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A B S T R A C T

The mechanical strength of inorganic porous hollow fibers is a critical constraint that limits their wide scale
application. Various methods, including 3-point bending, 4-point bending, and diametrical compression are
used for the quantification of the mechanical strength. Here, we show that these methods cannot be used in an
interchangeable manner. For large sets of alumina hollow fibers, the parameters describing the cumulative
probability of failure functions depend on the type of measurement, i.e., 3 or 4-point, the span size, and the
measurement geometry. This implies that reporting data on mechanical properties of inorganic hollow fibers
requires that extensive information about the experimental details is provided, and that a direct quantitative
comparison between datasets is unjustifiable. The mechanical strength of the alumina hollow fibers tends to
follow a normal distribution, or log-normal distribution, instead of the often used Weibull distribution. Monte
Carlo simulations demonstrate that, especially at small sample set sizes, it is difficult to accurately determine the
shape of the probability distribution. However, detailed knowledge of the type and the shape of this distribution
function is essential when mechanical strength values are to be used in further design.

1. Introduction

Thin inorganic hollow fibers have large potential to be used as, for
example, microfiltration membranes, catalyst supports, and (mem-
brane) microreactors [1]. However, the widespread and large scale
application of inorganic fibers is hampered by, in particular, their
mechanical properties. Detailed knowledge of these properties is
required for an acceptable comparison between different fibers, and
quantification of the failure behavior of fibers is of key importance for
the design and construction of large area multi-fiber systems.

In ceramic reliability engineering, one often assumes a specific
probability distribution. Based on the microstructure of a ceramic —

being porous or non-porous— different probability distributions are
assumed. In traditional non-porous ceramics the Weibull distribution
is mostly used, whereas recently the use of the log-normal or normal
distributions are proposed for porous ceramics [2].

In addition to this, many methods are used to assess the mechanical
robustness of inorganic fibers; most commonly their flexural or
bending strength is determined via a 3-point [3–7] or 4-point bending
test [8–11]. Alternatives include burst pressure measurements [12,13]
or diametrical compression tests [14,15].

The reported mechanical strength is a direct result of the measure-
ment method and the conditions used. As a result, comparison of
strength data presented in literature can be deceptive. In addition to

the measurement method, the amount of samples measured and the
subsequent statistical analysis are of great importance.

The comparison of a 3-point versus a 4-point bending test is
described in literature for various applications, like advanced dense
ceramics [16–19] and polymers [20], but not for porous inorganic
hollow fibers. In this paper, we demonstrate the pronounced influence
of the measurement method on the reported strength value, and why it
is crucial to not only report the measurement method, but also sample
geometry and sample set size to allow comparison of reported strength
values.

2. Theoretical background

2.1. Strength distributions

The result of fracture testing is usually reported as an average
strength or mean strength of the measured stress at failure, of a set of N
samples.
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A drawback of the average strength is that it contains no information
about the spread of the strength values measured. In ceramics, defects
are randomly distributed over the sample and they will vary in position,
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size, and severity. As a consequence, the strength of a fiber will vary
from fiber to fiber, even for apparent identical fibers. As a measure for
this spread often the standard deviation of the mechanical strength
data is reported. In addition, if a small amount of samples is measured,
the average strength might not be a good representation of the real
strength number (this effect becomes more severe at lower sample
sizes, e.g. N < 10 [21]). Therefore, the common interpretation of
fracture tests is based on a statistical models that predict a probability
of failure. It is often stated the one is required to measure at least 10–
30 samples if the statistical model is known [19,22], others propose
that a minimum of 150–200 samples is required for an unknown
model [21,23].

The distribution parameters are of utmost importance in the design
of components that consist of ceramics. In design, an acceptable
probability of failure is selected, and the associated design stress is
calculated using the statistical distribution function. Especially the
lower tail of the probability distribution strongly affects the design
stress [24]. Without appropriate characterization and the use of the
correct statistical distribution, the measured strengths cannot be
applied in design and might lead to erroneous conclusions. [2,25–27].

2.1.1. Weibull distribution
The Weibull distribution [28] is the generally applied distribution

for strength characterization of brittle ceramics with little defects. It is
based on the so-called weakest link principle. In the majority of dense
ceramics, only few defects are present. If the ceramic fails, it is assumed
to fail at its weakest defect. The regular formulation of the Weibull
distribution, used in measuring the strength of ceramics, is written as:
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where P σ( ) is the cumulative probability of failure, σ the applied stress,
m the Weibull modulus - a measure for the spread of strength data -
and σθ is the characteristic strength. The characteristic strength and
estimate of the Weibull modulus are often obtained via maximum
likelihood fitting of the measured strength data. The Weibull char-
acteristic strength depends on the test geometry, such type and size;
and it is a value specific to a certain test.

An alternative representation of the probability of failure is the
more general equation,
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where P σ V( , ) is the cumulative probability of failure, V is the volume
of the component, σ is the applied stress,m is the Weibull modulus and
σ0 is the Weibull material scale parameter. If the integration in the
above-mentioned equation is carried out the equation reduces to:
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where k is a dimensionless constant that accounts for test specimen
geometry and stress gradients. In general, k is also a function of the
estimated Weibull modulus. The product kV is often referred to as the
effective volume. Using this effective volume, the characteristic Weibull
strength σθ can be converted into the Weibull material scale parameter
using a relation such as

σ kV σ( ) = ( ) ( )V
m

θ V0
1/( )V (5)

This approach is discussed in detail in various references
[22,29,30]. Calculation of the effective volume of a porous ceramic
hollow fiber with its defects, pores, and macrovoids- is problematic as
the volume under stress is nearly impossible to estimate.

Mechanical strength testing combined with Weibull analysis are
broadly standardized for dense ceramics, for example in ASTM: C1161

[22] or DIN 843-5 [31]. Most methods recommend to measure at least
30 samples in order to accurately estimate the Weibull modulus and
characteristic strength. The Weibull distribution, depending on the
weakest link theory with non-interacting defects, is questioned to be
suitable for certain ceramic strength data [26,32–35]. For example
Danzer et al. [26] demonstrate that in certain situations a deviation of
the Weibull distribution is expected; when the material exhibits a
multi-model flaw size distribution (e.g., porosity), when defects inter-
act, when R-curve behavior is observed or when subcritical crack
growth is likely [36]. Inorganic porous hollow fibers prepared by non-
solvent induced phase inversion (NIPS) have a high defect density with
a large range of defects such as pores, large finger like voids and
agglomerates. This results in a questionable applicability of the Weibull
model and its underlying assumption. Therefore, other models are also
evaluated.

2.1.2. Normal distribution
The normal distribution is one of the mostly used distributions in

sciences for real-valued random variables whose distributions are not
known. Therefore, a normal distribution is used to describe the
strength of brittle ceramics, in particular when these materials show
a roughly symmetrical distribution and when the amount of defects is
large [33,37,38]. Its parameters σ and α represent the mean and
standard deviation of the distribution. The cumulative probability is
given by:
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2.1.3. Log-normal distribution
Lu et al. proposed the log-normal distribution for porous ceramics

with high porosity. This assumes that the probability of a flaw being
critical depends on a lot of factors such as size, shape and pore-grain
interaction [2,21]. The failure probability can be estimated by p p= ∏ i,
where pi is the failure probability of the i-th factor of influence. Via

p pln = ∑ ln i this results in an overall probability that follows the log-
normal distribution [39]. The cumulative probability of a log-normal
distribution is:
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If data is log-normally distributed with parameters σ and α, the
logarithm of the data is distributed with the mean σ σ α* = exp( + /2)2

and multiplicative standard deviation s σ α α* = exp(2 + )[exp( ) − 1]2 2 .
Analog to the additive transformation for the normal distribution
σ α± , the multiplicative transformation of the lognormal distribution
can be expressed as σ s*·/ *, where ”·/” indicates ”times or divided” by
[39].

2.2. Minimum information criterion

The unknown parameters of the proposed distribution functions are
obtained by maximum likelihood method. Eq. (8) shows the likelihood
of a probability density function, where σi is the strength of the i-th
sample, N is the total number of samples, is the likelihood, and f σ( )i
is the probability density function (pdf) of the proposed distribution
[33].

∑ f σln( ) = ln ( )
i

N

i
=1 (8)

To compare the proposed models, the Akaike information criterion
(AIC) [40] is used; which is an estimate for the distance between the
true and the estimated distribution, and is defined as:
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AIC k= − 2ln( ) + 2 (9)

In which ln( ) is the maximum log-likelihood for a given model and k
is the number of parameters to be fitted. The AIC values allow direct
comparison, and a lower value for a certain distribution would indicate
that this distribution is more likely, a difference in AIC value larger
than 2 is considered statistically significant [21,41].

2.3. Anderson-darling goodness of fit test

In addition to the Akaike Information Criterion, an Anderson-
Darling goodness of fit test is conducted. The Anderson-Darling test
(AD), is one of the most powerful goodness of fit tests [42,43] with
critical values for various distributions being available in literature
[44,45]. The hypothesis regarding the distributional form is rejected at
the chosen confidence level (α=0.05) if the test statistic is greater than
the critical value.

2.4. Measurement methods

Various methods and geometries are used to assess the flexural
strength of ceramic hollow fiber membranes, all with their own distinct
features. In current literature the 3-point and 4-point bending test are
used interchangeably, both with various inner and outer span sizes
[9,46–48]. Recently the use of diametric compression tests is reported
to assess the strength of inorganic hollow fibers [14,49]. The reported
strength value depends strongly on the measurement method and span
size [19,22,50].

2.4.1. 4-point bending test
In the 4-point bending test the maximum stress is constant over a

relatively large area between the two inner rollers, separated by
distance Lin. The maximum bending strength is computed using Eq.
(10), where Fj is the force at fracture for specimen j, Louter the
distance between the two outer rollers, K being half the distance
between the inner and outer roller (K L L= 0.5( − )out in ) and dout j, and
din j, the outer and inner diameter of specimen j:
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2.4.2. 3-point bending test
The 3-point bending test exposes only a very small portion of the

fiber to the maximum stress [17]. Therefore, bending strengths
obtained via 3-point bending tests are likely to be larger as compared
to ones obtained by means of the 4-point bending tests [20]. The
maximum bending strength is computed using Eq. (11), where Fj is the
force at fracture for specimen j, Lout the distance between the two
outer rollers and dout j, and din j, the outer and inner diameter of
specimen j, respectively.
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The major difference between the 3 and 4-point bending test is the
location of the maximum bending moment and as a result the
maximum stress. In a 4-point bending test a uniform stress profile is
observed between the two inner rollers, whilst during a 3-point
bending test the stress is concentrated under the loading roller. This
influences the area under stress, which might result in a higher chance
of observing a defect in the sample. The 3-point bending test has some
advantages when compared to the 4-point bending test; it uses a
simpler test fixture —minimizing the chance of roller misalignment—
and a lower force to break the sample. Nonetheless, the ASTM
recommends the 4-point bending test for most characterization
purposes, mainly because a larger area is subjected to the maximum

stress [19].

2.4.3. Diametrical compression test
In a diametrical compression test a compressive load is applied by

two plates parallel to the axis of the fiber. The expression for the stress
distribution is derived from the curved beam theory; if a fiber is
subjected to a load Fj over a length Lout, the resultant hoop stress is a
sum of the stress components caused by axial and bending load.
According to de With [51], the strength can be computed using Eq. (12)
where Fj is the force at fracture, rm is the mean radius d d( + )/4out j in j, , ,
and t is the wall thickness d d( − )/2out j in j, , .

σ
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πL t r t
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j m m
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Eq. (12) assumes the fiber is a concentric ring structure and does not
account for any eccentricity of the fiber. Although this measurement
method is fairly simple to operate, the resultant strength values depend
largely on the fiber's geometry. De With does not recommend the use of
this test, but proposed the use of a modified burst pressure [51–53].
The use of a burst pressure method is considered to be beyond the
scope of this paper. For comparison reasons the diametrical compres-
sion test is included in this study, as it is recently used in the field of
porous inorganic hollow fibers [14].

3. Experimental

3.1. Hollow fiber fabrication

Alumina hollow fibers were prepared by non-solvent induced phase
separation (NIPS) using a mixture of AKP30 α-powder (particle size of
0.3 µm, Sumitomo Chemicals Co. LTD. Japan), Polyethersulfone (PES,
Ultrason, 6020P, BASF, Germany) and N-methylpyrrolidone (NMP,
99.5 wt%, Sigma Aldrich, The Netherlands). Polyvinylpyrrolidone (Mw

1,300,000, Sigma Aldrich, The Netherlands) was used as viscosity
enhancer and de-ionized water (>18 MΩCm−1 Milli-Q Advantage A10,
Millipore) was used as non-solvent. Prior to use, PES and AKP-30 were
dried overnight at 80 °C; all other chemicals were used as received.
Table 1 describes the spinning conditions and recipe and fibers were
prepared using standard methods [8].

After drying, the fibers were thermally treated under air
(100 mL min−1) using a tubular furnace (STF16/610, Carbolite). The
thermal treatment program consisted of 60 min at 300 °C and 120 min
at 1400 °C. A heating and cooling rate of 5 °C min−1 was used. After
thermal treatment, the fibers were cut to the desired length.

3.2. Experimental setup

The bending strength of the alumina hollow fibers was measured at
room temperature (20 ± 2 °C) and a relative humidity of 40% ± 10%,
using a 5564A mechanical testing bench (Instron) equipped with a

Table 1
Spinning conditions.

Condition Value

PES 9.40%
NMP 40.0%
AKP−30 48.9%
PVP K−95 0.70%
Water 1.00%
Bore liquid H2O
Coagulation bath H2O
Extrusion pressure 2 bar
Air gap 3 cm
Bore liquid flow rate 7 mL min−1

Diameter spinneret OD/ID=2.0 mm/0.8 mm
Drying after spinning >24 h
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100 N load cell. All testing was carried out according to ASTM: C1684-
08 [19], which has been adapted at the following points:

• Rollers are not free to move laterally

• A tube is used instead of a rod

• The ceramic material is porousFig. 1 schematically displays the
three different setups used. In order to make a fair comparison Lout
was kept constant for both the 3-point and the 4-point bending tests.
For diametrical compression testing, the fiber's length was measured
prior to each experiment.

A piece of hollow fiber was loaded into the test fixture. The load was
measured at constant extension rate (2 mm min−1). The inner and
outer diameter of the fiber were measured, after fracture, using a digital
caliper (Mitutoyo CD-15CPX, dΔ ±0.02 mm). All fibers were tested as-
fabricated and no surface treatment was carried out on the fibers.
Fibers originated from one spinning batch, but from different sintering
batches. Fibers were taken randomly from different sintering batches
for the various experiments. A sample set size of N=100 was used for
the 20 mm outer span size and diametrical compression measure-
ments. For the 40 mm outer span size experiments, a sample set size of
N=50 was used. All fiber fragments were collected for post-failure
analysis; for various fibers the fracture surface was investigated using
SEM. In order to verify the accuracy of inner and outer diameter,
obtained by the digital caliper, the inner and outer diameter were also
estimated from the scanning electron micrographs. The differences in
diameters were less than 5% (see the Supplementary Information).

4. Results and discussion

Fig. 2 shows a cross-sectional scanning electron micrograph of the
Al O2 3 fiber after sintering, where it is clear that the wall of the fiber
exhibits an asymmetrical structure. Upon further magnification
(Fig. 2B and C) the macro-voids in the wall and the porous structure

in between the sintered alumina grains can be seen. The fibers show an
average pore diameter of 300 nm (Mercruy Intrusion), a porosity of
approximately 50% (He and Hg density measurement) and a clean
water permeability of approximately 500 Lm−2h−1bar−1 (see the
Supplementary Information for further details about the fiber char-
acterization).

4.1. Mechanical strength

Fig. 3 shows the observed mechanical strengths obtained by the 3
different methods; the 3-point bending test, the 4-point bending test
and the diametrical compression. A detailed overview of all results,
including inner and outer diameter, location of fracture, and load/
extension can be found in the Supplementary Datafile [54]. In Fig. 3
the lower and upper error bar denote the lowest and highest observed
strength. The box indicates the inter quartile range (IQR) of the
observed mechanical strengths, with the horizontal line representing
the median value. For all experiments a large spread in the measured
strength is observed. Furthermore, the difference between the 3-point
and 4-point bending test and the effect of the outer span size Lout is
worth mentioning.

For both outer spans, the 4-point bending test results in a
significantly lower observed strength as compared to the 3-point
bending test. This effect is well-described in literature [16,19,20],
where it is indicated that results obtained by 4-point bending test will
be lower as compared to 3-point bending test results. A larger span size
(20 versus 40 mm) results in a significantly lower mechanical strength,
this effect is visible for both 4 and 3-point bending tests. A 3-point
bending test with an outer span of 20 mm results in a median strength
of ∼155 MPa, the same experiment with Lout=40 mm results in a
median strength of approximately 120 MPa. This size effect is often
described in literature, where an increased volume under stress (for
example due to increased span size) will result in lower strength
numbers [55]. The diametrical compression test shows the lowest

Fig. 1. Schematic representation of the three different testing geometries. A: 3-point bending setup, B: 4-point bending setup (L L= 0.5in out), C: Diametrical compression setup.

Fig. 2. Cross-sectional scanning electron micrographs of a sintered aluminum oxide fiber used in mechanical testing. A: 50x magnification showing the roundness of the fiber B: close-
up of fiber wall showing the asymmetrical wall structure with the presence of large macro-voids C: detail of individual grains in the fiber wall.
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mechanical strength values of all tests, however a comparison to the
bending tests is complicated. The stress profile introduced in this
method is rather different as compared to bending tests, and Fig. 3
clearly shows that one should be extremely cautious when comparing
results obtained by this method to the results of a bending test.Matlab®

is used to rank the measured strengths and to fit the three distributions
to the data using maximum-likelihood methods. Table 2 displays the
fitted parameters for all tests—bending and compression— obtained by
fitting the measured strength to a Weibull, Normal or Log-normal
distribution. Fig. 4 visualizes the different probability models jointly
with the measured and ranked data of the four different bending tests
(empirical cumulative probability of failure estimated using the
Kaplan-Meier method [56]).

Fig. 4 shows that the strength distributions tend to follow a normal
or log-normal distribution. The Weibull distribution appears to be a
lesser fit, especially at the lower end of the distribution.

As shown by the parameter estimates in Table 2, the difference
between the mean value obtained from a normal distribution and the
characteristic strength from a Weibull distribution can clearly be seen
for all test geometries; the Weibull characteristic strength is always
higher when compared to the mean value. The parameter that
describes the shape of the probability distribution appears to indepen-
dent of the span size of the test, with all shape parameters (m for

Weibull, α for normal and s* for lognormal) being the same order of
magnitude for the same type of test.

However, the shape values for a 3-point bending test are in
disagreement with the 4-point bending test, where the 4-point bending
test suggests a more narrow distribution. This might be explained by
the fact that for a 4-point bending test the area under stress is larger,
hence a larger probability a specimen will fail, possibly resulting in a
more narrow distribution. This is also seen in the values that represent
the mean and characteristic strength; the larger the volume subject to
stress; the lower the observed strength value. For example, a 3-point
bending test with a span size of 20 mm displays a significantly larger
strength number as compared to a 3-point bending test with a span size
of 40 mm, albeit the shape factor is not strongly influenced by the span
size. Table 2 again demonstrates that values obtained using a diame-
trical compression test are an order of magnitude smaller as compared
to bending tests. This originates from the different stress profile in the
fiber.

Table 3 shows the calculated AIC values for all 3 distributions. For
all bending tests the Weibull distribution is the least likely distribution
(maxAIC=Weibull). For example Danzer [26], or Lu [2] predicted this
behavior for porous ceramics, as they state that a (log-) normal
distribution can be expected. The results of the Anderson-Darling
goodness of fit test are shown in Table 4, and indicate that the Weibull
distribution appears to be the least likely distribution for the bending
tests.

The differences in AIC value between the Normal and Lognormal
distribution are usually below 2, making it impossible to determine
whether the preferred distribution is Normal or Lognormal [40,41], as
in certain cases the Lognormal distribution is converges to the Normal
distribution [39]. The same holds for the diametrical compression test,
where the difference in AIC values or the results of the Anderson-
Darling test are too small to state that any distribution is more likely. In
general, it is difficult to accurately assess the distribution of these
measurements, no specific distribution stands out nor is rejected.

4.2. Influence of sample set size

The parameters of the experimental data, which are estimated using
maximum likelihood method, are considered to be the ”true” para-
meters representing the distribution. These values were used to
generate virtual strength data using Monte Carlo (MC) methods
[21,57]. This was done using Matlab®; the full details and the Matlab
source code are given in the Supplementary Information. Based on the
parameter estimates in Table 2, virtual strength data was generated for
a 4-point bending test (Lout=20 mm), assuming a normal strength
distribution. Out of the virtual strength data; sample sets are taken
with a variable sample set size N. This is done 10.000 times, resulting
in 10.000 sample sets of size N. These sample sets are used to
determine new distribution parameters (mean strength and standard
deviation) that describe this specific sample set of size N shows the
effect of sample set size on the mean strength (a) and standard
deviation (b). The error bars represent the range of values observed
in 10,000 MC simulations.

The observed mean and standard deviation in the 10.000 virtual
sample sets varies substantially, especially for the lower sample set
sizes. The variation on the observed mean would result in an over- or
underestimation of the average strength of a fiber, however the
variation of the observed standard deviation would result in a different
shape of the probability distribution. At larger sample set sizes, the
observed mean and standard deviation converge to the ”true” para-
meters representing the distribution. Nonetheless, even at fair sample
set sizes of N=100 the observed values differ significantly from the true
parameters. This shows that the amount of samples measured is solely
depending on what is economically/practically viable [21]. If one would
use the parameters obtained by fitting 10 test specimens, Fig. 6 shows
the cumulative probability of failure a sample for two extreme cases,
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Fig. 3. Summary of bending strengths measured using various methods. The lower and
upper error bar denote the minimal and maximal observed mechanical strength, the
boundaries of the box indicate the IQR, whereas the horizontal line represents the
median value.

Table 2
Fitted parameters for all 5 different tests using Weibull, and Log-Normal distributions.
All parameters are shown with their 95% confidence interval.

Type 3 point 4 point 3 point 4 point Compression

Span size 20 mm 10–20 mm 40 mm 20–40 mm N/A
N 100 100 50 50 100
Weibull
σθ 165.3 ± 3.5 139.2 ± 3.2 127.1 ± 3.7 85.0 ± 2.8 53.3 ± 2.6

m 9.45 ± 1.2 8.93 ± 1.1 9.98 ± 1.8 8.73 ± 1.6 4.22 ± 0.6
Normal
σ 154.8 ± 3.3 132.9 ± 2.7 121.5 ± 3.4 80.6 ± 2.8 48.5 ± 2.5
α 16.7 ± 2.0 13.8 ± 1.7 12.0 ± 1.9 10.0 ± 1.6 12.6 ± 1.5
Lognormal

σ* 153.8 ± 3.3 132.2 ± 2.7 121.0 ± 3.3 80.0 ± 2.8 46.8 ± 2.5

s* 1.12 ± 0.01 1.11 ± 0.01 1.10 ± 0.01 1.13 ± 0.02 1.31 ± 0.04
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one where the lowest estimate for the standard deviation is used,
whereas the second one uses the highest standard deviation estimate.
The minimal and maximal values for the standard deviation are taken
from Fig. 5. For the mean strength the ”true” mean strength is used.
The large difference in standard deviation —which is a measure for the
spread of the distribution— results in tremendous over- or under-
estimation of both the higher and lower end of the probability of
failure.

In the design of ceramic compounds an acceptable probability of
failure is selected prior to design, depending on the specific application
and possible consequences of failure. If one assumes an acceptable

failure probability of 0.01 this would mean that at the corresponding
stress, 1 out of 100 fibers is likely to fail. From Fig. 6 it shows that with
an allowable probability of failure of 0.01, the stress would be 80 MPa
or 148 MPa, depending on the used standard deviation [24]. If one
would erroneous estimate the type of distribution and its associated
parameters; it would lead to wrong assumptions in design and possibly
premature failure of, for example, a membrane module. This demon-
strates that, especially for design, it is of key importance to measure
sufficient samples in order to accurately describe the shape of the
distribution.

5. Conclusion

The mechanical strength of porous alumina hollow fiber mem-
branes was measured using different measurement geometries. The
resultant mechanical strength number is a direct result of the measure-
ment method. Values obtained by 3-point bending tests will be higher
as compared to values obtained by 4-point bending test. Mechanical
strength numbers obtained by diametrical compression are nearly a
factor 2 lower as compared to the bending test numbers. All bending
methods are suitable to characterize the mechanical strength of a
ceramic hollow fiber, however to allow a direct comparison it is highly
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Fig. 4. Cumulative probability of failure; empirical data (Kaplan-Meier estimate) and the 3 different distributions (parameters see Table 3). A: 3-point 20 mm, B: 3-point 40 mm, C: 4-
point 10–20 mm, D: 4-point 20–40 mm.

Table 3
The difference in AIC values calculated for the three distributions, AICΔ is defined as
max(AIC) min(AIC).

Type N Min AIC( ) Max AIC( ) AICΔ

3-point 20 mm 100 Normal Weibull 11.23
3-point 40 mm 50 LogNormal Weibull 11.12
4 point 10–20 mm 100 LogNormal Weibull 26.00
4 point 20–40 mm 50 Normal Weibull 3.24
Compression 100 Normal LogNormal 2.44
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recommended to stick to span sizes and geometries mentioned in
various standards, such as in the ASTM:C1684-08 [19]. The utilized
measurement method, span size and sample set size should be
reported, combined with the mean strength and standard deviation.
Only when these values are reported a comparison between different
types of fibers can be made. The minimum required sample set size

depends largely on the purpose of the measurements, in order to
characterize the mechanical strength and to make a comparison to
other fibers, 20–30 samples will give reasonable estimates of the
average mechanical strength and standard deviation. If the values are
used for design, detailed knowledge of the underlying probability
distribution is required. In order to determine this, 100 or even more
samples should be measured. Only at these large sample set sizes it is
possible to determine the distribution type. Detailed knowledge about
the distribution type and distribution parameters is required as the
specific shape of this distribution largely affects the design strength.
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