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ABSTRACT

Uncertainties in high flows originating from greenhouse gas emissions scenarios, hydrological model

structures, and their parameters for the Jinhua River basin, China, were assessed. The baseline (1961–90) and

future (2011–40) climates for A1B,A2, and B2 scenarios were downscaled from the general circulationmodel

(GCM) using the Providing Regional Climates for Impacts Studies (PRECIS) regional climate model with

a spatial resolution of 50 km 3 50 km. Bias-correction methods were applied to the PRECIS-derived tem-

perature and precipitation. The bias-corrected precipitation and temperature were used as inputs for three

hydrological models [modèle du Génie Rural à 4 paramètres Journalier (GR4J), Hydrologiska Byråns
Vattenbalansavdelning (HBV), and Xinanjiang] to simulate high flows. The parameter uncertainty was
considered and quantified in the hydrological model calibration by means of the generalized likelihood un-
certainty estimation (GLUE) method for each hydrological model for the three emissions scenarios. It was
found that, compared with the high flows in the baseline period, the high flows in the future tended to decrease
under scenarios A1B, A2, and B2. The largest uncertainty was observed in HBV, and GR4J had the smallest
uncertainty. It was found that the major source of uncertainty in this study was from parameters, followed by
the uncertainties from the hydrological model structure, and the emissions scenarios have the smallest un-
certainty contribution to high flows in this study.

1. Introduction

Water resources are of key importance to human society

and are also vulnerable to climate change. In recent years,

climate change has changed water availability, accelerated

floods and droughts, increased frequency of heavy pre-

cipitation events, and raised sea levels (Houghton et al.

2001). The impacts are occurring and are expected to

continue in many regions of the world (Pachauri and

Reisinger 2007). Therefore, investigating the impact of

climate change on hydrology and water resources has be-

come more important in recent decades (Bauwens et al.

2011; Zhang et al. 2011; Kerkhoven and Gan 2013; Tian

et al. 2013). However, there are many sources of un-

certainty in climate change impact analysis, bringing a big

challenge to current water management under climate

change (New and Hulme 2000; Refsgaard et al. 2006; Xu

et al. 2013). In general, the uncertainty in simulating future

discharges under climate change is mainly from the global

climatemodels (GCMs), emissions scenarios, downscaling

methods, hydrological models, and their parameters.

Given the fact that these uncertainties cannot be reduced

easily, it is necessary to investigate and quantify the un-

certainties for robust decision making in water manage-

ment under climate change.
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The outputs from GCMs could be used to drive the

hydrological models for large-scale hydrological appli-

cations. However, the spatial resolution of GCMs gen-

erally is too coarse since many hydrological models are

applied to catchment scales, which require data with

a higher resolution (Wigley et al. 1990). The mismatch

between the spatial resolutions introduces uncertainty

and cannot be neglected. There are generally two kinds

of methods to downscale coarse-scale information of

GCMs to the spatial scale of catchments, that is, statis-

tical and dynamical downscaling (Wilby et al. 1998,

1999). Statistical downscaling is based on established

empirical relationships between circulation indices at

the large scale and predictive variables at the local scale.

However, the results from statistical downscaling

methods may not always be meteorologically consistent

with GCMs. The advantage of dynamical downscaling is

that it resolves atmospheric processes and is consistent

with the GCMs (Wilby et al. 2002). Although differ-

ences in parameterizations, numerical techniques, ver-

tical resolution, and even regional model domain may

cause differences in results of regional climate models

(RCMs), the downscaling uncertainty could be con-

strained by linking regional impacts to natural regime

frequencies (Raje and Mujumdar 2010). RCMs have

shown great advantages over GCMs in describing the

regional climate variables, especially extreme climatic

events (Bell et al. 2004).

Besides, different greenhouse gas emissions scenarios

reflect different assumptions of the mode of de-

velopment for the future. A number of studies have

been carried out to investigate climate change impacts

on discharges in many regions using different scenarios.

Arnell (2003) used a macrohydrological model to study

the effects of emissions scenarios on river runoff at

a spatial resolution of 0.58 3 0.58. The results indicated

that the pattern of change in runoff is largely determined

by simulated changes in precipitation. Similar results

have also been obtained by other studies, which show

that changes of runoff are proportional with the changes

in rainfall (Boorman and Sefton 1997). Gosain et al.

(2011) used a single scenario (A1B) and a single hy-

drological model [Soil and Water Assessment Tool

(SWAT)] to quantify the impact of climate change on

the water resources in India. The results show that de-

spite the increase in precipitation, the water yields de-

creased with 30% for the near term and 50% for the long

term. Driessen et al. (2010) used multiple scenarios

(A1B, A2, and B1) and a single hydrological model

[Hydrologiska Byråns Vattenbalansavdelning (HBV)]
to study changes in discharge in the Ourthe catchment in
Belgium. They found a decrease in summer and an in-
crease in winter runoff for all scenarios. Most studies

focused on applying different scenarios to a single hy-
drological model. Few studies have assessed model un-
certainties under different scenarios. Jones et al. (2006)
applied artificial scenarios to three lumped rainfall–

runoff models for Australian catchments. They found

out that the sensitivity of hydrological models is influ-

enced by model structure and parameterization and

runoff is about 3–5 times more sensitive to rainfall than

to potential evapotranspiration. Najafi et al. (2011)

moved a step forward by quantifying the uncertainty in

different steps of the climate change impact assessment,

using eight GCMs and four hydrological models under

the A1B and B1 scenarios. The results indicated that the

dominant uncertainty is from GCMs. They also em-

phasized that the differences in the changes between

projected runoff in the future and the historical runoff

are directly related to the choice of the GCM structure.

Another key source of uncertainty that cannot be

neglected in water resources assessment is related to the

hydrological models used, includingmodel structure and

parameters. Hydrologists used to search for an optimal

parameter set through calibrating model parameters

using observed catchment responses. However, the fact

is that it is not possible to assume an optimum model

structure or an optimum set of parameters that could

represent many situations in reality, and the uncertainty

of parameters should be considered when assessing the

uncertainty in hydrological prediction (Beven 2006).

More recently, various methods concerned with un-

certainty in parameter estimation have been proposed

and extensively used, such as generalized likelihood

uncertainty estimation (GLUE; Beven and Binley 1992)

and Markov chain Monte Carlo (MCMC; Vrugt et al.

2003). They are both Monte Carlo–based methods for

estimating the model uncertainties. Besides, un-

certainties from different sources could be combined by

the Bayesian model averaging (BMA) approach

(Raftery et al. 2005; Parrish et al. 2012) by assigning

weights to the sources. The GLUE method represents

an extension of Bayesian theory by using an informal

likelihood measure to avoid overconditioning in dealing

with uncertainty estimation (Beven et al. 2000). This is

a remarkable aspect of the GLUE method and also the

major difference with the Bayesian approach (Jin et al.

2010).

In many hydrological studies related to the un-

certainty of climate change impacts, different GCMs,

downscaling methods, and hydrological models have

been used to estimate the changes and uncertainties of

discharges for different emissions scenarios. However,

some of them used the combination of a single scenario

and a single rainfall–runoff model, some used multiple

scenarios and a single rainfall–runoff model, and a few
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have applied multiple scenarios and multiple rainfall–

runoff models. To our knowledge, there is a very limited

number of studies that incorporate the uncertainty from

parameters of different rainfall–runoff models in as-

sessing effects of uncertainties of climate change on

hydrology. Kay et al. (2009) systematically estimated the

flood frequency with uncertainty under climate change

considering various sources of uncertainty (using four

scenarios, five GCMs, eight RCMs, and two hydrologi-

cal models). The results showed that the uncertainty

from GCMs was generally larger than that related to

emissions or hydrological models. However, the study

was based on the single propagation of each source of

uncertainty, and the propagation of multiple sources of

uncertainty at once was not included. Furthermore, high

flows have received much attention, as it is recognized

that flooding often results in a great loss of human life

and possession, and the damage is more serious in

a densely populated region (Rebora et al. 2013). Much

work has been done on the analysis of high flows under

climate change in developed regions (Middelkoop et al.

2001; Booij 2005; Hannaford and Marsh 2008; Leander

et al. 2008; Kay et al. 2009). However, relatively few

studies were carried out for developing countries like

China, and the uncertainties of high flows under climate

change are less frequently studied compared to un-

certainties in mean discharges. Therefore, we attempt to

investigate uncertainties in high flows in a catchment in

the east of China, where climate change may have con-

siderable impacts on local hydrology (Xu et al. 2012).

In the present study, we put the emphasis on un-

certainties in high flows in the near future (2011–40).

Our aim is to assess to what extent emissions scenarios,

hydrological models, and parameters exert impacts on

high flows. The impacts of human activities such as

reservoirs on high flows are not considered in this study

in order to focus on climate change impact analysis. The

research is carried out by using three emissions scenar-

ios, three hydrological models, the GLUE method for

estimation of parameter uncertainties, and the regional

climate model Providing Regional Climates for Impacts

Studies (PRECIS). The three scenarios A2, A1B, and

B2 represent different temperature increases in the fu-

ture, ranging from high to low, and different pre-

cipitation changes. The rainfall–runoff models we used

have different numbers of parameters and different

structures that represent the uncertainty in under-

standing the real physical processes. Uncertainties in

high flows are propagated through emissions scenarios,

hydrological models, and parameters. The study of un-

certainties in high flows in the future can be supportive

for water resources planning in the long term in eastern

China and in China as a whole.

This paper is organized as follows. In section 2, a brief

description of the hydrological and meteorological

background of the case study area is provided, followed

by an introduction of climate change scenarios, climate

models, and hydrological models. Moreover, the bias-

correction method and GLUEmethod are described. In

section 3, the results of the study are shown, including

the performance of the hydrological models, the effec-

tiveness of the bias-correction method and the quanti-

fied uncertainties from the emissions scenarios,

hydrological model structures and hydrological param-

eters. In section 4, the discussion of the results is given

and in section 5 the conclusions from our analysis are

drawn.

2. Methods

In this study, we focus on the annual maximum dis-

charge with uncertainties from emissions scenarios, hy-

drological model structures, and parameters of the

hydrological models. The proposed framework of the

study is shown in Fig. 1. The uncertainty in scenarios is

represented by the variability among scenarios A1B,

A2, and B2. The uncertainty in hydrological model

structures is represented by the variability among the

modèle du Génie Rural à 4 paramètres Journalier
(GR4J), HBV, and Xinanjiang models. The uncertainty
in parameters of hydrological models is represented by
behavioral parameter sets in 30 000 randomly selected

parameter sets.

a. Study area

This study is carried out for Jinhua River basin, a sub-

basin ofQiantangRiver basin, which is the largest river in

Zhejiang Province located in eastern China (Fig. 2). The

origin of Jinhua River is in the higher mountain area that

forms a natural boundary for the basin. Two tributaries,

the Yiwu River and the Wuyi River, join in Jinhua city

and form the Jinhua River. Finally, the Jinhua River

flows northwest into the Qiantang River. The drainage

area of the Jinhua River basin is 5996km2 and is char-

acterized by a hilly landscape, so the floods come and go

quickly after a rainfall event. The basin is dominated by

a subtropical monsoon climate. The interseasonal vari-

ability of temperature and precipitation is large. There is

abundant rainfall caused by the confrontation of the cold

air from the north and warm air from the south, and

another main cause is typhoons. The average annual

precipitation is 1386mm for the period of 1953–2008,

with a minimum of 890mm and a maximum of 1830mm.

The annual mean temperature is about 178C. In winter,

the lowest temperatures are below 08C and the highest

temperatures are up to 408C in summer.
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Jinhua is one of the most densely populated and eco-

nomically developed cities in Zhejiang Province. However,

flooding is one of the most serious natural disasters in this

region, which has posed a large threat to the safety of local

people and their possessions (Wen et al. 2006). Our study is

carried out for JinhuaRiver basin to assess theuncertainty of

high flows under future climate change. The information of

the observed data are listed in Table 1. Long-term observed

daily data are available, including daily precipitation from

1961 to 1995 from five precipitation stations, daily temper-

ature from 1961 to 1990 from a meteorological station, and

daily discharge from 1981 to 1995 from the Jinhua hydro-

logical station. The observed dataset is used for bias cor-

rectionof thePRECISoutput (1961–90), hydrologicalmodel

calibration (1981–90), and model validation (1991–95).

The potential evapotranspiration is estimated using the

Hargreaves equation (Hargreaves and Samani 1983).

b. Climate change scenarios

Climate change scenarios are a set of images for the

possible future based on different paths of economic de-

velopment, which are used to assess the future vulnera-

bility to climate change by projecting the greenhouse gas

emissions. In 2000, the Intergovernmental Panel on Cli-

mate Change (IPCC) developed four different storylines

(six emissions scenarios) to describe how the world might

develop in the future, including population and economic

growth patterns, energy consumption, and technological

development (Naki�cenovi�c and Swart 2000). In this paper,

we choose three scenarios from the IPCC report, which are

A1B, A2, and B2, since these three scenarios are typical

development modes. A1B describes a future world with

very rapid economic growth based on a balanced techno-

logical change in the energy system. A2 describes a het-

erogeneous future world with increasing population and

regionally oriented economic development. B2 describes

a futureworldwith continuously increasing population and

intermediate levels of economic development.

c. GCM and PRECIS

Global climate models are often employed to esti-

mate the impact of future greenhouse gas emissions

scenarios on the global climate. However, GCMs have

a coarse spatial resolution, usually about 200–300 km.

To make a thorough assessment, more regional de-

tails of how future climate might change, including

changes in variability and information on extreme

events, are needed for impact analysis studies (Arnell

et al. 2003).

The Hadley Centre Coupled Model, version 3

(HadCM3) is a coupled atmosphere–ocean GCM that

has been widely used for climate prediction and sensi-

tivity studies. It has 19 vertical levels with a horizontal

resolution of 2.58 3 3.758. The GCM was developed at

the Hadley Centre and was described by Gordon et al.

(2000).With the boundary conditions of HadCM3, the

PRECIS RCM has been implemented for the A1B, A2,

and B2 emissions scenarios. PRECIS has been used in

many other regions in the world, including South Asia

(Akhtar et al. 2008, 2009) and South America (Buytaert

et al. 2010), and hence is used in this study. The PRECIS

RCM is based on the atmospheric component of

HadCM3 and is extensively described in Jones et al.

(2004). The atmospheric dynamicsmodule of PRECIS is

a hydrostatic version of the full primitive equations and

uses a regular longitude–latitude grid in the horizontal

and a hybrid vertical coordinate. For this study, the

PRECIS model domain has been set up with a horizon-

tal resolution of 50 km 3 50 km. The domain is roughly

stretched over latitudes 28.158–29.458N and longitudes

119.158–120.758E. The PRECIS precipitation and com-

puted potential evapotranspiration using projected

temperature are used to drive the hydrological models

for the baseline period 1961–90 and the future period

2011–40.

d. Bias correction

Model biases in RCMs may cause errors in outputs,

which may bring uncertainty to hydrological simulations

when climate data are used in hydrological models

(Ueyama et al. 2010). Therefore, bias correction is

necessary tomatch theRCMdata with observed data. In

our study, distribution-based scaling (DBS) is applied to

adjust the future daily precipitation of PRECIS (Wood

et al. 2002). It corrects the biases of both the frequency

and intensity distribution of daily PRECIS precipitation

for each month. It consists of two steps:

1) Correction of the precipitation frequency. Daily

precipitation from the PRECIS model was truncated

at a threshold based on its distribution. A threshold

value is calculated based on the empirical observed

FIG. 1. The framework of the study.
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and PRECIS cumulative precipitation distribution as

follows:

Pthr 5F21
RCM[Fobs(Pobs)] , (1)

where Pthr is the threshold value, Pobs is the mini-

mum observed precipitation amount considered as

a wet day (here we use 0.1mm), Fobs(. . .) is the em-

pirical cumulative distribution function of observed

daily precipitation, and F21
RCM(. . .) is the inverse cumu-

lative distribution function of RCM precipitation.

2) Correction of the precipitation intensity. One of the

most commonly used distributions to describe the

cumulative distribution function of precipitation in-

tensities is the two-parameter gamma distribution. In

this study, both observed and simulated precipitation

intensity are represented by the gamma distribution.

The bias-corrected precipitation can be calculated as

follows:

Pcor 5F21
obs[FRCM(PRCM)] , (2)

where Pcor is the corrected daily precipitation, PRCM

is the truncated RCM precipitation, FRCM(. . .) is the

two-parameter cumulative distribution of truncated

RCM precipitation, and F21
obs(. . .) is the inverse

gamma cumulative distribution of observed data.

To correct the daily temperature, a different method

is used. It adjusts the mean temperature of PRECIS by

adding the difference between simulated and observed

monthly mean temperature to the daily temperature in

the corresponding month in the future. The corrected

daily temperature was obtained as follows:

Tcor 5TRCM 1 (Tobs 2TRCM), (3)

where Tcor is the corrected daily temperature, TRCM is

the daily temperature from PRECIS, Tobs is the ob-

served monthly mean temperature, and TRCM is the

monthly mean temperature from PRECIS.

e. Hydrological models

There is a large variety of hydrological models with

different levels of complexity, but no model is perfect

in characterizing the real hydrological interactions.

Models are supposed to be chosen according to the study

region, basin characteristics, available data, and study

purposes, but often the model selection is subject to the

taste of the modeler and rarely is an objective model

selection conducted (Najafi et al. 2011). In this study, we

choose three lumped rainfall–runoff models of different

complexities to study the hydrological response to cli-

mate change: GR4J, HBV, and Xinanjiang (Table 2).

GR4J, which contains four parameters with quick and

slow flow components, was developed based on GR3J

(Edijatno et al. 1999; Perrin et al. 2003). The four pa-

rameters of GR4J are the capacity of the production

store, the groundwater exchange coefficient, the 1-day

ahead capacity of the routing store, and the time base of

the unit hydrograph. There are four submodels in GR4J:

the soil moisture submodel, the effective precipitation

submodel, the slow flow submodel, and the quick flow

submodel. The total runoff is obtained by adding quick

flow and slow flow together.

HBV was originally developed by the Swedish Mete-

orological and Hydrological Institute (SMHI; Bergström
1976, 1992; Lindström et al. 1997). HBV is composed

of a precipitation and snow accumulation routine, a soil

moisture routine, a quick runoff routine, a base flow

routine, and a transformation function. HBV takes the

effect of snow melting and accumulation into account.

FIG. 2. The location of the study area and the distribution of the precipitation stations, meteorological station, and

discharge station.
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However, in the study area it seldom snows in winter,

and therefore snow accumulation and melting are not

used. A linear function is used to calculate the actual

evapotranspiration, which decreases as the soil mois-

ture drops. Two types of runoff reservoirs, the upper

reservoir that generates quick runoff expressed by

a nonlinear function and the lower reservoir that gen-

erates base flow expressed by a linear function, are

included in HBV. Finally, the runoff generated from

these two reservoirs is routed through a transformation

function.

Xinanjiang is a rainfall–runoff model particularly

developed for humid and semihumid regions by Zhao

(1992). In this study, the lumped Xinanjiang model is

implemented. Xinanjiang consists of four components:

an evapotranspiration component represented by

a model of three soil layers, including an upper layer,

a lower layer, and a deep layer; a runoff generation

component that considers the uneven distribution of

runoff producing areas; a runoff production compo-

nent separating the runoff into surface water, interflow,

and groundwater; and a flow-routing component. The

total runoff is finally obtained by adding the sur-

face water, groundwater, and interflow contributions

together.

f. Parameter uncertainty analysis

There are various uncertainty analysis methods like

bootstrapping, Monte Carlo analysis, Bayesian model

averaging, and GLUE. The uncertainty analysis method

we used in this study for the assessment of parameter

uncertainty is the GLUE method. It is easy to imple-

ment, and moreover, it emphasizes that there are many

acceptable parameter sets that cannot be easily rejected

and should be taken into account in assessing the un-

certainty (Beven 2006). There are four steps in the

GLUE method.

First, a large number of parameter sets based on prior

parameter distributions are generated (Tang 1993). In

this study, the prior distribution is represented by

a uniform distribution with upper and lower bounds.

The uniform distribution is recommended by Beven and

Binley (1992) and is also the choice of many other re-

searchers who applied the GLUE method. The upper

and lower bounds of each parameter are based on other

model applications (Zhao 1992; Seibert 1997; Perrin

et al. 2003) where the potential feasible parameter

values were given. Particularly, Xinanjiang was origi-

nally developed for the same river basin. The ranges for

each parameter are shown in Table 3.

Second, a likelihood function is defined, a corre-

sponding threshold value for behavioral parameter

sets is chosen, and the likelihood values are cal-

culated. The well-known Nash–Sutcliffe efficiency

(NSE) coefficient is chosen as the likelihood function.

NSE ranges from 2‘ to 1. A larger NSE means better

matches between simulated data and observed data,

and NSE 5 1 means a perfect match between simu-

lations and observations. A value of 0.7 is used as

the threshold for determining behavioral or non-

behavioral parameter sets, which means parameter

sets resulting in NSE values less than 0.7 are rejected.

In total, 30 000 parameter sets are generated for each

model. Behavioral parameter sets are feasible pa-

rameter sets that are able to simulate observational

data with similar levels as the optimum parameter set

TABLE 1. Information for precipitation, meteorological, and discharge stations.

Lat (8N) Lon (8E) Time series Duration (years)

Precipitation stations Jinhua 29.08 119.62 1961–95 35

Bada 29.20 120.50 1961–95 35

Yiwu 29.30 120.07 1961–95 35

Yongkang 28.90 120.02 1961–95 35

Zhengzhai 28.90 119.63 1961–95 35

Meteorological station Jinhua 29.08 119.62 1961–90 30

Discharge station Jinhua 29.08 119.62 1981–95 15

TABLE 2. Hydrological model description.

GR4J HBV Xinanjiang

Country France Sweden China

Version Lumped Lumped Lumped

Numbers of parameters 4 8 15

Soil layers for evaporation 1 1 3

Flows component Slow and quick Base and quick Surface, ground, and interflow
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(Beven and Freer 2001). Around 30% of the parame-

ter sets are above the threshold.

Third, the posterior likelihood distribution for be-

havioral parameter sets is calculated. The behavioral

parameter sets are retained. The likelihood values of

these behavioral parameter sets are considered as their

likelihood weights. All the weights are rescaled, so that

the sum is equal to 1.

Finally, the quantiles for the predictions at every time

step are estimated based on the cumulative likelihood

weighted distributions. Lower 5% and upper 95%

quantiles are regarded as the boundaries of 90% confi-

dence intervals.

g. Model calibration and validation

The parameter ranges used in the GLUE method are

listed in Table 3. The objective function for the cali-

bration is the Nash–Sutcliffe efficiency coefficient:

NSE5 12

�
T

i51

[QS(i)2QO(i)]
2

�
T

i51

[QO(i)2QO]
2

, (4)

where QS is the simulated daily discharge, QO is the

observed daily discharge, i is the number of days, and T

is the total number of days.

Meanwhile the relative volume error (RVE) is cal-

culated as a reference indicator of the performance of

the models, which is used in this study for checking the

total water balance:

RVE5 1003

�
T

i51

[QS(i)2QO(i)]

�
T

i51

QO(i)

. (5)

GR4J, HBV, and Xinanjiang require precipitation and

potential evapotranspiration (PET) as inputs. For cali-

bration and validation purposes, the daily discharge is

also needed. The parameters of the models are cali-

brated by the GLUE method using the observed daily

precipitation and PET estimated by the Hargreaves

equation from 1981 to 1990. Four, eight, and ten pa-

rameters are included in the calibration of GR4J, HBV,

and Xinanjiang, respectively. The validation of the three

models is carried out for the period from 1991 to 1995.

The bias-corrected precipitation and temperature of

PRECIS are used to drive the hydrological models to

calculate the future discharges from 2011 to 2040. The

historical and future discharges will be compared.

3. Results

a. Bias-correction results

Figure 3 shows the monthly mean precipitation and

mean temperature of Jinhua River basin. The results of

bias-corrected precipitation and temperature from the

TABLE 3. Parameters of GR4J, HBV, and Xinanjiang and their ranges used for the GLUE method.

Model Parameter Explanation Min Max Unit

GR4J X1 Capacity of the production store 10 2000 mm

X2 Groundwater exchange coefficient 28 6 mm

X3 One day ahead capacity of the routing store 10 500 mm

X4 Time base of the unit hydrograph 0 4 day

HBV FC Max soil moisture capacity 100 500 mm

LP Soil moisture threshold for reduction of evapotranspiration 0.3 1 —

BETA Shape coefficient 1 5 —

CFLUX Max capillary flow from upper response box to soil moisture zone 1 2 mmday21

ALFA Measure for nonlinearity of low flow in quick runoff reservoir 0 1 —

KF Recession coefficient for quick flow reservoir 0.01 0.5 day21

KS Recession coefficient for base flow reservoir 0.001 0.1 day21

PERC Max flow from upper to lower response box 0 6 mmday21

Xinanjiang SM Areal mean free water capacity of the surface soil layer 5 50 mm

KG Outflow coefficient (from free water to groundwater) 0.001 0.899 —

KI Outflow coefficient (from free water to interflow) 0.001 0.899

CS Recession constant of the surface storage 0.01 0.9 —

CI Recession constant of the interflow storage 0.05 0.9 —

CG Recession constant of the groundwater storage 0.8 0.99 —

B Representation of the nonuniformity of the spatial distribution 0.2 2.5 —

UM Soil moisture storage capacity of the upper layer 15 45 mm

LM Soil moisture storage capacity of the lower layer 30 80 mm

DM Soil moisture storage capacity of the deep layer 40 90 mm
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PRECIS model are compared with the outputs of

PRECIS without bias correction and observations for

the baseline period from 1961 to 1990.

The smallest precipitation amount is obtained in De-

cember and is about 50mm, which is consistent with the

observations. However, compared to the observations,

there are obvious biases in the uncorrected PRECIS

outputs. It underestimates the precipitation for April,

May, and June. The amount of observed precipitation is

the largest in June with 240mm, while themonthlymean

precipitation from PRECIS is 230mm. For July, August,

and September, PRECIS significantly overestimates the

observed precipitation. After bias correction, the de-

viation is reduced for each month and the PRECIS

precipitation is closer to the observations. Figure 3b

shows the temporal distribution of mean monthly tem-

perature. The highest monthly mean temperature is

close to 308C in July. The lowest monthly mean tem-

perature is 58C in January. It can be seen that the un-

corrected PRECIS temperature is 28C higher than the

observations on average.

b. Performance of hydrological models

The NSE and relative volume error values for the

three models are shown in Table 4. The results of the

calibration and validation show that in terms of NSE,

GR4J has the best performance, with a value of 0.91

for the calibration and 0.93 for the validation. The

smallest NSE value is from Xinanjiang, with 0.88 and

0.89 for calibration and validation, respectively. The

performance of HBV is in between. It can be seen from

RVE that GR4J overestimates the total discharge

volume with a positive RVE value, while HBV un-

derestimates the total discharge volume with a nega-

tive RVE value. For Xinanjiang, the absolute value of

RVE is larger than for the other two models. Com-

pared with other hydrological modeling studies,

overestimation of the discharge by using GR4J is also

found with an optimum NSE value of 0.75 (Harlan

et al. 2010). Seibert (2000) used a multicriteria cali-

bration method for HBV and suggested that the usage

of efficiency mainly focused on high-flow conditions

while the low-flow conditions could be better fitted by

using other objective functions. Li et al. (2009) applied

three versions of Xinanjiang to estimate daily runoff,

and the NSE values were 0.84, 0.85, and 0.87, re-

spectively. There is no direct relationship between

NSE and RVE. In this study, the RVE is not the cali-

bration objective function, but serves as a reference

measure for the model performance.

c. High flows in the baseline period

The behavioral parameter sets in the three models

from the GLUE method were used to estimate the

parameter uncertainties expressed as 90% confidence

interval (CI), which are shown as the intervals between

the straight lines or the dashed lines in Fig. 4. Two

sets of input data—the observed precipitation and

temperature-derived PET from 1961 to 1990 and the

bias-corrected precipitation and temperature-derived

PET from PRECIS—are used to drive the three models.

The results from two sets of input are compared. The

annual maximum discharge (MHQ) was chosen to rep-

resent high flows in this study. The straight lines have been

obtained by fitting a generalized extreme value (GEV)

distribution to the annual maximum discharge values.

Further, the observations (circles) are compared with

simulated MHQ with observed inputs from optimum

parameter sets (crosses).

FIG. 3. Monthly mean precipitation and mean temperature for Jinhua River basin with and without bias correction.

TABLE 4. Optimum NSE and corresponding RVE of GR4J,

HBV, and Xinanjiang in the Jinhua River basin for calibration and

validation.

GR4J HBV Xinanjiang

NSE RVE (%) NSE RVE (%) NSE RVE (%)

Calibration 0.91 2.7 0.91 22.5 0.88 214.8

Validation 0.93 2.3 0.91 22.1 0.89 7.8
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FIG. 4. The CI of high flows simulated by (a) GR4J, (b) HBV, and (c) Xinanjiang

with obs and temperature and precipitation from PRECIS as input for the baseline

period 1961–90.
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For all three models, the width of the CI becomes

larger as the return period increases, which means that

the parameter uncertainty increases with the discharge.

In most cases, the CI covers the observed MHQ. For

GR4J andHBV, the observedMHQ is close to the upper

boundaries of the dashes (the CI of MHQ simulated

with observed input) and also close to the lower bound-

aries of the straight lines (the CI of MHQ simulated with

PRECIS inputs). There are obvious differences between

the CI of MHQ simulated with observations and

PRECIS. The CI of MHQ with PRECIS inputs is wider

than that with observations for all three models. Al-

though the precipitation and temperature of PRECIS are

bias corrected and the monthly mean value is close to

the observations, differences still exist in high flows when

the observations and the outputs from PRECIS are used

to drive the models. These differences are significant in

GR4J, where the upper boundary of the CI for MHQ

with observed inputs is somewhat higher than the lower

boundary of the CI forMHQwith outputs fromPRECIS.

Xinanjiang has the largest overlapping areas in the CI of

MHQ simulated with observations and PRECIS. In the

study area, high flows are mainly caused by heavy pre-

cipitation over successive days. Heavy precipitation is

defined as the daily precipitation being greater than

the 95th percentile of precipitation on wet days during

1961–90. The amount and duration of heavy precipitation

are the major aspects that affect the simulation of high

flows. Figure 5 shows the days with heavy precipitation

and amounts of heavy precipitation in each month

for observations, PRECIS outputs, and bias-corrected

PRECIS outputs. Table 5 shows the occurrences of

heavy precipitation in consecutive days for the period

1961–90 for observations, PRECIS outputs, and bias-

corrected PRECIS outputs. Heavy precipitation from

bias-corrected PRECIS outputs resembles the observa-

tions better most of the time (see Fig. 5). However, there

are fewer days with heavy precipitation, but higher heavy

FIG. 5. Comparison of heavy precipitation and annual max precipitation between obs, PRECIS, and PRECIS with

correction.

TABLE 5. Occurrences of heavy precipitation in consecutive days

that happened in 1961–90 for obs, PRECIS, and PRECIS with

correction.

Obs PRECIS

PRECIS with

correction

Consecutive 2 days heavy

precipitation

10 33 24

Consecutive 3 days heavy

precipitation

1 1 0

Consecutive 4 days heavy

precipitation

0 2 2

Consecutive 5 days heavy

precipitation

0 1 1
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precipitation amounts than observed in July and August,

which may indicate larger precipitation intensity in these

two months. Moreover, the annual maximum precip-

itation is larger for PRECIS than that for observations

with the same probability. Bias correction is unable to

change the duration of precipitation very effectively. In

PRECIS, there are more successive days with heavy

precipitation than in the observations. Heavy precip-

itation lasts at most for 3 days for observations in the

period 1961–90, and days with heavy precipitation last at

most for 5 days for PRECIS in the same period (Table 5).

Therefore, there is an overestimation in MHQ even

after bias correction.

The simulated MHQ (the crosses in Fig. 4) catches

the observed ones for HBV and GR4J. For Xinanjiang,

the simulated MHQ is smaller than the observations

for all return periods with a difference ranging from

40 to 800m3 s21. The majority of observed high flows

lay between the upper and lower boundary of the CI for

MHQ with observed inputs. However, for all three

models, they are close to the upper boundaries of the

CI, which indicate that the chance of hydrological

models underestimating high flows is much larger than

overestimating them.

Figure 6 shows the CI of extreme high flows with

a return period of 50 and 100 years simulated by GR4J,

HBV, and Xinanjiang. Both the observed and PRECIS-

simulated climate are used as inputs for the three mod-

els. Observed MHQs are around 3900 and 4040m3 s21

for a return period of 50 and 100 years, respectively. The

CI is obviously larger for a return period of 100 years

than for a return period of 50 years. The values of ob-

served MHQ are within the range of CI estimated with

the observed inputs and close to the top of the bars. The

CI estimated with PRECIS inputs are wider and

obviously higher and for all three models similar results

are obtained, which indicate that the input data has

a dominant impact on the discharges. Extreme high

flows tend to be underestimated using observed data as

inputs and overestimated if the PRECIS data are used as

inputs for the model. In general, the MHQ has a larger

uncertainty range with PRECIS data as inputs than with

observations as inputs.

For the CI estimated with the observations, it shows

that uncertainties expressed as 90% confidence intervals

are the largest for HBV, with 2200–4800 and 2500–

5250m3 s21 for 50- and 100-yr return periods. Un-

certainties are the smallest for GR4J, with 2100–3900

and 2350–4300m3 s21, respectively. The CIs estimated

with PRECIS input are 3900–6600, 3700–8600, and

1800–5900m3 s21 for GR4J, HBV, and Xinanjiang, re-

spectively, for the 50-yr return period. For the 100-yr

return period, they are 4400–7300, 4200–9500, and 2000–

6500m3 s21, respectively.

d. Uncertainties in future projected high flows

In Fig. 7, three graphs show the high flows under sce-

narios A1B, A2, and B2 as a function of their return

periods for the time period 2011–40 and the baseline

period. For all three models, it is remarkable to notice

that compared to the baseline, there would be a slight

decrease of high flows in the future for a return period of 5

years. The decrease in high flows becomes obvious over

the 5-yr return period for all scenarios. When the return

periods are above 5 years, the high flows under scenario

A2 are smaller than those under scenarios A1B and B2

for all three hydrological models in most cases, which

means under scenario A2 future high flows with higher

return periods would decline more than under scenarios

A1B and B2.

FIG. 6. TheCI of extreme high flows simulatedwith observed and PRECIS-simulated climate as input with return

periods of (a) 50 and (b) 100 years for GR4J, HBV, and Xinanjiang compared with observed high flows for the

baseline period 1961–90.
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Furthermore, it can be seen that the CI becomes wider

with increasing return periods. For GR4J, the ranges of

the uncertainty in high flows for the baseline and the

future scenarios are similar. Both the upper and lower

limits of the CI in the baseline are the largest, followed

by the A1B and B2 scenarios, and the A2 scenario has

smaller upper and lower limits of the CI. It illustrates

that the high flows tend to decrease under all three

scenarios, but the uncertainty range does not clearly

change. For HBV, there is a similar simulation as GR4J,

high flows decrease under three scenarios, and the

largest decrease of high flows is under scenario A2. For

Xinanjiang, the lower limits of the CI are similar while

the upper limits differ for the baseline and the future

scenarios. The upper limits of the CI are the highest for

the baseline and are followed by scenarios A1B, B2, and

A2 in sequence from high to low. It is apparent that

although there are differences in the CI of different

scenarios, the markers for all scenarios are within the

ranges of the straight lines derived from the parameter

uncertainty. This indicates that the uncertainties of

the parameters are larger than those of the scenarios.

The ranges of differences in MHQ due to different sce-

narios for return periods of 1–30 years are 25–970, 100–780,

and 60–920m3 s21 for GR4J, HBV, and Xinanjiang,

respectively.

Figure 8 illustrates the MHQ with uncertainties from

different models under scenarios A1B, A2, B2, and the

baseline period. For the baseline period and all scenar-

ios, the MHQs estimated by the three models are close

to each other when the return period is small and the

differences become larger with increasing return pe-

riods. In the baseline period and all scenarios, the MHQ

fromHBV is the largest for almost all return periods and

Xinanjiang has the lowest MHQ. The ranges of differ-

ences in MHQ due to the different hydrological models

for return periods of 1–30 years are 240–1750, 270–1380,

190–1350, and 260–1650m3 s21 for the baseline period

and scenariosA1B,A2, and B2, respectively. The ranges

of differences in MHQ are calculated by the lowest and

highest MHQ from a 1–30-yr return period. The mean

uncertainty range of the MHQ from parameters,

models, and scenarios is also shown in Table 6. Com-

pared to the ranges of the difference of MHQ due to the

scenarios, the difference of the MHQ due to models is

larger for a corresponding return period. It indicates

that the uncertainty of the model structure is larger than

that of scenarios. Further, it is remarkable that the

markers for all models are also covered by the confi-

dence interval due to parameter uncertainty (as shown

in Fig. 7), which means the uncertainties of the param-

eters are larger than that of the model structures.

Therefore, in this study, the major source of uncertainty

in high flows is from parameters, followed by the hy-

drological model structure, and uncertainties from the

scenarios have the smallest uncertainty contribution.

This conclusion is in accordance with the conclusion of

Bastola et al. (2011), who found that the role of the

hydrological model structure is remarkably large, but is

different from the results of Li et al. (2010), who found

out that the parameter uncertainty contributes a rela-

tively small part to the model output uncertainty when

applying the bootstrappingmethod to the SWATmodel.

FIG. 7. High flows with uncertainties as a function of return pe-

riod simulated by (a) GR4J, (b) HBV, and (c) Xinanjiang under

scenarios A1B, B2, and A2 in the baseline period and in the period

2011–40.
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The difference is that in the work of Li et al. (2010), the

model was recalibrated each time after the residuals

were added to the simulation results. As the residuals

were assumed to be independent in time, the deviation

of the recalibrated parameter set from the original one

would be limited.

There are some common characteristics in the four

scenarios in Fig. 8. First, the upper boundary of the CI of

the MHQ for HBV is the highest, which means that it is

more likely to predict a higher MHQ with HBV. Ad-

ditionally, GR4J has a smaller CI than the other two

models, which illustrates that the parameter uncertainty

in GR4J is the smallest. Furthermore, most of the

markers are not in the middle of the CI but are closer to

the upper boundaries for three hydrological models, so

there is a larger chance to underestimate rather than

overestimate the MHQ under the climate change.

We simulated the MHQ with uncertainty using three

hydrological models and extrapolated it to return pe-

riods of 50 and 100 years under the scenarios A1B, A2,

and B2, as shown in Fig. 9. Obviously, the CIs are wider

for a return period of 100 years than for a return period

of 50 years. For all scenarios, GR4J has the smallest CI,

followed by Xinanjiang, and the largest is from HBV

(Table 7). This order is in accordance with the baseline

period. Xinanjiang gives the smallest estimation of

MHQ for both return periods.

4. Discussion

It is widely acknowledged that climate change un-

certainties are much larger when feeding into rainfall–

runoff models than the hydrological uncertainties within

the models themselves. The largest uncertainties in

FIG. 8. High flowswith uncertainties as a function of return period simulated for (a) the baseline period 1961–90 and

under scenarios (b) A1B, (c) A2, and (d) B2 in the period 2011–40 by GR4J, HBV, and Xinanjiang.

TABLE 6. The uncertainty range of the MHQ from parameters, models, and scenarios in 5-, 10-, 20-, and 30-yr return periods.

Parameters (m3 s21) Models (m3 s21) Scenarios (m3 s21)

Return periods

(years)

Upper

bounds

Lower

bounds Difference

Upper

bounds

Lower

bounds Difference

Upper

bounds

Lower

bounds Difference

5 3953 1747 2206 3370 2795 975 3236 3038 198

10 4710 2143 2567 4632 3277 1355 4070 3540 530

20 5088 2288 2800 4849 4071 778 4410 4128 282

30 5626 3022 2604 5748 4899 949 5165 4274 891
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projected streamflow under climate change come from

uncertainties in climate change emissions scenarios

(Houghton et al. 2001), but the conclusion is not suit-

able for all cases because of the different regional cli-

mates and possible changes that may take place under

the future emissions scenarios. The results of this

study show that for the study area, the uncertainties

from the hydrological model structures are larger

than those from emissions scenarios. Furthermore, the

uncertainty from parameters in hydrological models

contributes the most to the model output uncertainty.

Wilby and Harris (2006) studied the uncertainty in

future low flows and concluded that the hydrological

model structure uncertainty was the most important

source, followed by the parameter uncertainty and the

emissions scenario uncertainty. Moreover, different

GCMs and downscaling methods (including RCMs)

could also cause differences in the order of significant

uncertainty sources, which are not, however, inves-

tigated in this study. There are also uncertainties re-

lated to high flows with different return periods

because of the limited length of discharge time series

and the extrapolation method. Figure 10 shows the

uncertainties in high flows with 50- and 100-yr return

periods from extrapolation method by GEV distribu-

tion. The bootstrap method is applied to sample 1000

sets from 30 years of annual maximum discharges in

the baseline period from three hydrological models.

Then, the GEV distribution is fitted to each sampling

set and the uncertainty in high flows with 50- and 100-yr

return periods due to extrapolation is estimated. The

uncertainty ranges of high flows due to extrapolation

are between 1000 and 2000m3 s21 depending on the

models and return periods, but they are smaller than

those from parameters of the hydrological models.

In general, a more thorough uncertainty analysis is

recommended for further application of this study to,

for instance, climate adaptation purposes in water

management.

In this study, the most important uncertainty source is

from hydrological parameters. The parameter un-

certainties are related to the number of parameters for

calibration, the calibration ranges of each parameter,

and also the threshold defined for the behavioral pa-

rameter sets. Jin et al. (2010) used 0.6 and 0.8 as

thresholds for the Nash–Sutcliffe coefficient and con-

cluded that lower threshold values may result in a wider

uncertainty interval of the posterior distribution of pa-

rameters and a wider confidence interval of model un-

certainty. Since it is not possible to eliminate parameter

uncertainties at present and the large influence of pa-

rameter uncertainty on high flows is evident, it is rec-

ommended that parameter uncertainty should be taken

into account in water resource management when hy-

drological models are applied. The results also reveal

that parameter uncertainties of GR4J are the smallest,

followed by Xinanjiang and HBV. Since the threshold

for the behavioral parameter sets is equal for the three

models, it is possible that the number of calibrated pa-

rameters and parameter ranges contribute to the result

that GR4J has the smallest uncertainty.

FIG. 9. CI ofMHQwith a return period of (a) 50 and (b) 100 years under scenariosA1B,A2, and B2 as estimated by

GR4J, HBV, and Xinanjiang.

TABLE 7. The range of CIs for GR4J of MHQ with a return

period of 50 and 100 years under scenarios A1B, A2, and B2 from

three models.

Return periods

(years) Scenarios

GR4J

(m3 s21)

HBV

(m3 s21)

Xinanjiang

(m3 s21)

50 A1B 2450 4861 3596

A2 2248 3912 2975

B2 2173 3592 3102

100 A1B 2687 5201 3393

A2 2448 4310 3274

B2 2362 3927 3430
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In this study, only one GCM and one RCM were

applied for the three hydrological models. Therefore,

the uncertainty might be underestimated without con-

sidering multiple GCMs or RCMs. Teutschbein and

Seibert (2010) stressed that multimodel approaches in

rainfall–runoff simulation are useful for climate change

impact assessment. They also suggested that when ap-

plying RCMs for hydrological impact studies, ensem-

bles of RCMs should be used because of model biases

and intermodel variability. Sometimes, the number

of GCMs, RCMs, and scenarios are limited. One pos-

sible solution to the limited number of the RCMs and

GCMs would be using the imprecise cumulative distri-

bution function (CDF) method. This is a nonparametric

method used to determine the probability distribution

function, which not only contains the CDFs generated

with all available GCMs but also accounts for the un-

certainties from the missing ones (Ghosh and Mujumdar

2009).

Themethodsandfindingspresentedherecouldbeuseful

when applying the PRECIS data in other hydrological

models or when using the same hydrological models. The

next step would be to incorporate different GCMs and

RCMs in the analysis of uncertainty for high flows.

5. Conclusions

In this paper, the impacts of uncertainties from future

emissions scenarios, hydrological model structures, and

parameters on high flows were investigated using the

regional climate model PRECIS. The temperature and

precipitation from PRECIS were bias corrected and

then applied as inputs for the hydrological models

GR4J, HBV, and Xinanjiang. The Jinhua River basin in

eastern China was chosen as a case study area. The

GLUE method was used to calibrate the hydrological

models and to quantify the parameter uncertainties of

the three hydrological models.

In Jinhua River basin, the largest bias of PRECIS is in

the overestimation of the precipitation in July, August,

and September. PRECIS overestimated the observed

temperature with about 28C all year round. After bias

correction, the temporal distributions of monthly pre-

cipitation and temperature were closer to the observa-

tions, but there is still some bias, especially in the heavy

precipitation. Higher precipitation intensities can be

observed in July and August, and the number of suc-

cessive days with heavy precipitation is also larger

for PRECIS than that for the observations. The bias-

corrected temperature and precipitation and the ob-

served temperature and precipitation were used to drive

the hydrological models to simulate high flows in the

baseline period. The results showed that because of

the bias in the simulation of heavy precipitation in the

baseline period, high flows driven by PRECIS are likely

to be overestimated in the future. For a return period of

100 years, the uncertainties in high flows were larger

with PRECIS inputs than observed inputs. The behavior

of the three hydrological models was similar in the sense

that they tended to underestimate high flows.

The 90% confidence intervals became larger with in-

creasing return periods under all emissions scenarios.

For all three hydrological models, the high flows tend to

decrease under scenarios A1B, A2, and B2, but the

uncertainty ranges do not change noticeably. The un-

certainty ranges of MHQ due to different scenarios

for return periods of 1–30 years are 25–970, 100–780,

and 60–920m3 s21 for GR4J, HBV, and Xinanjiang,

respectively.

High flows simulated by HBV were the largest, fol-

lowed by GR4J, and Xinanjiang had the smallest high

flows. The largest uncertainty was observed in HBV,

GR4J had the smallest uncertainty, and Xinanjiang

was in between. The uncertainty ranges in MHQ from

models for return periods of 1–30 years were 240–1750,

270–1380, 190–1350, and 260–1650m3 s21 for the baseline

FIG. 10. Comparison of uncertainty ranges of extrapolation and parameters in the models.
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period and scenarios A1B, A2, and B2, respectively. The

major sources of uncertainty in this study were from

the parameters, followed by uncertainties from the sce-

narios, and the hydrological model structure caused

the smallest uncertainty. It should be noted that in

the GLUE method, the choice of threshold and param-

eter ranges is subjective. Also, the parameter rangesmay

be enlarged by bias correction, but the forcing from

PRECIS is still not accurate enough (see Fig. 6). The bias

from PRECIS was not avoidable until now, and the

choice of parameter ranges was made based on many

previous studies. Therefore, the conclusion that the pa-

rameter uncertainty is the main source is conditional on

these subjective matters. The uncertainty analysis is im-

portant because it improves the understanding of the

major problems and hence may support decision and

policy making in water resources management.
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