relative displacements and to apply a
force on the tube-window. Further, a tube-element [13] is used
to model the inertial interaction between flow and the tube
dynamics.

2.2. System equations

The linearised system equations of the FEM model, with n
degrees of freedom of tube deformations q and the imposed casing
movements (rheonomic degrees of freedom: x0; v0 ¼ _x0;a0 ¼ €x0),
can be written as [12]:

M11 M12

M21 M22

" #
€q
a0

" #
þ Cð _ΦÞþD
h i _q

v0

" #
þ KþNð _Φ2 Þ
h i q

x0

" #
¼

f
F0

" #

ð1Þ
The other terms are the mass matrix M, stiffness matrix K ,
damping matrix D, the velocity sensitive matrix C, the dynamic
stiffness matrix N, the actuation input vector f and the reaction
force F0. The matrices C and N depend linear and quadratic on the
mass-flow _Φ respectively, and are representing the forces induced

by respectively the Coriolis and centrifugal acceleration of the
flow. The matrices C, D, K and N can be divided into the same
parts as the mass matrix M. Using the multi-body package SPACAR

Fig. 1. Coriolis mass-flow meter, used as a reference instrument in this study.
Details on the patented design are given in [9,14]. The instrument is connected to a
pipeline; a fluid flow enters the instrument (6), flows trough the tube-window
(2) and exits the instrument (7). The flexible tube-window (2) is actuated in
resonance by an Lorentz actuator (8) and the displacements are measured by
optical displacements sensors (11abc) [15].

Fig. 2. CMFM multi-body model, the flexible tube-window is actuated by two
Lorentz actuators act1 and act2. The trajectory of the curved tube-window is
parametrised by ζ, starting at the fixation point of the tube-window to the casing.
The displacement are measured by two displacements sensors s1 and s2. On the
casing a vector a0 with floor movements is imposed.
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[11] the system matrices with respect to the element deformations
and the imposed floor movements of the model are derived.

The matrices D12;K12 and their transposed matrices appear to
be zero, due to the choice of element deformations as degrees of
freedom. (E.g. K12 ¼ 0, because there is no coupling between the
location of the casing x0 and the internal deformations q.)

The casing motion is prescribed and thus the only dynamic
degrees of freedom are the tube deformations, for which the
equations of motion are derived from the top row of Eq. (1):

M11 €q ¼ f þ f dis�C11 _q�D11 _q�K11q�N11q ð2Þ
including a external disturbance force, consisting of imposed
external accelerations:

f dis ¼ �M12a0 ð3Þ
whereby C12v0 and N12x0 are omitted, because their magnitude is
orders lower then M12a0. The vector of imposed external accel-
erations, three translations and three rotations, is equal to:
a0 ¼ fax ay az αRx αRz αRzgT

To gain more insight into the model, the degrees of freedom are
reduced by applying a modal reduction method. For the modal
reduction, the eigenvalue problem ðK11þN11�ω2

i M11Þvi ¼ 0 is
solved, which results in natural frequencies ωi and the corre-
sponding eigenvector vi, the mode shape. The equations of motion
are rewritten in the modal coordinates, defined as: q¼ Vz, where
V ¼ ½v1; v2;…; vn� is a matrix, normalised such that VTM11V ¼ I, of
the first n mode shapes and z is the vector of modal amplitudes.
Eq. (2) can now be written as

€zþVTC11ð _ΦÞV _zþVTD11V _zþVTK11VzþVTN11ð _Φ
2ÞVz¼ VT f þVT f dis

ð4Þ
The reaction forces on the floor can be derived from the lower

row of Eq. (1):

F0 ¼M21 €qþC21 _qþN21qþM22a0þðC22þD22Þv0þðK22þN22Þx0
ð5Þ

2.2.1. Actuation
The flexible tube-window is actuated to have an oscillation

around the θtwist-axis (see Fig. 2), therefore in the model a moment
is applied by two forces between the tube and the casing. In model
terms the actuator input is equal to

f ¼ 1
rM

ðΓact1 �Γact2 ÞMact ð6Þ

where Γact1 and Γact2 are vectors with the elongation of the
actuator element with respect to the coordinates q of the model,
rM the distance between the two actuator elements and Mact the
actuator moment input.

2.2.2. Sensing
The movement of the tube-window is measured by two

sensors, s1 and s2. In model terms the sensor displacements are
equal to

si ¼Γsiq¼ΓsiVz ð7Þ
where Γsi is a vector with the elongation of the ith sensor element
with respect to the coordinates q of the model.

2.3. State space description

Combining the equations of the previous sections, a state space
representation of the CMFM with a state vector x¼ ½z _z�T , input

vector u¼ ½Mact a0�T and output vector y¼ ½s1 s2�T is derived:

_x ¼
0 I

�VT ðK11þN11ð _Φ
2ÞÞV �VT ðC11ð _ΦÞþD11ÞV

" #
x

þ
0 0

VT 1
rM
ðΓact1 �Γact2 Þ �VTM12

" #
u

y¼
Γs1V 0
Γs2V 0

" #
xþ½0�u ð8Þ

This state space model can be used to investigate the tube-
window displacements as a result of an actuation moment,
mass-flow and external vibrations.

3. Model evaluation

In this section the model, derived by the method described in
Section 2, is evaluated. First, it is shown that the modal decom-
position gives a good understanding of the dynamic behaviour of
a CMFM. A distinction is made between model results with and
without a mass-flow. Second, the mass-flow measurement value is
related to the mode shapes. Also, it is explained how the mass-
flow is determined in practice by phase demodulation. In the third
subsection, the effect of external vibrations on the flow measure-
ment is shown, yielding a transfer function from external vibra-
tions to the mass-flow measurement. The final subsection shows
how the influence of broadband external vibrations on the RMS
mass-flow measurement value can be calculated.

3.1. Modal decomposition

In Section 2 a dynamic model of a CMFM is derived. From the
model, mass and stiffness matrices are obtained. Solving the
eigenvalue problem ðK11þN11�ω2

i M11Þvi ¼ 0, results in natural
frequencies and the corresponding mode shapes. The vibrations of
the CMFM can be obtained by superposition of these mode shapes.
To gain more insight int the behaviour of the tube, the first eight
mode shapes of the tube-window are depicted in Fig. 3. The first
mode is a rotation of the tube-window around the θswing-axis.
Later it is shown that this mode is excited when there is a mass-
flow, due to the Coriolis effect. Therefore, the first mode is termed
a Coriolis mode. The excitation of this mode, due to a mass-flow, is
not at the frequency of this mode, but at the actuation frequency.
The second mode is termed an in-plane mode, because it has no
displacement in the direction of the sensors. The tube-window is
actuated to oscillate in resonance around the θtwist-axis, so the
third mode is termed the actuation mode. The fourth mode is also
influenced by a Coriolis force and therefore termed the second
Coriolis mode. The modes five and six are in-plane modes again.
Mode seven is also a rotation around the θtwist-axis and therefore
called the second actuation mode, although possible this mode is
not used for actuation in our case. And finally, mode eight is again
a Coriolis mode.

The reduced matrices of Eq. (4) with the first eight mode
shapes ðV ¼ ½v1; v2;…; v8�Þ are derived. The reduced mass matrix is
normalised to be the identity matrix:

Mred ¼ VTM11V ¼ I ð9Þ

The reduced stiffness matrix is a diagonal matrix, containing the
natural frequencies:

Kred ¼ VT ðK11þN11ÞV ¼ diagðω2
1;ω

2
2;…;ω2

8Þ ð10Þ
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The reduced velocity sensitive matrix, whereby the damping
matrix D11 is omitted, is an skew-symmetric matrix:

The values of this matrix are proportional to the mass-flow _Φ
trough the fluid-conveying tube. When there is no flow, this
matrix is zero and there is no coupling between the modes. But
when there is a flow, this matrix describes the coupling between
the modes. Because this coupling is proportional to the modal
velocities and the fluid velocity, this is called the Coriolis effect.
The tube-window is actuated to oscillate in resonance around the
θtwist-axis, this results mainly in a modal velocity amplitude _z3.
The third column of Cred, expressed in Eq. (11), is examined, we see
that hereby also the modes 1, 4 and 8 are influenced. Whereby the

effect occurs at the actuation frequency ω3. Therefore, those
modes are termed the Coriolis modes, as said before. Besides a

mutual coupling between the symmetric and asymmetric out-of-
plane modes, there is also a mutual coupling between the in-plane
modes: mode 5 with mode 2 and 6.

Predicting the Coriolis effect on tube displacements more
accurate, is done by solving the quadratic eigenvalue problem:

ðK11þN11þ jωiC11�ω2
i M11Þvi ¼ 0 ð12Þ

Several techniques to solve this problem are discussed by Cheese-
wright and Shaw [16]. They found that the eigenvalues ωi are real
and that the eigenvectors vi are complex, because the mass,

Fig. 3. CMFM mode shapes with their corresponding natural frequencies, when the tube is filled with air. (a) Mode 1–39.7 Hz – Coriolis mode, (b) Mode 2–60.3 Hz – Plane
mode, (c) Mode 3–87 Hz – Actuation mode, (d) Mode 4–188 Hz – Second Coriolis mode, (e) Mode 5–194 Hz – Plane mode, (f) Mode 6–274 Hz – Plane mode, (g) Mode
7–353 Hz – Second actuation mode, (h) Mode 8–525 Hz – Third Coriolis mode.

Cred ¼VTC11V ¼ _Φ

�0:0000 �0:0000 �0:0279 �0:0000 �0:0000 0:0000 0:0047 �0:0000
0:0000 �0:0000 0:0000 �0:0000 �0:0005 0:0000 �0:0000 0:0000
0:0279 �0:0000 0:0000 �0:0354 �0:0000 �0:0000 0:0000 0:0017
0:0000 0:0000 0:0354 �0:0000 0:0000 �0:0000 0:0074 0:0000
0:0000 0:0005 0:0000 �0:0000 0:0000 0:0118 0:0000 �0:0000
�0:0000 �0:0000 0:0000 0:0000 �0:0118 0:0000 �0:0000 0:0000
�0:0047 0:0000 �0:0000 �0:0074 �0:0000 0:0000 0:0000 0:0956
0:0000 �0:0000 �0:0017 �0:0000 0:0000 �0:0000 �0:0956 0:0000

2
66666666666664

3
77777777777775

ð11Þ
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damping and stiffness matrices are positive definite and the
velocity sensitive matrix C11 is skew-symmetric. The real part of
the mode is the conventional modes for _Φ ¼ 0, while the imagin-
ary part of the eigenvectors is the Coriolis distortion mode. The
discussed techniques are unable to predict the Coriolis distortion
modes accurately. We solved this issue by normalising the eigen-
vectors, such that VTM11 V ¼ I, resulting in a correct Coriolis
distortion mode, independent of the technique used for solving
the quadratic eigenvalue problem.

In Fig. 4(a) the real part of the tube-window y-displacement,
determined from the eigenvectors, is depicted for the first four
modes as a function of the tube-window center-line ζ (see Fig. 2).
Where the parameter ζ follows the trajectory of the curved tube-
window, starting at the fixation point of the tube-window to the
casing. The result is the same as shown in Fig. 3(a)–(d). Further-
more, in Fig. 4(b) the flow induced part of mode 3 is depicted. This
is the result of solving the quadratic eigenvalue problem of Eq.
(12). As suggested before, this flow induced mode can also be
estimated by scaling the modes 1 and 4: αi � ReðΓyviÞ, whereby Eq.
(4) is used to derive a scaling factor for those modes:

αi ¼
zi
z3

¼ Credði;3Þω3

ω2
3 � ω2

i

j ð13Þ

where i is the mode to scale. Using Eq. (11) and the natural
frequencies ωi, we see that only the modes 1 and 4 have a
significant contribution to the flow induced mode. Both scaled
modes are also shown in Fig. 4(b).

The analysis above thus shows that a mass-flow only affects the
out-of-phase component of the tube's motion, which can be
reconstructed from scaling the other modes.

3.2. Mass-flow measurement

In the previous subsection the effect of a mass-flow on the
mode shapes is shown. In this section it is discussed how a mass-
flow can be measured using two displacement sensors s1 and s2.
The tube-window is actuated to oscillate in its third eigen mode. In
Fig. 4(a) we see the effect of actuation on the y-displacement of
the tube-window. For ζ ¼ 0.5, the displacement is zero, this is the
rotation axis θtwist. In Fig. 2 we see that the sensors are placed on
both sides of this rotation axis, resulting in a phase-difference
between the sensor signals of 1801.

In Fig. 4(b) the flow induced vibration mode due to the Coriolis
effect is depicted. The contribution to both sensor signals is equal
in amplitude and phase, but this vibration mode occurs 901 out
of phase with the actuation mode, because it is the imaginary
part of the mode. So, when a mass-flow is affecting the vibration
mode of the tube-window, the phase-difference between the
sensor signals s1 and s2 is not 1801 anymore, but is dependent
on the mass-flow. The phase-difference between the two sensor
signals is expressed as

Δϕ¼ argðs1Þ�argðs2Þþπ ¼ arctan
Imðs1Þ
Reðs1Þ

� �

�arctan
Imðs2Þ
Reðs2Þ

� �
� Imðs1Þ

Reðs1Þ
� Imðs2Þ
Reðs2Þ

� 2
Imðs1þs2Þ
Reðs1�s2Þ

ð14Þ

where s1 and s2 represent the complex displacement amplitudes,
calculated solving Eq. (12). Further the first approximation
ðarctanðxÞ � xÞ is valid for small radian angles only, and for the
second approximation is used that the two sensors are placed on
equal distance of the rotation axis ðReðs1Þ � Reð�s2ÞÞ. The phase
difference equation is made more distinct by defining two new
displacements, based on the sensor signals:

yact ¼ 1
2 ðs1�s2Þ ð15Þ

ycor ¼ 1
2 ðs1þs2Þ ð16Þ

where the differential-mode s1�s2 is named the actuation dis-
placement yact and the common-mode s1þs2 the Coriolis displa-
cement ycor. This results in a new equation of the phase-difference
(Eq. (14)):

Δϕ� 2
Imðs1þs2Þ
Reðs1�s2Þ

¼ 2
ImðycorÞ
ReðyactÞ

ð17Þ

The approximation is valid for small flows, because then the
Coriolis displacement is small compared to the actuation displace-
ment. Another advantage of this new definition is the connection
with the mode shapes, presented in the previous subsection. Using
Eq. (7), the actuation displacement value is written as a combina-
tion of the modal displacements:

yact ¼ 1
2 ðs1�s2Þ ¼ 1

2 ðΓs1 �Γs2 ÞVz
¼ ½�0:00 0:00 28:30 �0:00 �0:00 �0:00 �27:74 �0:00�z

ð18Þ

Fig. 4. The mode shapes Γyvi , where Γy is a vector with y-displacements of the tube-window-elements with respect to the model coordinates q. (a) Tube-window
y-displacement as a function of the tube-length ζ, as shown in Fig. 2, for the first four mode shapes, (b) Flow induced y-displacement as a function of the tube-length ζ.
The amplitude is proportional to the mass-flow _Φ .
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The actuation displacement is a combination of the modal ampli-
tudes of the modes 3 and 7. The actuation modes, as presented in
Fig. 3. The same holds for the Coriolis displacement, which is a
combination of the modes 1, 4 and 8:

ycor ¼ 1
2 ðs1þs2Þ ¼ 1

2 ðΓs1 þΓs2 ÞVz
¼ ½154:47 0:00 �0:00 21:47 0:00 �0:00 0:00 �51:39�z ð19Þ
A controlled oscillation in the third mode results in excitation,

proportional to the mass-flow _Φ, of the modes 1, 4 and 8 with the
third mode frequency, see Eq. (11). The Coriolis displacement is a
combination of those modal amplitudes and therefore this dis-
placement is also proportional to the mass-flow. And, equally
important, also proportional to the actuation displacement. This
results in a phase difference, proportional to the mass-flow, but
independent of the actuation displacement. A measurement sen-
sitivity is defined as the phase difference per unit mass-flow:

S¼Δϕ
_Φ
½rad s=kg� ð20Þ

The mass-flow is calculated from the measured phase difference
and the measurement sensitivity. The measurement sensitivity S is
instrument, design, fluid density and temperature dependent. In
case of large flows or in the transition between laminar and
turbulent the relation is non-linear and thus the sensitivity
becomes also flow dependent [1]. A numerical value of the
measurement sensitivity is not given for the used instrument
(Fig. 1), but the phase difference Δϕ is also a valid measure for the
mass-flow as these are related.

3.2.1. Phase demodulation
In practice the phase of the sensor signals is measured directly,

without determining the amplitudes of the sensor signals. There
are different digital signal processing methods that can be applied.
A method is to apply dual quadrature demodulation, the method
applied to a CMFM is described by Mehendale [9]. A phase-locked
loop algorithm is implemented to compute the frequency
ωact ¼ω3 of the oscillating tube. The filtered frequency is used to
create two waveforms: a sine and a cosine. The measured sensor
signal is multiplied with both waveforms and then filtered with a
low-pass filter (LPF):

s1 sin ðωacttÞ ¼ A1 sin ðωacttþϕ1Þ sin ðωacttÞ

¼ A1

2
ð cos ðϕ1Þ� cos ð2ωacttþϕ1ÞÞ-

LPF ¼ A1

2
cos ðϕ1Þ ð21Þ

s1 cos ðωacttÞ ¼ A1 sin ðωacttþϕ1Þ cos ðωacttÞ ¼ A1

2
ð sin ðϕ1Þ

þ sin ð2ωacttþϕ1ÞÞ-
LPF ¼ A1

2
sin ðϕ1Þ ð22Þ

This calculation thus results in two DC values, dependent on the
phase difference ϕ1, between the sensor signal s1 and the newly
introduced waveform. Effectively the phase demodulation shifts
the frequency of the sensor signals by the actuation frequency. The
phase, independent of the amplitude A1 of the sensor signals, is
calculated as follows:

A1

2
cos ðϕ1Þ

A1

2
sin ðϕ1Þ

¼ tanϕ1-ϕ1 ð23Þ

The same is done for the second sensor, resulting in ϕ2. This
results in a phase difference between the two sensor signals:

Δϕ¼ϕ1�ϕ2 ð24Þ
The phase difference divided by the measurement sensitivity
(Eq. (20)) results in an estimation of the mass-flow.

The low pass filter is the key in the trade-off between speed of
the flow measurement and the measurement noise. A lower cut-
off frequency reduces the amount of measurement noise, but also
reduces the response time.

3.3. Transmissibility external vibrations

In the previous subsection we showed that the Coriolis displace-
ment is a measure to calculate the mass-flow. In this section we
show that besides a mass-flow, external vibrations result in a
Coriolis displacement. The influence of external vibrations on the
Coriolis displacement, expressed in the Laplace s-domain, is equal to

ycorðsÞ ¼ Tycor;a0
ðsÞa0ðsÞ ð25Þ

where Tycor;a0
ðsÞ is determined using the State Space model (Eq. (8))

and the Coriolis displacement definition (Eq. (16)). The model has in
total 6 inputs, 3 translations and 3 rotations, combined in one vector
a0 ¼ fax; ay; az;αRx;αRz;αRzgT . Besides the Coriolis displacement as
an output, we also define the actuation displacement (Eq. (15)) as
output. The MIMO system has 2 outputs and 6 inputs. This is a
model with in total 12 transfer functions. The transmissibility
functions of external accelerations a0 to the actuation and Coriolis
displacements are depicted in Fig. 5.

The figure only shows three transfer functions, instead of the
12 we calculated. This is because the magnitude of the other nine
is below �300 dB, which is approximatively zero, compared to the
three remaining transfer functions.

The Coriolis displacement is influenced by a translation in
y-direction and a rotation around the x-axis. Resonance frequen-
cies are visible at the Coriolis modes (39.7, 188 and 525 Hz). And
the actuation displacement is influenced by a rotation around the
z-axis. In the transfer function, resonance frequencies are visible at
the actuation modes. (87 and 353 Hz). The different modes are
depicted in Fig. 3. Those three dominant directions can be
explained using the couplings matrix between the modes of
mechanism and the input vector:

VTM12a0 ¼ Fdisa0

¼

0:00000 �0:00703 0:00000 0:00007 0:00000 �0:00000
�0:00684 �0:00000 �0:00001 �0:00000 �0:00010 0:00018
0:00000 0:00000 0:00000 �0:00000 0:00000 �0:00013
0:00000 0:00598 �0:00000 0:00015 0:00000 �0:00000
�0:00003 0:00000 0:00837 0:00022 0:00000 0:00000
0:00425 0:00000 0:00003 0:00000 �0:00015 �0:00011
�0:00000 0:00000 0:00000 �0:00000 �0:00000 �0:00002
0:00000 0:00151 0:00000 0:00003 �0:00000 �0:00000

2
66666666666664

3
77777777777775
a0

ð26Þ

Fig. 5. Transmissibility of external vibrations to the Coriolis and actuation dis-
placement (the rest of the transfer functions has a gain lower then �300 dB).
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The Coriolis displacement, see Eq. (19), measures only the dis-
placements of the first, fourth and eighth mode. When we look at
the rows 1, 4 and 8, we see that there are only non-zero values in
the columns two and four. This indicates that the Coriolis dis-
placement is only influenced by a translation in y-direction and a
rotation around the x-axis.

The phase difference is a function of the Coriolis and actuation
displacement (Eq. (17)). Those displacements is not only intro-
duced by the actuation and due to a mass-flow, but also by
external vibrations, resulting in an erroneous phase difference:

ΔϕðsÞ ¼ 2
ycorðsÞ
yactðsÞ

� 2
jyact j

Tycor ;a0 ðsÞa0ðsÞ ð27Þ

where jyact j is the amplitude of the actuation mode. This ampli-
tude is kept constant, using feedback control.

3.4. Measurement error

In Section 3.2.1, is explained how a phase difference between
the sensor signals is calculated, using phase demodulation. In the
frequency domain, this is similar to a bandpass filter around
frequency ω3 and a frequency shift. First, we add the bandpass
filter to Eq. (28) and obtain a transmissibility of external vibrations
to the phase difference:

TΔϕ;a0 ðsÞ ¼
2

jyactj
Tycor ;a0 ðsÞ FðsÞ ð28Þ

where F(s) is a band-pass filter with a bandwidth two times the
cut-off frequency of the low-pass filter, used in the phase demo-
dulation algorithm. In Fig. 6 the dominant transmissibility includ-
ing a 10 Hz band-pass filter around the frequency ω3 is depicted.

The external vibrations can be a broadband disturbance and the
output is a low-frequent measurement value, due to the frequency
shift. The cumulative influence is investigated by looking to the
cumulative mean square response over the whole frequency range
ν, which is given by

σ2Δϕ ¼
Z 1

0
jTΔϕ;a0 ðνÞj2Φa0 ðνÞ dν ð29Þ

where Φa0 is the Power Spectral Density (PSD) function of the
disturbance and TΔϕ;a0 the modelled transmissibility of external
vibrations to a phase difference, as partly depicted in Fig. 6.

Due to the low-pass filter in the phase demodulation, only
disturbances around the actuation frequency and the Coriolis
frequency have an influence on the phase difference, see Fig. 6.

The result is that a disturbance with a frequency close to the
actuation frequency has a direct impact on a mass-flow reading. In
the following section the modelled influence of external vibrations
on a mass-flow measurement value is validated experimentally.

4. Model validation

In this section the modelled influence of external vibrations on
a mass-flow measurement is validated. The first subsection
explains the experimental setup. Second, the transmissibility
functions of external vibrations to the actuation and Coriolis
displacement are validated. Third, the influence of broadband
external vibrations on the mass-flow measurement value is
compared with the estimated value from the model.

4.1. Experimental setup

To estimate the transmissibility functions, the reference instru-
ment is mounted on a 6-DOF vibration isolation setup (Fig. 7). The
platform is suspended at a low frequency in all directions (about
22 Hz), using a Stewart type platform, mounted on a rigid floor
plate. The platform is actuated by six voice coil actuators. For each
direction, the vibrations of the platform are measured using
accelerometers. Using a rigid body model, the relation between
the sensor coordinates q and Cartesian coordinates x¼ fx; y; z;
θx;θy;θzgT is derived as

x¼ Rq ð30Þ
The accelerometers on the platform are colocated with the voice
coil actuators. Therefore, the matrix R�1 is used also to apply
forces in the Cartesian coordinate system. The inverse is possible
because the use of 6 sensors and 6 Cartesian coordinates. More
details of the experimental setup are given by Tjepkema [17].

The measurements are performed using a National Instruments
NI4472 card using a 24 kHz sample-rate with 24-bit resolution. To
determine the transmissibilities, the platform is excited using the
voice coil motors as shakers. These shakers provide a multi-sine
signal, containing frequencies between 1 and 550 Hz. Acceler-
ometers (Endevco 7703A-1000) on the platform body are used to
measure the input disturbance a0, while optic sensors inside the
CMFM are used to measure the tube-window displacement.

Power Spectral Densities (PSD) of the different discrete-time
signals are estimated via Welch's method. To apply the method,
we use the Matlab function pwelch. In total a dataset of 60 s of
measurement is used. To reduce the noise level, the method uses a
24k-point symmetric Hanning window. The performance is eval-
uated by the transmissibility function. This transfer function is
estimated with the Matlab function tfestimate. Again, using a
dataset of 60 s and a 24k-point symmetric Hanning window.

Fig. 6. Transmissibility of external vibrations in the dominant direction ay to
a Coriolis displacement, with and without the phase demodulation including
a 10 Hz band-pass filter.

Fig. 7. Shaker setup – the CMFM (Fig. 1) is mounted on a Stewart platform. Voice
coil actuators are used to apply forces on the low frequent (22 Hz) suspended
platform and accelerometers are used to measure the platform vibrations a0.
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4.2. Transmissibility

In this subsection the transmissibilities of external vibrations to
the actuation and Coriolis displacement are validated. The mod-
elled functions are given in Section 3.3. First, the three dominant
directions are estimated and second, we validate that the three
functions are sufficient enough to describe the sensitivity of
external vibrations.

4.2.1. Dominant directions
In section 3.3, we explained that are three dominant directions

of the 6 external vibrations to the actuation and Coriolis displace-
ment. In this section, we validate those three directions, using the
setup described in Section 4.1. The actuators excite the platform
with a random signal in one direction only and the sensors
measure the displacement of the tube-window and the accelera-
tions of the platform. Based on both datasets a transfer function is
estimated. This is done for all three dominant directions.

The results of the three experiments are given in Fig. 8. The
modelled results agree well with the experimental results. Clearly
visible are the undamped resonance frequencies of 42 and 88 Hz
and the gain is as expected. The estimated transmissibility Tycor ;αRx

shows an extra peak at 22 Hz. This is a resonance frequency of the

platform. In this measurement the platform is not only rotating,
but also translating in y-direction with frequencies mainly around
the suspension frequencies. Because the transmissibility Tycor ;ay is
larger than Tycor ;αRx

, we cannot assume an uncoupled system and
we see the effect in the estimation of Tycor ;αRx

.

4.2.2. Broadband 3D disturbance
In the previous subsection we showed three dominant direc-

tions. Now, we need to know if those three functions are indeed
the important directions. Therefore, we apply a frequency depen-
dent force in all six directions and measure the actuation and
Coriolis displacement, and the six disturbances. Now, the mea-
sured and the estimated displacement can be compared. The
frequency content of a signal can be described by its Power
Spectral Density (PSD), so we will compare the PSDs of both
signals. The estimated PSDs are calculated as

Φ̂yact ¼ jTyact ;a0 j2Φa0 � jTyact ;αRz j2ΦαRz
ð31Þ

Φ̂ycor ¼ jTycor ;a0 j2Φa0 � jTycor ;ay j2Φay þjTycor ;αRx j2ΦαRx ð32Þ

The actuation displacement is, according to the model, only
dependent on an Rz-disturbance, while the Coriolis displacement

Fig. 8. Transmissibility of external vibrations to the actuation and Coriolis displacement. Experimental results ( ) are compared to the modelled results ( ),
as given in Fig. 5.

Fig. 9. Measurement ( ) compared to the estimation ( ), based on Eqs. (31) and (32).
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is dependent on a y- and Rx-disturbance. The PSDs Φa0 of the
applied external vibrations are shown in Fig. 10 (Experiment 4).
This is an approximately broadband flat disturbance in all transla-
tion and rotational directions. Clearly visible are the resonance
frequencies of the platform. The disturbance is acquired with a
multi-sine disturbance between 1 and 550 Hz. For comparison, the
Vibration Criterion (VC) curves [18] are added. The VC-curves are
meant as upper bounds for the peaks in the external vibration
spectrum. The applied broadband disturbance is not a realistic
external vibration, but is used to compare different CMFMs.

In Fig. 9 the measured PSDs of the actuation and Coriolis displace-
ments are compared to the estimated ones (Eq. (31) and (32)), which
are similar. For Φ̂yact , the largest difference is that there are resonance
frequencies visible at 42, 61, 88 and 183 Hz. This clearly are modes of
the system and do have an influence on the actuation displacement. In
the model they do not turn up, because we assumed perfect sensors: a
pure y-displacement and an equal sensor gain. At low and high
frequencies the noise-level of the sensor is visible.

In practice the actuation displacement is of less importance,
because the actuated displacement is much larger than the effect
of external disturbances. For the mass-flow measurement, the
Coriolis displacement is more important.

The other approximation Φ̂ycor is better. The power density is
equal, except a pole-zero cancellation is visible at 61 Hz. This is an
in-plane mode of the tube-window (Fig. 3(b)). This comparison
confirms that there are indeed only two dominant directions,
regarding the Coriolis displacement.

Another result of this experiment is that the resonance frequen-
cies of the tube-window are estimated. The comparison, for the first

eight resonance frequencies, is given in Table 1. This comparison
confirms that there is a good dynamical model available.

4.3. Flow error

In Section 3.4, we explained how the influence of external
vibrations cumulatively add up to the RMS measurement error. In
this subsection we apply disturbances in all directions with a
different magnitude. Then we compare the RMS measurement value
with the estimated one (Eq. (29)), to validate the influence of
external vibrations. The PSDs of several experiments, with a multi-
sine disturbance between 1 and 550 Hz, are given in Fig. 10. Using
this data, σΔϕ is calculated. The results are given in Table 2. For
experiment 2–5 the estimation is consistent with the measured
value. In the first experiment the measured value is comparable to
the noise floor of the measurement value and the estimation shows
that the noise floor is larger than the effect of external vibrations.

Referring back to Fig. 6, we see that the influence is mainly due to
external disturbances with frequencies around the Coriolis (42 Hz)
and the actuation frequency of 88 Hz. The effect around the actuation
frequency can only be reduced, without affecting the mass-flow
measurement, by lowering the transmissibility function Tycor ;a0 .

5. Discussion

In Section 4, we validated the model and saw that we can
quantitatively estimate the influence of external vibrations on the

Table 1
Comparison of natural frequencies between model and experiment.

Mode Model Experiment Description
f (Hz) f (Hz)

1 39.7 42.2 Coriolis mode
2 60.3 61.1 In plane mode
3 87.0 88.3 Actuation mode
4 188 183 Second Coriolis mode
5 194 193 In plane mode
6 274 238 In plane mode
7 353 335 Second actuation mode
8 525 500 Third Coriolis mode

Table 2
RMS measurement error due to applied disturbance (Fig. 10), values are normalised
by the first value.

Experiment Disturbance
az

Measurement value
instrument

Model estimation
σΔϕ

RMS ðm=s2Þ RMS (rad) (Eq. (29)) (rad)

1 0.0078 1.000 0.2045
2 0.0091 2.037 1.831
3 0.0174 5.680 5.745
4 0.0527 17.63 18.25
5 0.1684 56.20 56.81

Fig. 10. Measured external vibration PSDs Φa0 of 5 experiments compared to VC-curves to show the magnitude of the disturbance. The applied disturbances are relatively
large in comparison to real floor spectra. x ( ), y ( ), z ( ). (a) Translational disturbances – ax ; ay; az . (b) Rotational disturbances – αRx ;αRy ; αRz .
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mass-flow measurement. In this section we show first that the
number of relevant degrees of freedom can be reduced further and
secondly how the measurement error can be reduced.

5.1. Direction dependency

Section 4.2 showed that the Coriolis displacement is influenced
by one translational and one rotational external vibration. Espe-
cially for the rotational input, the point where the external
accelerations are imposed is important. In Fig. 11(a), the front
view of the CMFM FEM model (Fig. 2) is shown. At the bottom, the
coordinate system xyz is given. A y-translation and Rx-rotation
result both in a Coriolis displacement, which is also an out-of-
plane y-translation.

The flow induced displacement is mainly due to the first Coriolis
mode shape, see Fig. 4(b). In Eq. (26), we saw that this mode is
actuated by a y-translation and Rx-rotation, due to the non-zero
values in the columns two and four, on the first row. Now, we can
translate the coordinate system xyz with a z-displacement, resulting
in the new coordinate system x0y0z0 (see Fig. 11(a)). Then again the
matrix Fdis is calculated to see the effect of external vibrations on the
first mode. The effect of a Rx-rotation on the first mode is shown in
Fig. 11(b), by means of Fdisð1;4Þ. The result shows that when the
coordinate system xyz is translated by z=h� 0:4, the influence of a
Rx-rotation on the first mode is approximating zero. Whereby the
location is dependent on the dimensional properties of the tube-
window. Note that thus the measurement of external vibration in the
y-direction on this new point is sufficient to quantitatively estimate
the RMS mass-flow error.

Therefore, the influence of external vibrations can be approxi-
mated quite well by a 1D model of one translational external
vibration to the Coriolis displacement. This can be done with a
mass-spring model, containing the modal mass and stiffness of the
first Coriolis mode.

5.2. Reducing influence of external vibrations

The influence of external vibrations can be estimated, using the
disturbance Φa0 and the transmissibility TΔϕ;a0

(Eq. (29)):

σ2
Δϕ ¼

Z 1

0
jTΔϕ;a0

ðνÞj2Φa0 ðνÞ dν¼
Z 1

0

���� 2
jyact j

Tycor ;a0 ðνÞFðνÞ
����
2

Φa0 ðνÞ dν

ð33Þ

Reducing the disturbance Φa0 by implying stringent requirements
on the surroundings is not possible in many applications. There-
fore, the transmissibility TΔϕ;a0

should be minimal, implying a
good filter algorithm and/or mechanical design of the instrument.

The transmissibility can be reduced by applying passive vibra-
tion isolation. Passive isolation consists of several stages of mass-
spring-damper systems between the floor and the casing of a
machine [19]. The parameters should be adjusted to achieve high-
frequency attenuation. The reduction of the transmissibility will be
subject of future research.

6. Conclusions

In this study a model of a CMFM is derived to understand and
quantify the influence of external vibrations on the mass-flow
measurement. In an experiment predefined vibrations are applied
on the casing of the CMFM and the RMS measurement error is
determined. The experimental results correspond well on a
qualitative and quantitative level with the modelled results.

The result is an significant extension of the work of Cheese-
wright [8], not only the frequencies are shown where the CMFM is
sensitive for external vibrations, but also a quantitative estimation
of the expected mass-flow error is given, based on the modelled
transmissibility function.

The agreement between model and measurements implies
firstly that the influence of any external vibration spectrum on
the flow error, with some limitations due to linearity of the model,
can be estimated. Thereby, the suitability of a certain location for
the placement of a CMFM can be determined. Secondly, the insight
into the relation between vibration spectra and the flow error, the
transmissibility, can be used to compare the performance of
different CMFM designs and to optimise the performance by
shaping their respective transfer functions.
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Fig. 11. Influence of shifting the coordinate system xyz. (a) Front view of the FEM model of the CMFM. The instrument has a height h and external vibrations are imposed at
the origin of the coordinate system xyz. (b) Influence of a Rx-rotational disturbance on the first mode shape, by depicting Fdisð1;4Þ (Eq. (26)) as a function of the displacement.
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