
Earth Sci Inform (2009) 2:299–313
DOI 10.1007/s12145-009-0034-7

RESEARCH ARTICLE

A skeleton design theory for spatial data infrastructure
Methodical construction of SDI nodes and SDI networks

Rolf A. de By · Rob Lemmens · Javier Morales

Received: 7 July 2009 / Accepted: 25 September 2009 / Published online: 12 December 2009
© Springer-Verlag 2009

Abstract In this paper, we look into the theory of de-
signing geoservice systems, i.e., SDI networks and their
constituent SDI nodes. As the field of SDI is strongly
about bridging between geoservice systems, interoper-
ability and harmonisation, it is not surprising that stan-
dardisation efforts are of crucial importance in it. These
efforts have historically addressed abstract and con-
crete content models for data and metadata exchange,
as well as abstract and concrete behavioural models
for computational processes. The list of standards that
are in use in the SDI field continues to expand, and
reaches out to neighbouring fields such as sensor nets.
We argue that given these trends, the resulting levels of
standardisation in actual systems, and the complexity of
geoservice systems in general, it appears only natural
to look into the possibility to define a standardised
design theory for SDI and its nodes, which addresses the
function base and the communication base. Specifically,
we provide an overview of those components that need
to be designed, and what are their relationships. We
do so in an abstract way, focussing on the concern of
information content in this paper, and only hinting at an
appropriate theory of realisation based on our skeleton
theory.

Communicated by: H.A. Babaie

R. A. de By (B) · R. Lemmens · J. Morales
ITC, Enschede, The Netherlands
e-mail: deby@itc.nl

R. Lemmens
e-mail: lemmens@itc.nl

J. Morales
e-mail: jmorales@itc.nl

Keywords Catalog · Design · Formal method ·
Geoservices · Implementation · Spatial data
infrastructure

Motivation and paper organisation

Our ever changing world is one with growing concerns
for sustaining the human and natural condition, as well
as one with growing potential for spatial monitoring
and understanding of ongoing earth processes in the
natural and man-made environment (Davis et al. 2008).
One of the important tools of our time to understand
these spatial processes and exploit spatial understand-
ing is spatial data infrastructure (SDI).

It needs to be emphasised at the same time that SDI
must be seen as a, still maturing, enabling technology
with a somewhat unspecified client base. One impor-
tant and potentially large application domain is that of
societal networks: communities of (groups of) civilians,
public administrators and professionals that share in-
formation on a theme of interest. Such theme my have
societal relevance in health, education, crime, public
administration practice, or environmental surveillance.
Land use change in the Amazon Basin is a point in case,
as it draws (and requires!) attention from myriad stake-
holders. Green pressure groups may identify disallowed
sugar cane plantations or may want to report illegal
logging. The SDI may provide the base data to back
up their claims, for instance by putting on record the
land cover history of the disputed locality. We expect
that SDI used in this sense supports transparency of the
management of public space.

We consider SDI enabling because it can provide the
geospatial substrate on which relevant social functions

300 Earth Sci Inform (2009) 2:299–313

can be based (Davis et al. 2008). For instance, com-
munity members may want to share news, experiences,
recommendations and even advice, and may want to
associate any of these with precise or even uncertain
spatial tags. It follows that models for network member
communication are important to develop, and should
be addressed in appropriate and well-understood pro-
tocols. In this sense, SDI provides one of the impor-
tant bases from which to develop community support
systems.

In context of the philosophy of single-creation–
multiple-use (Bernard et al. 2005), the SDI domain
is well-known for its relentless focus on the applica-
tion of standards (Crompvoets and Bregt 2003), and
of ontologically steered mapping mechanisms (Arpinar
et al. 2006). The two enable the exchange of data,
computations, and computation outcomes—all of those
seen as services—between constituent systems of the
SDI, which in the remainder of this paper are called
SDI nodes. The terms SDI and SDI node are defined
below.

The standardisation efforts have historically
addressed abstract and concrete content models
for (spatial) data and metadata exchange, as well as
abstract and concrete behavioural models for (spatio-)
computational processes. The list of standards (in use)
continues to expand, and reaches out to neighbouring
fields such as sensor nets.

Given these efforts, the resulting levels of standardi-
sation in actual systems, and the complexity of geoser-
vice systems in general, it appears only natural to look
into the possibility to define a standard design theory
for SDI and its nodes. After all, given the high inci-
dence of adoption of, often the same, standards, hopes
can be had that even the realisation of the systems
can be made subject to some level of standardisation.
This paper makes an attempt to break into this area.
We believe that it is important to do so as an ac-
cepted design theory will emphasise the need for high-
level, platform-independent designs that over time will
lead to more robust and better understood system
implementations.

To us, an SDI node is a moderately to highly
complex information system with usually a long life-
time expectancy, in which geospatial resources fea-
ture rather prominently. Its design and subsequent
implementation approach should respect this expected
lifespan, in terms of abstraction, documentation and
formal transformation and derivation. We argue that
SDI node design and implementation itself should
be a domain of methodical standards and mappings,
both of which must be understood deeply, and applied
rigorously.

We define an SDI as a collaborative network of sys-
tem and human actors that exploit contributed data and
computational resources, many of which are spatially ex-
plicit, for one or more targeted objectives, making use of
service offerings and consumptions. An SDI functions
as an organising mechanism for data, computational
models and classification schemes across data themes
and application domains, tackling issues of identifi-
cation, interoperation, and exploitation of spatial re-
sources held by its community. SDI nodes are the
system nodes of the SDI network, which is completed
by non-system nodes, of which humans are the most
important to mention here.

In a not too distant future, SDI is expected to shape
as a support technology for systems of a more ar-
gumentative kind, in which stakeholders can express
their views, backed up by ‘spatial proof’ or ‘spatial
annotation’. It is also in this light that we argue for the
importance of communication as a fundamental SDI
characteristic.

Our definitions are intentionally ignoring the non-
technical characteristics of SDI, not because they
are unimportant, but because they receive appropri-
ate attention elsewhere (de Man 2006; Masser 2005;
Williamson et al. 2003), because they are not subject
to design scrutiny, and also because they are difficult to
quantify in an explicit, formal design framework that is
the subject of this paper.

Present-day practice executes SDI node design and
realisation in a rather ad hoc and sometimes even
unstructured way. There are multiple reasons for this.
First of all, SDI development is a new field nestled in a
relatively new engineering domain (Craglia et al. 2008;
Vieira et al. 2008). Secondly, a design theory for GIS-
centric systems is lacking, certainly when compared
with the design theory for database-centric systems.
In the latter, much more standardisation has taken
place between different platforms, not in the least
because of the earlier standardisation work on SQL
and derivatives (Codd 1970; Astrahan and Chamberlin
1975), leading to the present situation in which ab-
stract, platform-independent designs are rather easily
realisable.

Approaches to realise SDI can be either top-down,
bottom-up, or by-accident. Top-down approaches often
address a wide thematic coverage for a larger adminis-
trative entity, being goal-unspecific, addressing all or-
ganisational (legal, financial, institutional) matters and
can be potentially client- or market-ignoring. These
systems are true SDIs-by-design, but their number is
small (Bernard et al. 2005; Annoni et al. 2008). Bottom-
up approaches often derive from a well-understood
clientele and their service demand, for a relatively small

Earth Sci Inform (2009) 2:299–313 301

thematic and/or geographic coverage. These systems
have been realised in some numbers (Masser 1999;
Lance 2003; Williamson et al. 2003). Finally, SDIs-by-
accident arise typically where legacy systems have been
found to hold exploitable spatial resources and have
been made to deliver such as services. A number of
these systems has been realised as well. The latter two
approaches constitute, in our opinion, a rather natural
evolutionary development suiting the field of SDI best.

Another reason for the somewhat immature state of
SDI engineering lies in its mix of system paradigms.
Historically and effectively, SDI is much about shar-
ing and exchanging data, notwithstanding the fact that
other service promises may include offerings to use
compute power, storage space, run an application, help
to find services, or orchestrate a new service from exist-
ing ones. So, SDI can be firmly placed in the domain of
data and information systems, and thus fits in the realm
of a state-based paradigm. This is actually more true of
SDI node design than of design of SDI as a network,
which brings us to another paradigm. If an SDI con-
stitutes a network, that network needs to be designed,
which materialises to the precise specification of forms
of communication—in protocols, interfaces, services—
between actors in the network. That is, we need a com-
munication process paradigm. Thirdly, the SDI field
associates strongly with principles of the geosemantic
web, which claims potential to develop services to its
expanding clientele that were not foreseen at design
time, and will be generated on the basis of deep (spatial
and thematic) understanding of needs and context. We
call this the introspective paradigm.

Yet another reason for the lack of a fundamental
SDI design theory hides in the rich and growing spec-
trum of implementation platforms (database engines,
image repositories, GIS server engines, metadata en-
gines, middleware and portal technology) that can be
used for SDI implementation. Relative luxury though
this may seem, and notwithstanding the massive effort
in standardisation of recent years, these systems are not
based on a single theory of spatial information. This
causes the need to implementors to be aware of all
sorts of idiosyncracies between these systems and their
models, and in our view, forces them to focus on those
details far too early in their design and implementation
work.

Overseeing the above, a necessary step, in our view,
is to add formal rigour to the design and implemen-
tation process for SDI systems. We argue that such
a rigourous, formal approach to SDI node develop-
ment is naturally state- and function-based as nodes
captures spatial resources such as data sets, spatio-
computational models, and so on. A formal approach

to development of SDI as a network , in contrast, is
naturally process-based. This leads to the situation that
an SDI node must display two formal faces: state and
functionality on the one hand, and process behaviour
on the other hand. We also argue that, given current
technology, the introspective paradigm to SDI design
is best handled as a third phase in the design. In this
way, almost naturally the system extendibility and the
required system abstraction is addressed last.

Our approach to SDI design is presented in
Section “What constitutes an SDI design philos-
ophy?”, providing a somewhat axiomatic statement
plus arguments of what we believe is needed for the
field. A theoretic framework for state- and function-
based SDI design is subsequently presented in Sec-
tion “The vertical perspective: developing state-and-
function systems”. A similar framework for
communication-based design is described in Section
“The horizontal perspective: developing a communi-
cating system of systems”. The interplay between the
two is discussed in Section “Merging horizontal and
vertical designs”. Achieving system introspection and
orchestration by design is the topic that we address in
Section “The introspective perspective: developing an
adaptive and extensible system of systems”. How
such designs can be properly integrated with both
the vertical and horizontal perspective is discussed in
Section “Merging in the introspective design”.

What constitutes an SDI design philosophy?

It is a justified question whether the field of SDI is in
need of a separate design theory. After all, distributed
information systems (DISs) have been in place for a
few decades already, and one can argue that an SDI
is just that. One may not be able to pinpoint a single
design theory for large-scale DISs, but the scientific
community certainly has produced a few results in the
method and formalism domain for their design.

Yet at the same time, SDI is sufficiently distinct
from DIS, warranting special treatment in its design
as well. We recognise at least the following important
distinctions:

Geospatial data characteristics Geospatial data forms
the fuel of any SDI, and comes with (quality)
characteristics that make its direct application of-
ten non-trivial. Typical DIS mostly operate on a
principle that the system state represents the world-
as-we-know-it, while such an assumption can be
disastrous in many use cases in SDI context.

302 Earth Sci Inform (2009) 2:299–313

Infrastructural foundation An SDI intends to provide
a data sharing framework for multiple purposes,
such as the economy, the environment and society
at large. So SDI is strongly aimed at enabling ‘other
business’. Typical DISs target a single business, or
at least a confined set of use cases.

Use case understanding Where a typical DIS is often
developed for a number of well-defined and well-
understood use cases, for instance fitting inside a
single enterprise perspective, the use case under-
standing for an SDI is often partial at the start only,
and assumptions are made that other promising
uses will develop over time.

Organismal growth In line with above remark, SDI
does not typically develop from a master plan
with defined outer boundaries, but rather may
start small and dedicated and evolve over time
into wider directions that were unforeseen at the
start. This comes naturally with all of the above
distinctions.

Because system development is an expensive
process, appropriate documentation is beneficial when
system redesign is called for. It also pays off if the sys-
tem needs to demonstrate some level of introspection,
for which see below. An important abstraction mech-
anism in IT system design is the move away from plat-
form idiosyncracies. Provided that standards adherence
is well established between platforms, as is the case
with DBMSs, and more and more also with geospatial
platforms, a platform-independent design will always
pay off in the long term.

It is through transformational design techniques
that abstract designs can be methodically and cor-
rectly mapped onto a platform of choice. Such steps
are illustrated as arrows in Fig. 1. In that figure,
the top level represents abstract designs that are
platform-independent. A design theory should include

state-and-function
system specification

communication
system specification

introspection
system specificationPIMs

state-and-function
system realisation

communication
system realisation

introspection
system realisationPDMs

Fig. 1 Overview of SDI design philosophy, showing state/funtion
systems, communication systems and introspection system, at
both platform-independent and platform-dependent levels

formalised transformations that turn abstract specifi-
cations eventually into robust implementations. Such
transformations are not deterministic functions, as they
will need to accommodate design alternatives along the
way.

Current SDI initiatives are strongly focussed on data
provision, sharing and portrayal, guided by the princi-
ple of ‘create-once-use-many-times’. We expect them
to become much richer functional entities, which, in
search of a wider clientele, will need to provide means
of introspection. The publish-find-bind paradigm is a
first step in that direction, as it makes a small step in
the domain of metadata exploitation. Introspection can
only be achieved if the system does not only provide
access to its data, but opens up selected parts of its
structure, which is fundamentally captured in a design
process.

The methodical design of a complex system, or sys-
tem of systems, should only be undertaken through
a carefully selected list of concerns, which are ad-
dressed independently from each other. A classical list-
ing should contain the following concerns: information
content, information structure, performance, distrib-
ution, interaction, functionality and security, though
more could be identified. In the present paper, we
focus on only two: information content and interaction.
We also leave aside transformation techniques in this
paper.

The sequel of the paper discusses abstract design
only. We do not here discuss mapping such designs
onto platforms, though this obviously required. In the
sections, we aim at identifying the components that an
abstract design should contain, and the relationships
that exist between them. This is done in the following
sequence:

1. State-and-function systems, in which we focus on
how to specify an SDI node as a system that holds
information, and provides functions that operate on
that information. We call this the vertical perspec-
tive because such systems are realised often in a
software stack.

2. The Communication system, in which we focus
on how to specify the communication patterns be-
tween SDI nodes, abstractly constructing a larger
system, the SDI. We call this the horizontal per-
spective to emphasise peer SDI nodes communicat-
ing with each other.

3. The Introspective system, in which we focus on
augmenting the specified SDI system with means
to query itself for service possibilities and allow the
dynamic creation of new services.

Earth Sci Inform (2009) 2:299–313 303

The vertical perspective: developing
state-and-function systems

In the vertical perspective, we focus on how to develop
a single SDI node. Eventually, its role in the SDI is that
of service provider and consumer, but to get there it
needs to hold and maintain resources such as data and
computational sources, as well as facilities to offer and
consume services.

Preliminaries

In designing and realising state-and-function systems,
one typically defines a state space and a function collec-
tion. In so doing, a prominent tool is a collection of syn-
tactic types T and a collection of syntactic expressions
E . These allow us to make explicit system structure,
function signatures, and eventually function definition.
We do not elaborate on possible choices for T and
E here, except to indicate some minimal requirements
that would need to be met. A full definition of E would
include variables, constants, identifiers, and an array
of operators and functions for manipulation of values.
Such a definition would be followed by the definition
of the ‘well-typed’ relation : ⊆ E × T indicating which
expressions are properly typed, and what their type is.

On the types collection T , we will assume the pres-
ence of a fixed set of base types, which might include
void,1 int, real, bool, geometry, and image. For
what follows, we also must assume the presence of a
syntactic name set A , members of which we will be
using as attribute names in records and record types.
From types in T , we will be allowed to construct more
complex types through the use of type constructors. The
following type constructors are at least present, and
provide an inductive, albeit partial, definition for T :

[function type constructor] ∀σ1, σ2 ∈ T ⇒
(σ1 → σ2) ∈ T

[set type constructor] ∀σ ∈ T ⇒
IPσ ∈ T

[pair type constructor] ∀σ1, σ2 ∈ T ⇒
(σ1, σ2) ∈ T

[record type constructor] ∀i|ai ∈ A , σi ∈ T
⇒ 〈a1 : σ1, . . . ,

an : σn〉 ∈ T

1The type void represents the empty type; it is included here for
purely technical definitional purposes only. The type has only one
value, ⊥ : void (where ⊥ is pronounced as “bottom”).

An expression of function type is a function, where σ1

denotes input type and σ2 the output type, respectively.
An expression of set type IPσ denotes a set, with mem-
bers of type σ . The pair type constructor comes with a
special equivalence axiom:

(σ,void) ≡ (void, σ) ≡ σ,

for any type σ .

Proper states

An SDI node, at a sufficiently abstract level, can be
characterised by a state space S and a function space
F. We can characterise both as follows. The data store
of the node, holding amongst others all the spatial data
sources, is seen as a complex object with data type σ .
The definition of σ is the field of spatial data modelling,
and we will discuss this in some more detail below.
Values s of type σ are possible states of the data store,
and because it is typically unacceptable to allow all such
values, during the data modelling phase, we identify
constraints γi(s) that the stored data should obey al-
ways. The conjunction

∧
i γi(s) of all these constraints

is called γ here.
This leads us to a definition of the system state

space S:

S def= {
s : σ | γ (s)

}
. (1)

The state space is the collection of allowable system
states. All the designer’s work is in providing proper
definitions of σ , the database structure, and γ , the static
constraints. From these, the state space S follows.

If the state space of our SDI node is managed as a
spatial database, σ classically is a record type of which
the attribute names function as table names, and the
types associated with those names are themselves set-
of-record types. But this is just the classical set-up, and
we will discuss extensions appropriate to SDI nodes
below in Section “The introspective perspective: devel-
oping an adaptiveand extensible system of systems”.

Proper dynamics

In a similar vein, the function space for the SDI node
must be seen as a collection of functions that encapsu-
late the complex object, and that provide access to it.
Such access can be for information retrieval, updates,
or combinations thereof. This, obviously, is a rather
classical view of an information system. To formalise
this perspective on our system, we need to define the
possible dynamics of the system, both in how it replies

304 Earth Sci Inform (2009) 2:299–313

to external requests as in how it reflects requests to
update itself.

For the time being, we adopt a simplistic model for
capturing allowed dynamics of our SDI node, in the
sense that we define only a model for allowed one-
step changes. In SDI design practice, this model often
suffices in capturing most of the dynamic constraints.

This leads to the definition of the system state change
space U :

U def= {
(p, q) : (σ, σ) | (p, q) ∈ S2 ∧ φ(p, q)

}
. (2)

The state change space is the collection of allowable
system state changes, indicating that a state p can turn
into state q if and only if (p, q) ∈ U . The formalisation
amounts to providing the definition of φ(p, q). Similar
to γ for static constraints, φ(p, q) is a conjunction of
separate dynamic constraints φi(p, q). Each of these
expresses a specific condition that restricts the new state
q depending on old state p.

Proper functions

The definition of U serves as a backplane of proper
behaviour for a collection of functions F that are yet
to be defined. These functions must obviously be well-
behaved with respect to S and U . These conditions are
captured in the definition of function space F, in which
we assume that σ is the defined state structure (as per
above):

F def= {
f : (σ, σin) → (σ, σout) |
σin, σout ∈ T ∧
∀si, so : σ, ti : σin, to : σout |
si ∈ S ∧ f (si, ti) = (so, to)

⇒ (si, so) ∈ U
}

(3)

A function f is in the function space F if and only if

– it takes as input an allowed system state si : σ and
additional input ti : σin from which it produces an
allowed output state so : σ and additional output ti :
σin, and

– the one-step state change (si, so) is allowed.

Any function meeting these conditions is an allowed
function. In practice, a system will offer to its outside
world a finite collection of functions, known as the
system’s interface I ⊆ F. Functions in I fall into two
categories: queries and updates. Queries are special in

the sense that they will not (ever) change the system
state. A function f ∈ F is a query if and only if:

∀si, so : σ, ti : σin, to : σout |
f (si, ti) = (so, to) ⇒ si = so.

Finally, we remark that by virtue of the conclusion
(si, so) ∈ U in the definition of F, and the definition of
U , we can conclude that an allowed function f can only
return an allowed system state so ∈ S.

Spatial data modelling

Spatial data infrastructures are about sharing geospa-
tial data and computational resources, but we have not
stated much about the geospatial domain yet. This is
obviously important. In this short section, we look at
the geospatial dimension of state-and-function system
design.

Spatial data modelling is conceptual data modelling
for information systems, with specific attention for the
assignation of spatial semantics to conceptually iden-
tified information content. In plain terms, this means
that we attribute some object classes with one or more
spatial characteristics.

For example, creeks may be associated with a
linestring attribute, or under a more detailed model
with a multilinestring attribute, representing all water-
ways is a creek watershed. One might even consider to
additionally assign a polygon attribute to delineate that
watershed as an area. Observe that the above affects
our definition of σ in Eq. 1.

Attribution of spatial characteristics to object classes
is only a starting point. Under the state-and-function
paradigm, we continue with identifying constraints to
be expressed over our spatial attributes, as well as over
combinations of related spatial attributes.

Continuing from the previous example, a multi-
linestring model for a creek should have all segments
connected, while its polygon attribute should allow only
hole-free polygons, by nature of watersheds. Moreover,
the (multi)linestring representation should be spatially
included in the polygon representation. Observe that
this all addresses the γ part of Eq. 1.

On the function side, finally, we will need to de-
vise spatial functions on our information system that
accommodate information needs of the end-users, and
functions that robustly allow spatial data updates within
the system. We hope to address the design method for
such functions in an upcoming paper.

As to spatial update functions, for example, one
function that allows adding a segment to the creek wa-
terway multilinestring will need to verify that the added

Earth Sci Inform (2009) 2:299–313 305

segment is actually connected to the old multilinestring.
Moreover, in presence of the polygon representation,
that polygon may require expanding to continue sat-
isfying the topological constraint of spatial inclusion.
Observe that this part addresses which functions f we
will have in collection F of Eq. 3.

Outlook to the horizontal perspective

The vertical perspective defined and discussed above
considers an SDI node to be a complex object system
that holds a state, and offers functions operating on the
state. At some point, we assume that all the SDI nodes
have been defined in this way.

We continue in the horizontal perspective to look
at how the SDI nodes can effectively form an SDI.
Crucial to the community of nodes is a proper definition
of possible forms of communication between them. To
this end, we apply a process algebraic formalism, such
that we can describe the SDI nodes and their role
in that communication process, effectively describing
allowed ‘conversations’ and appropriate exchange of
information.

This brings us to a new paradigm where the things of
study are processes, not states or functions.

The horizontal perspective: developing
a communicating system of systems

Proper behaviours

Under the horizontal perspective, we define what are
allowed forms of communication, or ‘interactional be-
haviour’, between nodes in the SDI network. The SDI
nodes are considered independent systems with their
behaviour defined in a declarative way. Such a declara-
tive definition is what we call a process specification.

In the formalism that we adopt here, a process spec-
ification defines a set of possible behaviours, in which
a behaviour is a sequence of actions, ordered in time.
An action is either an observable communication or it
is an (unobservable) internal event of the node, viewed
as a process. A communication indicates a channel
over which the communication can take place plus a
communication parameter as placeholder for the com-
munication content.

Each SDI node is thought to exist in a world of
its own, and all that it exposes is its behaviour as
services. Services manifest themselves as offerings or
consumptions, and a typical scenario is that one SDI
node offers a service that at some point in time is con-
sumed by another SDI node. In that service consump-

tion event, information may be exchanged between the
two nodes. Expanding from the above, we add that
human users can be service consumers also, and that
more than two nodes/users can be involved in a single
service consumption. Moreover, the metaphor of ser-
vice offering-and-consumption is an intuitive one fitting
service-oriented philosophy, but some of these events
are better viewed as the synchronisation of actions that
take place at different systems, involving information
exchange. In other words, there may not be so clearly
visible roles of consumer or offerer.

Single services, not necessarily offered by the same
SDI node, can be strung together to form a service chain
that satisfies requirements stated by the designer. In
this context, a service chain represents some intended
process logic.

Where service, process, action, channel and commu-
nication parameter are terms of the specification world,
the terms service execution, process execution, process
step, connection and communicated value are respective
instantiation terms in the real-time execution world.
A service execution within a chain is called a process
unit. Observe that service chains cannot normally be
uniquely assigned to a single node, and are better
viewed as ‘behaviour of the SDI network’. Intuitively,
a service chain is a designed collaboration between SDI
nodes.

The behaviour of a service chain has the following
principles:

– connections among process units exist only momen-
tarily; as a result of the process unit execution, other
connections between subsequent process units may
be created,

– accessible resources vary over time,
– process units interact using synchronous communi-

cation through interfaces, and
– the basic mechanism of interaction is message

exchange.

A family of formalisms that provides significant
expressive power to capture these notions is that of
process algebras (Bergstra and Klop 1987), with the π -
calculus (Milner et al. 1992; Parrow 2001) being one
specific formalism. We have adopted it in this paper,
as it has been shown to be extendable and it allows
dynamic adaptation of the process over time, which
appears potentially suitable for applications display-
ing a.o. introspection. Ongoing research links the π -
calculus with languages for web service specification,
such as WS-BPEL, WS-CDL and XLANG, as a seman-
tical foundation (Lucchi and Mazzara 2005; Feng et al.
2008).

306 Earth Sci Inform (2009) 2:299–313

The formalisation of communication between SDI
nodes has been neglected by the SDI development
community, resulting in underdeveloped use of SDI
systems. The premise here is that a precise definition
of the communication logic enables the exploitation of
SDI nodes and produces outputs resulting from instan-
tiating process chains that more fully adhere to user
requirements. It follows that the proper specification of
an SDI from the horizontal perspective requires a two-
fold approach.

This puts us into position to indicate what are the
design targets on the process communication front,
having indicated S, U and F on the state-and-function
front.

– For each SDI node i, the process specification Bi

specifies the node’s communication possibilities.
This gives us a collection of process specifications,
{ Bi }i, one for each SDI node.

– For each service chain j, the process specification
C j specifies the service chain’s behaviour. Collec-
tively, we will accumulate a set of such behaviours
{ C j } j.

We will add a few comments on these two collections
after the technical discussion on process formalism
below.

Process formalism

In this section, we discuss process specifications in more
depth as they are somewhat unfamiliar in the SDI
domain. Key to the behaviour specification of an SDI
are process specifications such as Bi indicated above.

Given the principles listed above, we will tacitly as-
sume that members of the set of expressions E , defined
above, can be used as names of communication ports,
variables or as data values. These expressions allow us
to represent inputs and outputs that can be attached
as prefixes to a service specification. Prefixes stand for
conditions associated with the instantiation of a service.

A prefix is either an input, output or silent prefix, and
always follows the α . S form. Prefixes can take the
specific forms shown in Fig. 2.

These prefixes cover the simple conditions that are
attached to a unit of behaviour, explicitly specifying
actions that precede the definition. This provides us
with the basis to present an example of two communi-
cating SDI nodes. Here, on the left we indicate a service
consumer (or client), and on the right a service provider
(or server). Their communication over a channel c is
defined through parallel composition (expressed with
| , and defined below):

c̄req . C | c(gcap) . P. (4)

This behaviour specification indicates that the con-
sumer can send a request message req, after which
it behaves as C, where behaviour C still needs to be
specified. The provider process accepts a message in
placeholder gcap, for get_capabilities, and then contin-
ues as behaviour P, defined below.

P def= (τ . BS + τ . IS).

This specification, in turn, states that the provider per-
forms an internal operation, that cannot be influenced
externally, represented by τ , and then behaves as a
Busy Server service BS and processes the request. Al-
ternatively, it internally rejects the request and behaves
as an Idle Server service IS. Two extra notational ele-
ments appear in these statements:

Parallel Composition P | Q denotes processes P and Q
executing in parallel, where possible synchronising
on common channels. I.e., P and Q can interact
during the execution or may as well act indepen-
dently from each other.

Choice: P + Q denotes a behaviour in which either P
or Q is executed.

To illustrate the use of the language, we present
the formalisation of a simple but typical example of
an OGC Web Service (OWS) interaction, namely a

Fig. 2 Action prefixes of the applied process algebra

Earth Sci Inform (2009) 2:299–313 307

find-bind protocol, in which a user connects via a geo-
portal to find a geoservice offered by a server, and then
consumes it. That server may offer various services.
This is an example of a service chain process C j, as we
will discuss in Section “Revisiting the design targets for
communication processes”. The chain involves three
SDI components: the user node, the geoportal, and the
server. A specification of all the components of this
chain can be formalised as follows:

OWS_SERVICEi()

def= [gconn][gcap][gserv][cri][sri]
(

USER(gconn, gcap, gserv)

|!GEOPORTAL(gconn, gcap, gserv, cri, sri)

|!GEOSERVERi(cri, sri)
)

(5)

This service chain OWS_SERVICEi is defined as
the composition of various constituent elements of the
desired service. It starts by defining a set of global
channels that are used by the different service compo-
nents to interact. The channel gconn serves for user
connection and identification, allowing, a.o., the user
to identify herself and the geoportal to assign a set of
privileges. The channels gcap and gserv represent the
interface the geoportal makes available to service users.
They respectively serve to carry a request for metadata
(a get_capabilities request) and a request for a specific
geoservice (a get_service request). Both channels are
therefore passed as arguments to the GEOPORTAL
and USER services. To be clear a get_service request
represents a service call from a client to one of the
operations offered by OGC-compliant services. The
channels cri and sri represent the interface between
the geoportal and a geoservice provider. They are also
passed as parameters to those respective services.

USER(gconn, gcap, gserv)

def= [rc][ro](gconn(userid, . . .)

|gcap(req_c, rc)

|rc(res_c).gserv(req_o, ro)
)

(6)

The USER service creates two restricted channels rc
and ro that are used by the geoportal service to send
responses to the user. The gconn channel is used to
create a connection to the geoportal. Once connected,
the USER service makes a metadata request using the
get capabilities channel gcap and waits for the response
through the rc private channel. The metadata request

content is represented by the req_c parameter. When
a response arrives over the private channel rc(res_c),
it is processed and (if applicable) a geoservice re-
quest is sent over the channel gserv, providing again
a response channel ro. The parameter req_o in the
geoservice request gserv(req_o, ro) can be instantiated
with any of the operations exposed by OGC compliant
services. For example a ‘GetFeature’, or a ‘GetMap’ or a
’DescribeFeatureType’ operation.

GEOPORTAL(gconn, gcap, gserv, cr1, sr1, cr2, sr2)

def= [rgc1]rgs1][rgc2][rgs2]
(

gconn(userid, . . .).P_CONNECT(. . .)

|gcap(req_c, rc).
(
P_CAPABILITIES(req_c, rgc1).

rc(res_c)

|GEOPORTAL(gcap, gserv, cr1, sr1, cr2, sr2)
)

|gserv(req_oi, roi).
(
GEOSERVER1(req_o1, rgs1).

ro1(res_o1)

|GEOSERVER2(req_o2, rgs2).ro2(res_o2)

|GEOPORTAL(gcap, gserv, cr1, sr1, cr2, sr2)
))

(7)

The GEOPORTAL service exposes three processes
that are respectively used to connect to the geopor-
tal, to query metadata and to consume a geoservice.
Upon receiving a metadata request gcap(req_c, rc)
the geoportal instantiates the capabilities process
P_CAPABILITIES(req_c, rgc1).rc(res_c) and creates a
duplicate of itself to become available for other
requests. The result of processing a capabilities re-
quest is returned to the user using the correspond-
ing response channel rc(res_c). Alternatively, when
the geoportal process receives a geoservice request
gserv(req_o, ro), the geoserver process is instantiated.
The set of pairs cri and sri represent the channels used
by the geoportal to communicate with various service
providers. In the specification above, we have depicted
two possible geoserver services, GEOSERV ER1 and
GEOSERV ER2. Again the geoportal replicates itself
upon receiving a geoservice request, so that it becomes
available for further requests.

We continue by specifying one more level of
detail for the GEOSERVER process. Clearly, a
GEOSERVER service can evolve into different ser-
vices, depending on context and inputs. To differentiate
between the cases, we use the Match (=) operator that
allow us to express guard conditions. In our particular
example, we assume that IS can evolve into different

308 Earth Sci Inform (2009) 2:299–313

services, a web coverage service WCS, a web feature
service WFS or a web map service WMS, etc.

GEOSERVER1(cr1, sr1)

def= (
cr(req_c, rgc1) . CSW(. . .)

| sr1(req_o1, rgs1) .
([req_o1 = ‘gc’] . WCS(. . .)

+ [req_o1 = ‘df’] . WFS(. . .)

+ [req_o1 = ‘gm’] . WMS(. . .)

+ [req_o1 = . . .]
)
.rgs1(res_o1)

|GEOSERVER1(cr1, sr1)
)

(8)

The geoserver process can be triggered with two
different inputs. If the input cr(req_c, rgc1) is received,
the metadata service CSW(. . .) is instantiated. When
the GEOSERVER1 process receives a geoservice re-
quest sr1(req_o1, rgs1), it checks for the type of in-
put. The process can be invoked with different values.
Equation 8 depicts three values: gc, df and gm. The pa-
rameter values represent a GetCoverage, DescribeFea-
tureType and GetMap operation request respectively.
The replacement of the given parameter will trigger the
instantiation of one of three potential Server services
WCS, WFS or WMS. Equation 8 also contains the term
[req_o1 = . . .], which depicts that a other parameter
values can be used. We have purposely omitted some of
the detail of the specification. All details of the service
can be presented in a full-fledged specification of the
service, but this falls beyond the purpose and scope of
this paper.

Revisiting the design targets for communication
processes

After this discussion of the formalism for communi-
cation process specification, we can make more ex-
plicit how members of the sets { Bi }i (the SDI node
processes) and { C j } j (the service chains; indices j
distinct from indices i) can be specified, and how this
results in the overall behaviour of the SDI network.

The design targets are the process specification Bi

for each SDI node i, as well as the service chains C j.
For either of these processes one typically encounters
the specification template

Service def= ! c(x) . Si,

where Service is either a Bi or a C j, c is the input
channel at which the service is listening, and Si denotes
the actual service process. Service chain processes C j

may be ‘hosted’ by a separate chaining server.

To do justice to the formalism, we need to also in-
troduce a final notation, known as guarded generalised
sum, denoted by

∑
. Its informal definition states that

∑

i

πi Pi = π1 P1 + · · · πn Pn,

where each πi is an input, output or silent prefix, and
each Pi is another process expression. We assume that
n is known from context.

This now allows us to finalise the behaviour B of the
overall SDI network as

B def=
∑

i

πi Bi +
∑

j

π jC j.

The prefixes function as guards, allowing to identify the
proper subprocess.

A mirror look at state-and-function systems

At this stage, the question is how an SDI node seen as a
state-and-function system relates to the same node seen
as a communicating process. We provide an intuitive
answer to this question only.

If we take another look at the client-server commu-
nication expressed in the process expression (4), where
c is the name of the channel over which the client
communicates with the server, one may look at it as
the name of the service offered. That, in a state-and-
function system, translates to a corresponding function
f being offered in the system’s function set F. So,
naïvely channel names (like c) correspond with func-
tion names (like f), and our design should indicate
that correspondence. This can be achieved, obviously,
by a naming convention that is enforced in the design
method.

Caring to take a somewhat less naïve look, we could
functionally interpret the action c̄r as a request for
service by the client, thus something that could be
realised as a remote procedure call. In the same vein,
the action c(gcap) could be read as the reception of a
service request by the server.

This example shows that in our specification, we
have separated service requests from service responses,
the latter not occurring yet in our example. So, this
constitutes an important footnote to the one-to-one
correspondence of channel names and function names:
in the above specifications, the channel c corresponds to
the service request (only), and another channel may be
associated with the service response. Again, a naming
convention can ease the art of specification by linking
requests and responses somehow name-wise.

A second footnote is that a single function might as-
sociate with different channels, each channel using the

Earth Sci Inform (2009) 2:299–313 309

function somewhat differently, for instance, through
specific choice of passed-on parameter values.

Outlook to the introspective perspective

Given the above framework, we can in principle design
and realise single SDI nodes, so also a community of
them, as well as design and realise the communication
infrastructure for the community. This typically seals
the case.

But there is more to a spatial data infrastructure
because the resources available in it (data and re-
lated computational sources) come with one important
characteristic: the resources’ metadata. The metadata
is critical because it is fundamental to decisions of
aptness-for-use of the resources that they describe,
whether true data, models or other geospatial services.
As a consequence, a service specification may need to
display intelligence in exploiting these resources, and
change its process structure accordingly. It is for this
reason that we also address the need for introspective
functionality.

As we will demonstrate in a lightweight mode, our
choice of formalism above is an appropriate one to
tackle these issues.

The introspective perspective: developing an adaptive
and extensible system of systems

SDI nodes and their introspection

A first issue is how a single SDI node can be de-
signed and realised to display also introspective prop-
erties. Our approach is to refine the framework of
Section “The vertical perspective: developing state-
and-function systems”. More specifically, we sketch
how state-and-function systems can display local intro-
spection.

The fundament for this is to identify descriptive
information about the system state and functionality as
being part of the state itself. In blunt terms: metadata is
just data to be represented inside the system state. This
is expressed in

σ ≡ σdata ⊕ σmeta,

where σ corresponds with same from Eq. 1, and ⊕
denotes type concatenation. The type language may
require extension to facilitate the definition of σmeta.
For instance, one can imagine the inclusion of addi-
tional types like iso19115 (for data), iso19119 (for
services), WS-BPEL or OWL-S (for service chains), and
derivatives (such as iso19115 profiles) of this. Those

types will typically take the form of XML schemas, each
of which will be subject to a specific constraints.

Further, we distinguish between intrinsic and extrin-
sic metadata. Intrinsic metadata can be automatically
derived from the data structure or service functionality,
such as bounding box and attribute type names. Ex-
trinsic metadata are annotations, such as service access
point and organisational contact details.

Continuing with the reformulation of Eq. 1, γ (s) de-
serves a similar treatment. A simple syntactic analysis
will lead to reformulation as

γ (s) ≡ γdata(s) ∧ γbridged(s) ∧ γmeta(s).

This expresses that fact that some constraints are pure
data constraints, a number are bridged constraints, and
others are pure metadata constraints.

Pure data constraints are well-known. Bridged con-
straints express consistency between stored data and
metadata, essentially forcing the metadata to be correct
descriptors of the data, as well as of the functions
offered by the SDI node. Bridged constraints typically
affect only intrinsic metadata. Metadata constraints are
those amongst the metadata, some of which are in-
herent to the metadata type definition (e.g., iso19115),
others reach beyond it. They may for example restrict
coordinate system expressions (e.g., by valid EPSG
codes), data attribute types (based on formal classifi-
cation), and service quality parameter types.

Just like we detailed the definition of constraint γ

above, we could detail out the definition of the dy-
namic constraint φ(p, q) of Eq. 2. Interestingly, where
dynamic constraints are often uncommon on ordinary
data, they are not so much on metadata. Especially
when it comes to lineage characteristics one expects
that a formulation of φmeta(p, q) expresses some form
of historic monotonicity on the lineage properties.

After this extension of the state space definition, we
turn to look at the functions offered by the SDI node.
We use the same distinction as before, and recognise
pure data functions, bridged functions and metadata
functions.

The data functions operate only on the σdata part of
the state, and are the ‘routine functions’. More interest-
ing are the bridged functions, which query/update both
data and metadata. They are typically needed in two
scenarios:

1. When metadata intelligence is required to deter-
mine output of the function, for instance, when the
metadata is required to determine which data is
used for the result;

2. When an update on the data requires the metadata
to be updated as well, typically as a consequence

310 Earth Sci Inform (2009) 2:299–313

of existing bridged constraints. One can view this
class of functions as ordinary update functions that
trigger metadata updates.

The metadata functions are also an interesting class.
These function operate on metadata only. Again, two
scenarios appear to be the most likely:

1. Metadata queries probe the system for its resource
characteristics, and form an important foundation
for initial communication between systems. One
may think of getCapabilities requests, and others
in that family.

2. Metadata updates in their pure form are those
which affect extrinsic metadata, such as the change
of organisational contact details or the change of
URL as service access point.

SDI network introspection

With SDI node-specific introspective functionality in
place, as per above, these nodes can be addressed for
ordinary data and computational services, but also for
introspection. This brings service chaining and service
orchestration into view.

In service chaining, services of different providers
are joined to form a more encompassing service. The
conditions of joining should be verified, and are usu-
ally expressed as conditions over the metadata of the
service providers. This verification should be done at
design time, and lead, where necessary, to run-time
metadata conditions. One also expects that the service
chain is monitored by a system itself, typically different
from the main service providers in play. Such a server
might be called a metaserver. Metaserver functionality
is typically restricted to a subset of SDI nodes. Within
the SDI network a hierarchy of nodes must be de-
fined, properly controlling the workflows and dataflows
within it.

Things become even more interesting when services
within a service chain are not decided upon at time of
design of realisation, but are dynamically determined
at run-time. In this context, we then speak of ser-
vice orchestration, and in light of the present paper of
the design of the orchestration. The metaserver that
monitors the (now more dynamic) service chain needs
to exploit the full introspective capability of potential
service providers to identify one or more realisations of
the chain.

It is interesting to note that the π -calculus for-
malism with which we described communication mech-
anisms in Section “The vertical perspective: developing
state-and-function systems” intrinsically provides for

such dynamics. We finish this section with an illustra-
tion to that extent.

A typical introspective scenario is followed in the
publish-find-bind paradigm. Timewise, this should read
the ‘publish——find-bind paradigm’, as publishing hap-
pens at a separate point in time. It involves a communi-
cation of a provider to register a service with a catalog
server.

In the second and third legs, find-bind, a catalog
service is requested to identify appropriate service pro-
visions for getting the overall wanted service. At this
stage, the service that eventually will be consumed is
unknown. In terms of our Section “The vertical per-
spective: developing state-and-function systems” for-
malism, this means that the channel associated with that
eventual service consumption cannot yet be named.

The scenario unfolds for instance in a communica-
tion between a Catalog Server and an XService Server.
The communication between the two takes the shape
of the following composed process, leading to synchro-
nisation over channel f :

f̄ b . CS | f (z).z̄a . XS.

This statement expresses that the Catalog Server
service, having found a candidate service b , sends this
information along channel f (for ‘found’); the XService
Server receives the link through channel f and then
uses it as a channel itself(!), as expressed in z̄a, upon
which it behaves as XS. One should understand this
behaviour as a variable z that gets instantiated, and is
subsequently interpreted as a channel (=service) name.

As a point in case, Fig. 3 illustrates a scenario in
which a service chain implements map schematisation,
similarly to what is often done for city transport maps.
In this case, we are providing a schematic overview
of navigable waters, distorting intentionally the spatial
correctness as in the London underground map. The
map allows river boat travellers to view their options.
The service chain involves the SDI nodes A, B, C and D.
For each node, we specified a communication pattern
similar to that of process expression 4. For example,
the fundamental communication patterns of A and B
are specified as:

A def= ! c̄1r . c4(s) . c5(u) . c6(v)

B def= ! c1(r) . c̄2s . c3(u) . τ . c̄4v

And services C and D being defined in similar style.
The service orchestration in this scenario is typically of
the form

A | B | C | D.

Earth Sci Inform (2009) 2:299–313 311

Fig. 3 Service chaining
scenario for map
schematisation (adapted
from Hobona et al. (2009))

A metaserver of type Workflow Server will be re-
sponsible for such orchestration, for which it makes
use of allowed workflow patterns in the SDI network.
Additional metaserver functionality is the computation
of metadata propagation in the service chain. Such
metadata calculations will be restricted to proper states
and dynamics as defined in Sections “Preliminaries”
and “Proper states” (on specific metastates/dynamics).

Discussion and future work

Merging horizontal and vertical designs

Our discussion of horizontal and vertical designs has
been intentionally abstract, for two reasons. First, space
limitations prohibit the provision of full details on the
design methods. We are currently developing a full
methodical framework with a prominent role for a
geospatially flavoured UML using OCL as the con-
straint language. Designs in that framework will be sub-
jected to property-preserving transformations, allowing
design alternatives, to arrive at trustworthy state-and-
function systems. Similarly, work on process-algebraic
designs for communication within SDI is underway.

A more important, second reason for our choice
of abstraction lies in the required correspondence be-
tween functions from the one perspective, and ser-
vices and communications from the other perspective.
That correspondence appears natural at first, but is
non-trivial when one gets to the details. Specifically,

one needs to decide whether a service request-and-
consumption is better specified as a single synchronous
action in the SDI, or as a pair (request, response)
of such actions. The methodological ramifications of
either choice are unclear, and deserve further study.

Merging in the introspective design

Of specific interest in geospatial web service systems
are the advanced metadata formats, and what can be
done with them. Again, the spatial data and metadata
deserves special attention as the aptness-for-use is gen-
erally a complex question, even more so than in regular
web service systems (Schwinger et al. 2008).

It is an open issue how spatial web services are
best characterised to allow their full exploitation. It
is unlikely that the full semantics of the specification
can ever be totally captured in metadata. The same
holds for service chains, service orchestrations and
services that offer service orchestrations. Here, one
quickly reaches the realms, as well as boundaries, of
the web beyond Web 2.0 (Raman 2009), for instance
when introspection into the introspective capabilities is
required.

Summary of the paper

This paper is about the ‘design theory of SDI systems’.
We believe that such a theory is not in existence,
and that given the demanding requirements in SDI—
full interoperability, advanced data types, advanced

312 Earth Sci Inform (2009) 2:299–313

functionality, deep semantics, and long lifetime
expectancy—we must urgently make a start at
constructing such a theory. It will hopefully allow us
to build our SDI systems in more controlled ways, or
rebuild them in those ways.

In the paper, we pass in review the various char-
acteristics of a proper design theory. In brief, these
are completeness, abstraction, separation of concerns,
repeatability, implementability, formal mathematical ba-
sis and last but not least solid grounding in the geoin-
formation domain. Under these conditions, methods
of transformational design can be developed, and we
provide illustrations of these.

Why do we emphasise the need for a design theory
in the SDI domain? Well, SDI systems are typically
complex, and are being built to last. They will outlive
the technology and standards that we use for their
implementation today, and when we are going to ‘up-
grade’ these systems later in their life cycle, it will
be extremely useful to be able to fall back to mature
design documents, in which the technology-of-the-day
has been factored out through abstractions. The design
of a complex system should, after all, be largely inde-
pendent of the state-of-the-art technology.

But a design theory can serve other purposes than
providing rationale for design and development steps of
a system. It can also be used as a yardstick against which
to hold already implemented systems, in retrospect, so
as to understand more fully what the system is achiev-
ing, and what not. This is important because many SDIs
are not at all the result of fundamental top-down de-
sign, and their history is rather more one of organismal
growth and fine-tuning between its components.

Any design theory applies a generic paradigm for the
artifacts that are its domain of study. We look at an SDI
as a community of collaborating and communicating
systems, each of which displays geoinformation needs
and/or offerings. This gives us two important dimen-
sions to SDI:

1. SDI as a network of communication, and
2. SDI as a constellation of network nodes.

Consequently,
The development of a design theory for SDI does not

need to fall on infertile ground. After all, communica-
tion networks have been built before, and commonly
with a design theory in the background. Likewise, web
services-enabled information systems, which SDI nodes
are, are also commonplace nowadays, and much of their
design is based on appropriate formalisms.

Acknowledgements We are indebted to two anonymous re-
viewers of this paper, for their suggestions for improvements, and
pointing out a number of inconsistencies in the original paper.
We thank Fred Fonseca and Clodoveu Davis for their invitation
to submit and their patience in handling our submission.

References

Annoni A, Friis-Christensen A, Lucchi R, Lutz M (2008) Re-
quirements and challenges for building a European spatial
information infrastructure: INSPIRE—Towards the spatial
semantic web. In: van Oosterom P, Zlatanova S (eds) Creat-
ing Spatial Information Infrastructures, CRC Press, Taylor
and Francis, pp 1–18

Arpinar IB, Sheth A, Ramakrishnan C, Usery EL, Azami M,
Kwan MP (2006) Geospatial ontology development and se-
mantic analytics. Trans GIS 10(4):551–575

Astrahan MM, Chamberlin DD (1975) Implementation of a
structured English query language. Commun ACM 18(10):
580–588

Bergstra J, Klop J (1987) ACP: a universal axiom system for
process specification. Cent Wiskd Inform 15:3–23

Bernard L, Kanellopoulos I, Annoni A, Smits P (2005) The
European geoportal—one step towards the establishment
of a European spatial data infrastructure. Comput Environ
Urban 29(1):15–31

Brodersen L (2008) Geo-communication and information design.
Forlaget Tankegang A/S

Carrara P, Fortunati L, Fresta G, Gomarasca M, Piazza BL,
Poggioli D (2004) A methodological approach to the
development of applications in a SDI environment. In:
Proceedings of the 7th AGILE Conference on Geographic
Information Science, Heraklion, Greece

Codd E (1970) A relational model of data for large shared data
banks. Commun ACM 13(6):377–387

Craglia M, Goodchild MF, Annoni A, Câmara G, Gould M,
Kuhn W, Mark D, Masser I, Maguire D, Liang S, Parsons E
(2008) Next-generation Digital Earth: a position paper from
the Vespucci initiative for the advancement of geographic
information science. International Journal of Spatial Data
Infrastructures Research 3:146–167

Crompvoets J, Bregt A (2003) World status of national spatial
data clearinghouses. J Urban Reg Inf Syst Assoc 15(APA
1):43–50

Davis C, Fonseca F, Câmara G (2008) Understanding global
change: the role of geographic information science in the
integration of people and nature. In: Proceedings workshop
SDI for the Amazon, position paper

de Man W (2006) Understanding SDI; complexity and institu-
tionalization. Int J Geogr Inf Sci 20(3):329– 343

Feng Z, Yin J, Zhou J (2008) E-business processes composition
based on pi-calculus technology. International Symposium
on Information Science and Engineering 2:224–227

Georgiadou Y, Puri SK, Sahay S (2005) Towards a potential
research agenda to guide the implementation of spatial data
infrastructures—a case study from India. Int J Geogr Inf Sci
19(10):1113–1130

Hobona G, Jackson M, Gould M, Higgins C, Brauner J, Matheus
A, Foerster T, Nash E, Lemmens R et al (2009) Estab-
lishing a persistent interoperability test-bed for European

Earth Sci Inform (2009) 2:299–313 313

geospatial research. In: Haunert J, Kieler B, Milde J (eds)
Proceedings of the 12th Agile internationational conference:
advances in GIScience, IKG, Leibniz University of Hanover,
Hanover, Germany, p 10

Kroiß C, Koch N (2008) UWE metamodel and profile: user
guide and reference. Tech. Rep. 0802, Institute for Informat-
ics Ludwig-Maximilians-Universität München, München,
Germany, version 1.0

Lance K (2003) Spatial data infrastructure in Africa. GIS Devel-
opment July:6 pp

Lehto L (2007) Schema translations in a web service-based SDI.
In: Proceedings of the 10th AGILE international confer-
ence on geographic information science, Aalborg University,
Denmark

Lucchi R, Mazzara M (2005) A pi-calculus based semantics for
WS-BPEL. Journal of Logic and Algebraic Programming
70:96–118

Maguire DJ, Longley PA (2005) The emergence of geoportals
and their role in spatial data infrastructures. Comput Envi-
ron Urban Syst 29:3–14

Masser I (1999) All shapes and sizes: the first generation of
national spatial data infrastructures. Int J Geogr Inf Sci
13(1):67–84

Masser I (2005) GIS Worlds—creating spatial data infrastruc-
tures. ESRI, Redlands

Milner R, Parrow J, Walker D (1992) A calculus of mobile
processes, part I/II. Journal of Information and Computation

100:1–77. http://www.lfcs.informatics.ed.ac.uk/reports/89/
ECS-LFCS-89-85/

Mohammadi H, Rajabifard A, Binns A, Williamson IP (2006)
Bridging SDI design gaps. Coordinates Magazine 2(5):
26–29

Open Geospatial Consortium Inc (2004) Geospatial portal ref-
erence architecture—a community guide to implementing
standards-based geospatial portals, version 0.2 edn. OGC
04–039, OGC

Parrow J (2001) An introduction to the π-calculus. In: Bergstra
JA, Ponse A, Smolka SA (eds) Handbook of Process Alge-
bra, chap 8. Elsevier, Amsterdam, pp 479–543

Raman T (2009) Toward 2w , beyond Web 2.0. Commun ACM
52(2):52–59

Schwinger W, Retschitzegger W, Schauerhuber A, Kappel G et al
(2008) A survey on web modeling approaches for ubiquitous
web applications. International Journal of Web Information
Systems 4(3):234–305

Vieira PR, Lunardi OA, Correia AH, Issmael LS (2008) Spatial
data infrastructure for Amazon. In: Proceedings workshop
SDI for the Amazon, position paper

Wagner R (2006) A roaming-enabled SDI (rSDI): balancing in-
terests, opportunities, investments and risks. In: Proceedings
GSDI–9 conference, Santiago de Chile, Chile

Williamson I, Rajabifard A, Feeney MEF (eds) (2003) Devel-
oping spatial data infrastructures—from concept to reality.
CRC, Boca Raton

http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/

	A skeleton design theory for spatial data infrastructure
	Abstract
	Motivation and paper organisation
	What constitutes an SDI design philosophy?
	The vertical perspective: developing state-and-function systems
	Preliminaries
	Proper states
	Proper dynamics
	Proper functions
	Spatial data modelling
	Outlook to the horizontal perspective

	The horizontal perspective: developing a communicating system of systems
	Proper behaviours
	Process formalism
	Revisiting the design targets for communication processes
	A mirror look at state-and-function systems
	Outlook to the introspective perspective

	The introspective perspective: developing an adaptive and extensible system of systems
	SDI nodes and their introspection
	SDI network introspection

	Discussion and future work
	Merging horizontal and vertical designs
	Merging in the introspective design

	Summary of the paper
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

