
 

 

FEATURE ARTICLE: TEST-DRIVEN DEVELOPMENT AND CONTINUOUS INTEGRATION 

Effectiveness of Test-
Driven Development and 
Continuous Integration 
A Case Study 

In a case study where a Dutch small-to-medium 

enterprise (SME) implemented test-driven 

development and continuous integration, researchers 

observed that the SME discovered a higher number 

of defects compared to a baseline case study, and 

that there was an increase in the focus on quality and test applications.  

Although many older development methodologies include a separate lengthy testing phase at the 
end of development, test-driven development (TDD) comes with a new paradigm: always test 
before coding. Continuous integration (CI), on the other hand, involves running integration 
builds and automated tests on the code committed by the developers. CI combines development 
and testing by enabling unit and functional tests while profiling the application code.1 CI was 
designed to improve the number of testing cycles and the resulting application quality while 
decreasing the amount of time it takes to find problems and reducing the cost to fix them.1 

Both TDD and CI, however, cost the development company in terms of time and money.2,3 
Hence, well-grounded empirical evidence is required to determine the applicability of these 
practices in actual industrial settings. In response to this, some empirical studies were conducted 
on the effectiveness of TDD implementations in academic as well as industrial settings (see the 
sidebar for a literature review). The outcomes of these empirical studies seem to indicate an 
increase in code quality along with an inconclusive effect on developer productivity (see the 
table in the sidebar). The extra effort required when writing tests in advance was given as a 
reason for the decrease in developer productivity. On the other hand, one can argue that TDD 
could improve internal and external code quality, leading to lower defect generation and faster 
fixes, thereby improving productivity. Yahya Rafique and Vojislav B. Misic4 mention in their 
extensive literature review that some experiments with a more detailed design obtained better 
results on TDD implementation. This was verified in a recent project where TDD was 
implemented successfully.5 However, this claim has not been adequately or quantitatively tested 
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in an industrial setting, nor has it been discussed widely.5 Furthermore, most papers do not 
provide a detailed description of the TDD implementation.  

In this article, we describe a case study of both TDD and CI in a Dutch small-to-medium 
enterprise (SME). The contributions of this article are multi-fold. While previous research dealt 
with few metrics for accessing the cost and quality, we use multiple metrics. Along with an 
evaluation of the technical quality (which was also done in previous studies), we propose a 
quantitative evaluation of the impact of TDD and CI implementation and provide a detailed 
account of the case setting. To aid future research, we list a set of adherence metrics to measure 
the extent to which TDD/CI principles have been applied. Our article contributes to the growing 
body of literature on TDD and CI implementation, as well as its evaluation in an industrial 
setting. Similar to other studies, we cannot isolate the effect of the sole application of TDD from 
the effect of CI.5  

THE CASE CONTEXT 
The data for this research originates from a two-case comparison of software implementation at a 
Dutch SME. The two cases were consecutive software development projects at the software 
company. The first case followed a development process without any methodology alterations 
nor any involvement by the researchers, while the second project followed a process that was 
refined by TDD and CI principles. The second author of this article was present as both an 
information analyst and chief methodology implementer of the second project. We use the first 
project as a reference case to compare the potential differences in the outcome of the two 
projects. 

Both software development projects dealt with healthcare claim handling. Healthcare claims are 
mostly digital transactions (involving the transfer of messages, digital invoices, or money) 
between healthcare providers and insurers. As soon as an individual receives some form of 
healthcare from a provider (for instance, surgery), the provider usually makes several 
transactions that need to be appraised by the insurer. On average, each individual in the 
Netherlands is involved in about 10 transactions per year. This implies that managing these 
digital transactions is a high-volume industry. As these transactions are highly standardized by 
the Dutch government, they are well suited for automation. The Dutch SME in this case study 
makes software applications that provide such automation. The software project described in this 
article is based on one such software application. For the sake of clarity, we denote the software 
development project in which TDD and CI testing was implemented as case study 2 (CS2), and 
the previous version where it was not implemented as case study 1 (CS1). 

CS1 served mainly as an entry portal for incoming healthcare transactions from healthcare 
providers at an insurance intermediary. Its main goal was to structure, check, and help in the 
appraisal of incoming transactions. After this process, the transaction was entered into the 
financial database.  

CS2’s software application was installed at an invoicing intermediary, which takes care of 
everything around healthcare transactions for a set of healthcare providers. This is done so that 
the healthcare providers can concentrate on providing proper care instead of getting bogged 
down with the many financial transactions that are required. However, in terms of functionality, 
CS1 and CS2 were very similar.  

The applications of the two cases were installed at different points of the healthcare chain, and 
thus satisfied different stakeholders. They were similar in terms of functionality, as they 
interacted (indirectly) within the same industry while applying common transaction standards. 
The CS2 implementation was, in particular, based on the CS1 architecture and most of the CS2 
modules were refactored CS1 modules. As 92.5 percent of the modules overlapped between the 
two architectures, we can safely assume that the number and complexity of the features were 
similar. Note that this overlap is more than the 75 percent overlap reported by Roberto Latorre.5 

Table 1 lists the similar project characteristics found in the two cases in terms of context factors 
and software product measure factors.6–8 We notice that both kinds of factors, especially the 
contextual factors, are comparable and rather similar between the two case studies.  
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Table 1. Description of the context and product measures of case studies 1 and 2. 

Characteristics Case study 1 (CS1) Case study 2 (CS2) 

Context factors 

Application Transactional system for 
technical verification and 
appraisal, as well as 
administrative handling 
and payment of healthcare 
declarations 

Transactional system for 
technical verification, 
routing, and appraisal of 
healthcare declarations 

Customer Authorized insurance 
intermediary 

Invoicing intermediary 

Duration (time) 8 months 10 months 

Average monthly effort 
(man days) 

78 73 

Total effort (man days) 732 731 

Team size <10 <10 

Team people overlap N/A >4 

Experience level (<5 years, 
6-10 years, >10 years) 

Most members < 5 years’ 
experience 

Most members < 5 years’ 
experience 

Project manager’s expertise > 5 years’ experience > 5 years’ experience 

Applied technology C# ASP.NET MSSQL C# ASP.NET MSSQL 
NHibernate 

Product measures 

Source LoC 28,049 21,340 

Maintainability index 
average 

79.20 85.32 

Cyclomatic complexity 
average 

280.53 297.71 

Depth of inheritance 
average 

02.62 04.70 

Class coupling average 57.59 77.65 

MEASUREMENT METRICS 
To measure the effectiveness of TDD and CI, we considered three perspectives: defect reduction, 
defect lead and throughput, and development productivity.  

Defect reduction is whether TDD and CI helped in reducing the number of defects; for example, 
if CS2 has fewer defects compared to CS1. This includes the pre-release defect level (the number 
of defects detected in the pre-release software per KLOC9) and post-release defect level (the 
number of defects occurring in the post-release software per KLOC).9,10 
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Defect lead and throughput is whether TDD and CI helped in reducing the time to find and fix 
the defects. This includes defect resolution duration—the duration between the discovery and 
closure of defects, given by 

 closedate reportdateD d d

D

 −
  

where |D| is the number of defects. This also includes defect pre/post-solvability—the proportion 

of defects uncovered prior to and after the release given by 
PreD

D
 per pre-solvability release and 

PostD

D
 per post-solvability release. 

Development productivity is the development productivity and rework rate in development per 

release, given by 
KLOC

Effort
 , where the KLOC is the amount of KLOC added per release. 

RESULTS 
We first analyzed our data using descriptive statistics and then considered inferential statistics. 
Thirty-nine versions of the CS1 software and 24 versions of the CS2 software were released in 
the period from the start of the two projects up to when the data for this study was collected. 
Both projects used the Mantis bug tracker, and developers and customers submitted bug reports. 
We analyzed the CS1 and CS2 Mantis bug trackers and removed duplicates and issues that were 
not really bugs. CS1 had 414 viable bug reports for analysis, while CS2 had 474 viable bug 
reports. The bugs were prioritized in both CS1 and CS2 in terms of defect severity. But this was 
not done explicitly in both projects. The developers and project leaders knew which bugs to 
resolve first, based on which part of the code they occurred in, and this knowledge was tacit (not 
made explicit in the bug tracker). In the case of CS1, the prioritization and resolution were done 
manually. In both projects, the bugs that caused build failures were fixed first and the rest were 
fixed in the order of prioritization. In the case of CS2, CI helped in this regard, as the CI-related 
best practice of “executing all tests with every build and making a single failed test fail the 
build” was followed.1 

When we asked the project managers of both projects to compare the list of bugs (in terms of the 
number of high-priority bugs and the severity of the defect), they agreed that the bugs from both 
the projects were comparable. 

Descriptive Statistics 
The box plot of the distribution of pre- and post-defect resolution data is shown in Figures 1a 
and 1b; the numbering of the figures that follow is based on this categorization. In Figure 1a we 
notice that the defect level of CS2 is consistently higher (before the release) than the defect level 
of CS1. This could be the result of implementing the test-first approach in CS2, and not 
necessarily because the CS1 software had fewer bugs. 

This seems to be verified by Figure 1b, where we notice that CS1 has more bugs than CS2 after 
the release. Figure 1b also demonstrates that the medians of the post-release number of bugs per 
KLOC are nearly the same for CS1 and CS2. The smaller inter-quartile range of CS2 shows that 
CS2 had a more consistent number of bugs per release, and fewer releases with a large number 
of bugs (as was the case with CS1). 

In Figures 1c and 1d we can see the results of the defect lead and throughput category metrics. 
Figure 1c indicates that the defect resolution duration (the time in days between discovery and 
resolution) is mostly higher for CS1 than CS2 (although the medians are nearly the same). 
Furthermore, CS1 has a much longer tail, indicating that a few bugs required more fixing time 
compared to CS2. 
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In Figure 1d we see the defect pre-/post-solvability (the proportion of defects uncovered before 
release). CS2 again outperforms CS1 because a consistently higher percentage of bugs was 
found before a major release. The developers in CS2 also accurately flagged a bug as solved as 
soon as they had fixed a defect. This was done to prevent colleagues from fixing the same defect 
again, and to show the progress to the customer. Hence, this data can be considered reliable. 

In Figure 1e we see the comparison of development productivity between the two projects. The 
inter-quartile range of CS1 is almost double that of CS2, while the medians are nearly the same. 
This implies that while the development productivity was nearly the same, there were instances 
when the number of added KLOCs was very large for the same number of man days. When we 
approached the team members for an explanation, they thought it could be due to the 
introduction of large pre-coded components (containing several hundred code lines apiece). 

 

Figure 1. The descriptive statistics for the metrics described in this article. (a) Pre-release defect 
level. (b) Post-release defect level. (c) Defect resolution duration in days. (d) Defect pre-/post-
solvability. (e) Development productivity. 
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Inferential Statistics 
We first tried to ascertain the difference in means between CS1 and CS2, with respect to the 
metrics listed in this article. The common statistical method used to test the difference in the 
distributions of two samples is the Student’s t-test. However, the prerequisites for using the t-test 
are that the two distributions must have the same variance and both populations should follow 
the normal distribution. We could not use the Student’s t-test as Levene’s test showed that some 
of the metrics from CS1 and CS2 did not have equal variances, while the Shapiro–Wilk test for 
normality demonstrated that normality was violated by almost all the metrics. The reason behind 
this was the variation in the denominator in all the metrics, namely KLOC. When comparing the 
KLOC between CS1 and CS2, Levene’s test showed a significance of 0.38 (indicating that the 
population variances are equal) and Shapiro–Wilk showed a significance of 0.00 for both 
projects (indicating that they are not normally distributed). As the distribution was not normal 
for both samples, we considered the Mann–Whitney–Wilcoxon (MWW) test, which is non-
parametric. 

Table 2. Mann–Whitney–Wilcoxon test results for the metrics in this article. 

 

Metric Mann–Whitney 
U 

Wilcoxon W Z Asymptotic 
significance (2-
tailed) 

Pre-release 
defect level 

258 1038 -0.62  0.009 

Post-release 
defect level 

388 619 -0.33  0.739 

Defect 
resolution 
duration 

55555.5 154790.5 -2.57 0.010 

Defect pre-
/post- 
solvability 

312 942 -1.84 0.067 

Development 
productivity 

413 713 -0.78 0.436 

 

Table 2 groups the results based on the relevant metric category. The p-value of the asymptotic 
significance of the pre-release defect level and defect resolution duration is less than 0.05. 
Hence, these two metrics demonstrate that CS2 outperforms CS1. Regarding the defect pre-
/post-solvability metric, the p-value is just over 0.05, whereas for the post-release defect level 
and development productivity metrics, we find no significant difference between CS1 and CS2. 
Note that the MWW test can only determine whether the two distributions are indeed 
significantly different, and not which distribution has a higher median (or other measures of 
dispersion). Therefore, we combined the data from Table 2 with Figures 1a and 1c. We see that 
the number of pre-release defects found in CS2 is significantly greater than in CS1 (Figure 1a). 
We also see that the defect resolution duration of CS1 is significantly larger than that of CS2. 
Though the U value of the defect resolution duration appears to be rather large, it is more or less 
what we can expect given the large number of samples: 414 for CS1 and 474 for CS2 (an 
expected estimator of U is multiplying half of the sample sizes of the distributions). In the case 
of defect pre-/post-solvability, we see that the MWW test p-value just exceeds 0.05, though 
Figure 1d shows that the number of defects uncovered before release is much larger in CS2 than 
CS1. Hence, CS2 outperforms CS1 in this metric. With respect to the post-release defect level, 
the MWW test shows that the distribution of the number of bugs per KLOC of the two projects is 
not significantly different. We see from Figure 1b that the medians of the two distributions are 
indeed quite close, though the CS1 upper quartile is much larger than that of CS2, so there were 
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more defects occurring in CS1 post-release. This is also the case with the development 
productivity metric; in Figure 1e, we see that the medians are similar but the lower and upper 
quartiles are largely different, implying that the development effort 
put into a few releases in CS1 was much larger than in CS2. 

CONCLUSION 
The team members at the Dutch SME did perceive an increase in the 
focus on quality and in the application of tests, while considering 
customer acceptance. The company now has an infrastructure in place 
to further evaluate other software process improvement (SPI) 
initiatives. 

Though the inferential statistics are not conclusively in favor of CS2, 
the descriptive statistics point to an overall improvement in not only 
finding more defects (defect reduction), but also in shortening the time 
required to fix the defects (defect lead and throughput). One of the 
limitations of this research could be the use of KLOC in most of the 
metrics (in the denominator), as well as the use of KLOC for 
measuring development productivity (see Figure 1e).11 Emad Shihab 
and his colleagues mention that metrics like cyclomatic complexity—
and a combination of software metrics—outperform LOC in 
estimating effort, whereas using solely LOC underestimates effort.11 
However, if the same metric is used to compare different projects, the 
underestimation of effort could balance out—as it is underestimated 
for both cases, and we are only interested in the relative comparison of 
development effort and not the exact development effort of each 
project. Yet, applying KLOC limited our use of different statistical 
techniques, as the variance it introduced made the distributions non-normal. 

The contributions of this research are multiple. We have added to the small but hopefully 
growing body of empirical literature on agile implementation in an industrial setting.12–14 We 
have endeavored to provide a rich description of the project setting (contextual factors and 
product measures in Table 1) that we think is useful to recognize potential validation errors. 
Finally, we have added to the existing set of metrics, and we think our new metrics give a richer 
and more detailed description of the effects of agile implementations in general. 

SIDEBAR: LITERATURE OVERVIEW 
We performed a meta-analysis of the literature reviews on TDD published in the past five years. 
In the table below, internal quality relates to the quality of the software design (measured by OO 
metrics, code density, cyclomatic complexity, etc.); external quality refers to the number of 
pre/post-release defects per given code size; and productivity refers to developer productivity 
(measured using development time, total LOC divided by total effort, hours per 
feature/development effort per LOC, etc.). In Table 3, N/A refers to the fact that the particular 
construct was not analyzed. 

Table 3. Comparison of the findings of literature reviews published in the past five years. 

 C. Desai et 
al.15 

B. Turhan et 
al.16 

A. Causevic 
et al.17 

S. Kollanus18 Y. Rafique 
and V.B. 
Misic4 

Internal 
quality 

Little 
evidence 

Little 
evidence 

Moderate 
evidence 

Inconclusive N/A 

This research adds 

to the existing set of 

metrics, and we 

think our new 

metrics give a richer 

and more detailed 

description of the 

effects of agile 

implementations in 

general. 
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External 
quality 

Moderate 
evidence 

Moderate 
evidence 

N/A Weak 
evidence 

Little 
evidence 

Productivity Little 
evidence 

Inconclusive Evidence for 
decreased 
performance 

Evidence for 
decreased 
performance 

Inconclusive 

 

Table 3 broadly suggests there is little to moderate evidence that implementation of TDD in an 
academic or industrial setting is accompanied by an increase in code quality. However, the 
evidence for an improvement in productivity is largely inconclusive and the literature indicates, 
to some extent, that TDD implementation is accompanied by decreased productivity. 
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