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We report on the theory of logarithmic temperature profiles in very strongly de-
veloped thermal convection in the geometry of a Rayleigh-Bénard cell with aspect
ratio (defined by cell width divided by cell height) � = 1, and discuss the de-
gree of agreement with the recently measured profiles in the ultimate state of very
large Rayleigh number flow. The parameters of the log-profile are calculated and
compared with the measured ones. Their physical interpretation as well as their de-
pendence on the radial position are discussed. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4767540]

I. INTRODUCTION

The ultimate state of thermal convection in a Rayleigh-Bénard (RB) cell is generally believed
to be fully turbulent, both in the bulk and in the boundary layers (BL) and with respect to both the
velocity as well as to the temperature fields. As shown in Ref. 1, this implies very characteristic
scaling behavior of the heat transport flux, Nu ∝ Ra0.38 as well as of the strength of the large scale
flow, Re ∝ Ra0.50. Here, the Rayleigh number Ra, the Nusselt number Nu, and the Reynolds number
Re are defined as usual, see, e.g., Refs. 2 and 3. In a series of recent experiments, cf. Refs. 4–8, these
scaling laws of Nu and Re have been measured and reported.

In the previous work,1 we have calculated the global scaling exponents in the ultimate state.
This ultimate state theory, though derived by employing the characteristic profiles of fully developed
turbulent flows, concentrated on the implications for and the interpretation of the various global
scaling exponents. We did not explicitly describe and report the local profiles themselves. Meanwhile
the local thermal profiles in the very large Ra-regime have been measured, cf. Ref. 9. We thus present
here the corresponding local profiles, in the spirit of and in extension of our earlier theory from
Ref. 1.

II. THERMAL LOG-PROFILES OF FLOW ALONG PLATES

We start from the equations of motion for the thermal field T (�x, t). The involved velocity field is
understood to solve the corresponding Navier-Stokes equation for an incompressible flow, �∇ · �u = 0,
i.e., we assume that the temperature behaves like a passive scalar. The molecular properties kinematic
viscosity ν and thermal diffusivity κ are taken as temperature independent fluid parameters. It is

∂t T = −�u · �∇T + κ�T, (1)

together with the respective boundary conditions (bc) T(z = 0) = 0 and T(z = L) = −� and no
heat flux through the sidewalls. In order to understand its turbulent solution we model the RB flow
in a rather simplified way, which in the first steps allows to make some use of textbook wisdom,
cf. Sec. 54 of Ref. 10, or Sec. 7.1.4 of Ref. 11. Consider a flow along an infinite plate in x-direction
and ask for the profile in z-direction perpendicular to the plate. First, decompose the fields into their
long time means �U ,� and their fluctuating parts �u′, θ ′, defined by �u′ = �u − �U and θ ′ = T − �. The
time averages depend on z only and the velocity has an x-component only, chosen to be in positive
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x-direction. Per definition we choose �(z = 0) = 0. If there is heat flow upwards, J = 〈uzθ〉A, t

− κ∂z〈θ〉A, t positive, � decreases with increasing distance z from the plate and vice versa. This
describes the situation at the bottom plate of a RB-cell. At the top plate the temperature flux J is
still positive, directed towards the plate, but � increases with growing distance from the top plate or
decreasing z, starting from z = L downwards.

0 = − �U · �∇� − �u′ · �∇θ ′t + κ��. (2)

The first term vanishes, since only the x-derivative can contribute but � depends on z only. The last
term for the same reason reads κ∂2

z �(z). The second term has to be modeled; we use the mixing

length type Ansatz for an eddy thermal diffusivity. First, u′
iθ

′t as a long time mean depends on z
only and is approximated by employing the temperature gradient hypothesis,

u′
zθ

′t=̂ − κturb(z)∂z�(z), (3)

and u′
xθ

′t = 0 and u′
yθ

′t = 0. The eddy diffusivity κ turb(z) is a property of the flow, not of the
fluid. The physical flow properties on which κ turb(z) can depend, are the distance z from the plate
and the characteristic velocity scale u∗ of the turbulent fluctuations, defined by the wall stress
ν∂zUx (z = 0) ≡ u2

∗, i.e., the shear rate or drag on the wall. From dimensional reasons we write

κturb(z)=̂κ̄θ zu∗. (4)

Here, the factor κ̄θ is the dimensionless thermal von Kármán constant, whose empirical value depends
on the flow type and for Rayleigh-Bénard flow is not known.

The equation for the temperature profile then is ∂z[0 + κ turb(z)∂z�(z) + κ∂z�(z)] = 0. Integrate
from z = 0 to some arbitrary z and use κ turb(z = 0) = 0 to find (κ turb + κ)∂z�(z) − κ∂z�(z)|0 = 0.
The last term is just J or Nu · κ�L−1, where � = Tb − Tt is the temperature difference between
the bottom and the top plates, which causes the thermal flow. J is z-independent. This leads to the
thermal profile equation

∂z�(z) = −J

κ + κ̄θ zu∗
. (5)

If J is positive, i.e., the heat flows upwards, the thermal gradient is negative, �(z) decreases, as is
characteristic for the bottom plate. With the choice �(z = 0) = 0 at the bottom plate we have �(z)
≡ T(z) − Tb relating � with the physical temperature T(z).

From this equation, we draw conclusions for the bottom part profile. In the immediate vicin-
ity of the plate, it is κ 
 κ turb, giving rise to the “linear thermal sublayer” of the profile, �(z)
= −J · (z/κ), 0 ≤ z � z∗,κ . This linear thermal sublayer extends until z = z∗,κ for which κ=̂κ̄θu∗z∗,κ ,
i.e., when the molecular and the eddy thermal diffusivity are of the same size. The relation to the
kinetic sublayer width z∗ is

z∗,κ ≡ κ

κ̄θu∗
→ z∗,κ = Pr−1 ν

κ̄θu∗
= Pr−1 z∗

κ̄θ

, with z∗ ≡ ν

u∗
. (6)

Beyond the linear thermal sublayer the profile is increasingly dominated by the eddy diffusivity,
κ turb(z) 
 κ , implying ∂z�(z) = −J/(κ̄θu∗z) and thus

�(z) = − J

κ̄θu∗

(
ln

z

z∗
+ f

)
(7)

is the thermal profile in the turbulent BL. The integration constant f may depend, of course, on κ

and ν, but only in the form ν/κ , since f has unit 1. Thus, f = f(Pr), which is reported in Ref. 10 to
empirically be about 1.5 for air, i.e., for Pr ≈ 0.7.

To make use of this formula for insight into the thermal log-profile we need the strength of
the velocity fluctuations u∗ as a function of Re(Ra). This has been derived in Ref. 1. But before
determining u∗ we make now contact to the experimentally measured profile, cf. Ref. 9. The
experimental log-profile is parametrized in the form

T (z) − Tm

Tb − Tt
= Aln

z

L
+ B. (8)
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Here, Tm = (Tb + Tt)/2 = Tb − �/2 is the mean temperature in the Rayleigh-Bénard cell. Comparing
Eqs. (7) and (8) leads to

�(z)

�
= Aln

z

L
+ B − 1

2
= − J

κ̄θu∗�

(
ln

z

L
+ ln

L

z∗
+ f

)
. (9)

We now can identify the dimensionless empirical parameters A and B

A ≡ − κ Nu

L κ̄θu∗
(10)

and

B = 1

2
− κ Nu

L κ̄θu∗

[
ln

L

z∗
+ f (Pr )

]
= A

[
ln

L

z∗
+ f (Pr )

]
+ 1

2
. (11)

Besides trivial parameters and a yet undetermined empirical parameter, the thermal von Kármán
constant κ̄θ , two physical quantities determine the measured constants A and B. This is first the
strength of the heat flux J = Nu · κ�L−1, describing the amplitude of the log-profile, and second the
strength of the turbulent velocity fluctuations u∗. While Nu and its scaling behavior in the ultimate
range is experimentally (and theoretically) rather well known, the velocity amplitude u∗ has been
calculated in Ref. 1. We make use of those results now.

III. THE LOG-PROFILE PARAMETERS A AND B

A. Parameter A

We start with the discussion of the amplitude A of the log-profile. From Eq. (10) the parameter
A apparently can be written as

A = − κ Nu

L κ̄θu∗
= − Re−1 Pr−1 Nu

κ̄θu∗/U
(12)

with Re ≡ UL/ν. Here, we have introduced the wind amplitude U and the corresponding Reynolds
number Re. For not yet too large Ra this amplitude U usually is visualized as a large scale circulation
(LSC) in the RB sample. For very large Ra on the other hand, which are considered here, such
LSC will probably not survive under the strong turbulent fluctuations. But its remnants locally in
space and time still must have physical importance, since there apparently is enough shear in the
plates’ boundary layers to induce transition to turbulence, as it can be observed experimentally in
the scaling exponents of the Nusselt number Nu and the Reynolds number Re versus Ra as well as
the measured characteristic changes of the scaling exponents indicating this transition, see Refs. 4–8
and also Ref. 9.

To quantify this we use results from Ref. 12. In the ultimate range Ra � 1015, the effective
Reynolds number was found to be Re = 0.0439 × Ra0.50, resulting in Re(Ra = 1015) = 1.39 ×
106. Extrapolating Re from smaller Ra, known as the classical range of RB flow, in Ref. 12 it is
found Re = 0.407Ra0.423, the scaling exponent being well consistent with the Grossmann-Lohse
(GL) theory.13 According to this classical range formula the wind amplitude would be measurably
smaller at Ra = 1015, namely, Re = 0.901 × 106.

In the cited RB experiment, it is Nu = 5631 and Pr = 0.859 at Ra = 1.075 × 1015. From this we
can calculate the average coherence length in the turbulent bulk, which is defined as 	coh ≈ 10ηKol

= 10(ν3/ε)1/4 = 10(Pr−2Ra(Nu − 1))−1/4L. One gets 	coh/L ≈ 1.87 × 10−4 or in physical units (using
L = 2.24 m for the height of the Goettingen Uboot device) 	coh = 0.419 mm. This sets the lower
bound of the turbulence eddy sizes in the bulk. There will be larger eddies too, whose extension is
between the external scale of order L (= D in the case � = 1) and 	coh. These even if fluctuating
temporally and in position can provide the necessary shear in the boundary layers.

To quantify this we compare the average coherence length with the thickness z∗ of the linear
viscous sublayer above the plate, which will be introduced and calculated later. It will be estimated
as z∗/L = 1.98 × 10−5 for Ra = 1015. Then z∗/	coh = 0.106, meaning that even the smallest eddies
of the bulk cascade are still 10 times larger than the kinetic viscous sublayer extension. That holds
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all the more for the energy carrying larger eddies up to the macroscopic scale L. Thus, the bulk flow,
even if strongly fluctuating, can provide sufficient shear to imply the turbulence transition at the
plates (and most probably also at the side walls).

Having clarified the meaning and physical importance of the wind amplitude U, we can de-
termine the log-profile and its parameters A and B. In Ref. 1, we have derived the following two
expressions for the Nusselt number Nu and the velocity fluctuation amplitude relative to the given
asymptotic flow velocity, u∗/U, in the logarithmic ultimate range, cf. Eqs. (20) and (2) of that paper,
namely,

Nu =
κ̄θ

2
u∗
U RePr

ln
(
Re u∗

U
1
b

) + f̃ (Pr )
. (13)

The fluctuation amplitude u∗ solves the implicit equation

u∗
U

= κ̄

ln
(
Re u∗

U
1
b

) . (14)

Here f̃ (Pr ) ≡ f (Pr ) + ln(b/2), and b is an empirical parameter of the velocity profile. It character-
izes the position of the buffer range, in which the transition occurs from the linear viscous sublayer
to the log-layer range in the velocity profile. Usually that logarithmic profile – known as the law of
the wall – is written in the form

Ux (z)

u∗
= 1

κ̄
ln

( zu∗
ν

)
+ Bu . (15)

Here, κ̄ is the kinetic von Kármán constant, taken in the following as κ̄ = 0.4. Bu describes the
velocity U(z) at z = z∗, i.e., it characterizes the buffer range of the velocity profile by indicating
how far the log-law velocity U(z) is shifted in amplitude if extended to the linear viscous sublayer.
There are various values of the empirical constant Bu given in the literature, such as 5.1, cf. Refs. 10
and 11. To the best of our knowledge there is not yet any information available for its value in the
case of Rayleigh-Bénard flow in a closed container. Note that this RB flow neither is stream-wise
infinite nor does it approach a given constant amplitude U in vertical direction, but rather becomes
small again near the mid-plane and then even changes sign. Thus, Bu remains a parameter still to be
measured in RB cells. We include it into the profile equation (14) in the form

b ≡ e−κ̄ Bu . (16)

According to Eq. (14) the numerical value of b determines the amplitude of the velocity fluctuation
scale u∗ (or shear stress ρu2

∗) together with the Reynolds number Re in the combination Re/b. From
Eq. (14) we see that the smaller b is the smaller u∗ will be. Similarly, u∗ will decrease with increasing
Reynolds number Re and thus with growing Rayleigh number Ra. For Re(Ra) we meanwhile
have experimental information, see Ref. 12. In the ultimate state, there is an effective scaling Re
= 0.0439Ra0.50. We thus have typical Re numbers of order 106 or more in the ultimate range of
thermal convection with Ra ∼ 1015.

The velocity profile parameter b also enters the Pr-dependence of the temperature profile via the
definition f̃ (Pr ) = f (Pr ) + ln(b/2). Using all these previous results we can express the amplitude
parameter A in the form

A = − 1

2
[
ln

( u∗
U Re 1

b

) + f̃ (Pr )
] = − 1

2
[
κ̄ U

u∗
+ f̃ (Pr )

] . (17)

Two remarks may be useful. In this expression for A the thermal von Kármán constant κ̄θ does not
appear explicitly; instead the kinetic one, κ̄ , shows up. This comes from eliminating Nu/κ̄θ in the
defining equation (12) for A by using Eq. (13). Second, the originally derived explicit Nu-dependence
can be completely substituted and expressed in terms of the log-corrections originating from the
log-profile of the velocity. The only reminder to the thermal profile is the thermal buffer range shift
f̃ (Pr ), the thermal analog of the corresponding kinetic shift Bu.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.45.179 On: Wed, 22 Jul 2015 12:39:44



125103-5 S. Grossmann and D. Lohse Phys. Fluids 24, 125103 (2012)

Both A and B depend on Re as well as on u∗/U, and thus on Ra. This determines the Ra-
dependence of these measured fit-amplitudes A and B. Numerical values for Re and u∗/U have been
given in Table I of Ref. 1 for Ra = 1014 and b = 1. For any other Ra (and b) they can be computed
by solving the implicit equation (14), either numerically or via its continued fraction representation
given in Ref. 1. We do this below for Ra = 1015.

Taking for the parameters f and b the values reported in textbooks for channel or pipe flow of
gases, i.e., f(Pr = 0.7) ≈ 1.5 (cf. Ref. 10) and b = O(1), one finds f̃ (Pr ) = O(1). The estimate for
the magnitude of the relative fluctuations u∗/U in Ref. 1 gave values of the order of 0.05. Thus, the
first term in the denominator of Eq. (17) is an order of magnitude larger, even more so for larger
Re(Ra). Neglecting therefore f̃ we find the following approximate formula for the parameter A:

A ≈ − 1

2ln
( u∗

U Re 1
b

) = − 1

2κ̄

u∗
U

. (18)

For Ra = 1014 it is u∗/U = 0.039 and 0.065 for the choices Re1 and Re2 in Table I of Ref. 1,
respectively, leading to the numerical values A = −0.0488 and A = −0.0813, respectively. For Ra
= 1015 and Re = 1.4 × 106 we calculate from Eq. (14) (and the choice b = 1) the value u∗/U
= 0.036, leading to A = −0.045, still about half an order of magnitude larger as the measured value
Aexp = −0.0082, given in Ref. 9.

The scaling of the profile parameters A and B with the Rayleigh number Ra can be determined
as follows. First, transform the Re-dependence of u∗/U into a scaling Ansatz, u∗/U ∝ Reα′

. Here,
the Reynolds number dependent (“local”) exponent α′ = α′(Re) decreases with Re and therefore
with Ra. In the relevant Re-range, one calculates α′ = −0.0855. The negative scaling exponent α′

means that the ratio u∗/U = Re∗/Re decreases with increasing Re and correspondingly increasing
Ra. But, of course, the turbulent fluctuation scale Re∗ = u∗L/ν itself increases in size for stronger
thermal driving Ra. It is

Re∗ ∝ Re1+α′ = Re0.9145, in the Ra-range around 1015. (19)

Introducing now this Re-scaling of Re∗ into Eq. (18) results in

A ∝ Reα′ ∝ Ra0.50α′ = Ra−0.043, in the Ra-range around 1015. (20)

The amplitude A thus decreases with Ra, though very slowly. Over the next decade it will be smaller
by approximately a factor of 0.906, i.e., its value is expected to be about 9.4% less. This predicted
slow decrease of A with Ra could be consistent with experimental observation.9 We emphasize that
the absolute value of α′ decreases even further with increasing Re, i.e., asymptotically in Ra the
amplitude A will approach a constant, Ra-independent limit A∞.

One may wish to try coming closer to the experimental value for A in the measured range of
Re ≈ 106 and Ra = 1015 (Ref. 12) by adjusting the still not well-known value of b. Instead of b
= O(1) one could reduce b, mimicking thus a larger Re, which leads to smaller u∗/U. To be more
precise: Take as above u∗/U = 0.036 and Re(Ra = 1015) = 1.4 × 106 and insert this into (14). This
then determines b. We obtain ln(1/b) = κ̄ Bu ≈ 0.28, thus Bu ≈ 0.71, and b ≈ 0.75. Note that for a
bit smaller fluctuations u∗/U = 0.031 we find b ≈ 0.11 and Bu ≈ 5.6, very close to the von Karman
values for shear flow. The measured Aexp = −0.0082 according to Eq. (18) would correspond to a
very small relative fluctuation amplitude (u∗/U )|exp =̂ 0.00656, implying an unusually small b and
large Bu.

Obviously the model for the velocity field’s U-profile is oversimplified. An important missing
feature when assuming an asymptotically constant flow amplitude U with increasing distance z from
the plate is as follows. The LSC in a RB-sample does not approach a nonzero constant value when
going off the plate. Instead U(z) not only will decrease again, it even passes through 0 at z/L = 0.5,
changing sign in the upper half of the RB cell. Thus, between about 0.25 � z/L � 0.5 the average
flow has a negative instead of a positive or zero z-slope. The thermal flux J keeps its positive sign.
Because of this quite different U(z) profile in comparison to pipe or channel flow we have to expect
a deviation from the temperature log-profile in the range above z/L � 0.25. Indeed such deviation
can be seen in experiment, see Figure 1 of Ref. 9 – Another consequence of such deviation from the
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pure log-profile is that the intimate connection between the amplitudes A and B, to be discussed in
the next chapter, will loose validity.

B. Parameter B

Let us now analyze the parameter B as derived in Eq. (11), in particular the right hand part of
this equation. Consider first the term ln L

z∗
. With the above given definition z∗ = ν/u∗ one obtains L/z∗

= Lu∗/ν and thus B = A
[
ln

(
Re u∗

U

) + f (Pr )
] + 1/2 = A

[
ln

(
Re u∗

U
1
b

) + f̃ (Pr ) + ln2
] + 1/2.

Now, the ln-term plus the next one are just − 1
2A , which after multiplication with A leaves −1/2,

canceling the final term 1/2. Thus,

B = A · ln2 or B/A = ln2 = 0.693.... (21)

Irrespective of any approximate calculation of the coefficient A, the other coefficient B is always
about 70% of A, in particular is also negative. Using this the T-profile can be written as

T (z) − Tm

Tb − Tt
= A

(
ln

z

L
+ ln2

)
= A ln

z

L/2
. (22)

This is consistent with the underlying idea that T(z = L/2) = Tm, which has been used when
relating the T-profile, expressed in terms of the thermal current J or Nu, with the driving temperature
difference � = Tb − Tt, and which also is an immediate consequence of the Ansatz (8) for fitting
the data.

Let us come back to the consequences of the deviation of the (x-component of the) velocity
profile from the classical case with asymptotically constant amplitude U. In a RB cell, the U(z)-profile
does not stay asymptotically constant with z but goes through a maximum, then decreases further
and even changes sign at z/L ≈ 0.5. This different maximum-and-beyond behavior of the wind leads
to deviations in the thermal profile from a log-law. Therefore, the intimate relation between A and B,
viz. B/A = ln2, typical for the log-profile, will no longer be valid. Also this statement is consistent
with experimental observation, cf. Ref. 9: the ratio B/A has quite some scatter and apparently differs
from ln 2, though not much.

To briefly summarize, the thermal profile is characterized by – starting from the plate – (i) a tiny
linear thermal sublayer of extension an order of magnitude less than the bulk coherence length, (ii) a
buffer range in which the linear increase in the sublayer turns over into the (iii) log-law, observable
over a broader z-range up to about a quarter of the RB cell height, then (iv) the profile changes again
due to the decrease of the wind amplitude with further increasing z including its directional change,
from positive to negative (or vice versa), which may be denoted as the temperature’s center profile.
This latter one, the center part, still has to be explored in more detail.

IV. POSITION DEPENDENCE OF PROFILE PARAMETERS A(r) AND B(r)

The basic assumption of the just given derivation of the profile parameters A, B is a plane parallel
homogeneous flow with velocity U over an infinitely extended plate. In a cylindrical Rayleigh-Bénard
cell this–at best–is realized in the center range of the circular cell, i.e., at r = 0. We now make a
crude model for the shape of the LSC. We have in mind the case of aspect ratio � = 1, but one
can argue similarly for � = 1/2 (and other). Then, if one moves away from the center range at
r = 0, the relevant flow velocity leading to the velocity shear in the BL and the perpendicular
logarithmic profiles of velocity and temperature is the x-component of the LSC only. We therefore
have to substitute in above formulas always U ⇒ Ux = Ux(r). If we consider for simplicity a circular

LSC, we get Ux = Ucosφ = U
√

1 − r2

R2 ; here U still denotes the LSC amplitude, which defines Re
= UL/ν.

Considering expression (18) will result in an r-dependent profile coefficient

A(r ) = A√
1 − (r/R)2

, with A the coefficient at the center. (23)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.45.179 On: Wed, 22 Jul 2015 12:39:44



125103-7 S. Grossmann and D. Lohse Phys. Fluids 24, 125103 (2012)

Expressed in terms of the (relative) side wall distance ξ ≡ R−r
R , thus 0 ≤ ξ ≤ 1 between the wall

and the center, respectively, it is

A(ξ ) = A√
2ξ − ξ 2

≈ A√
2

1

ξ 1/2
. (24)

The absolute value of the coefficient A(ξ ) decreases with increasing distance from the wall ∝ ξ−1/2.
This result is consistent with the experimental finding of an |A|-decrease towards the center. The data
presented in Ref. 9, where L = 4R in the � = 1/2 sample, have been taken at the position (R − r)/L
= 0.0045, corresponding to ξ = 0.018. This implies A( r

R = 0.982) = A(ξ = 0.018) = 5.29A.
We note that these last formulas cease to be valid in the limit ξ → 0 or r → R, because for

sufficiently small Ux(r) the BL locally is no longer turbulent, finally there is only upward flow and
one is in the BL of the side wall. But note further that with the full, non-approximate expression
(17) for the profile coefficient A the additional term in the denominator weakens the r-dependence,
all the more the larger r becomes. Then even the limit r → R exists, leading to

A(r → R) = − 1

2 f̃ (Pr )
. (25)

One can draw various conclusions from the r-dependence of A(r) on the shape of the LSC as
follows. First, we assume that the magnitude of the LSC wind (U or in dimensionless form Re) is
approximately the same along its closed trajectory, thus ignoring geometrical effects. The direction
of the wind varies along the LSC orbit. Its local unit vector be called �t(s), which is the local tangential
unit vector along the (closed) LSC curve. s denotes the arc length along the LSC curve. Then the
velocity relevant for A(r) is given by Ux = �ex · �tU , the x-component of the local LSC velocity vector
U�t . Given a model for the LSC-curve, e.g., a circle or an ellipse, this can be described in terms of
a suitable parameter φ by �x(φ). Expressing the (arbitrarily given) parameter φ in terms of the arc
length s, the tangential vector then is the derivative of the curve, i.e., �t = d �x(s)

ds . Measuring on the
other hand Ux(r) via A(r) allows to re-construct the LSC curve.

Some qualitative features of the r-dependence of A(r) are the following: (i) For small r the
amplitude A(r) always increases as A(r ) = A(1 + const( r

R )2); there is no term linear in r because
of analyticity reasons. (For a strictly circular flow it is const = 0.5.) (ii) For r near the side wall,
i.e., for small ξ = (R − r)/R, the amplitude A(ξ ) ∼ ξ−n decreases with increasing distance from
the wall with an exponent n = 1/2 for a circular LSC; for an elliptically shaped wind curve it will
be steeper, thus n is larger. In the particular case of aspect ratio � = 1/2 there may be two circular
rolls above each other, which again would lead to n = 1/2. In case there is only one single roll this
will be elliptically shaped and thus n is larger. In case both LSC shapes are present part of the time,
the exponent n will be somewhere in between, i.e., in any case one would find a steeper decrease
of A with the wall distance as compared to the circular case for � = 1. This is consistent with
the measurement of n ≈ 2/3 in the case � = 0.5 (Goettingen Uboot team, private communication).
(iii) If � is a little below 1, n will be a bit larger than 1/2; if � is a little above 1, n is expected to be
somewhat smaller than 1/2; etc.

V. CONCLUDING REMARKS

We have calculated the profile parameters A and B, defined in Eq. (8), of the experimentally
measured logarithmic temperature profiles in the ultimate state of Rayleigh-Bénard convection as
realized for very large Ra. In the case of a pure thermal log-law as well as reflection symmetry with
respect to the middle plane z = L/2 = R of the � = 1 cylindrical sample, which we expect and which
should hold for approximately temperature independent material properties, the coefficient B equals
A up to a factor ln 2. Since the real wind profile is different from the standard case of approaching
a constant when going off the plate, in the RB cell instead going down in magnitude towards the
center, even followed by a directional inversion of the wind direction, one finds deviations from this
value.

The amplitude A physically measures the strength of the turbulent velocity fluctuation scale u∗
relative to the LSC velocity U (together with the von Kármán constant κ̄); if one is sufficiently near
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to the side wall, it also measures the Prandtl number dependent temperature profile shift constant
f̃ (Pr ). We explain the r-dependence of A(r) by the decreasing magnitude of the local flow velocity
Ux(r) parallel to the bottom plate with increasing distance r from the center, which by (18) or (17)
leads to an increase of the A-amplitude with increasing r.

Finally, we reiterate that there is very interesting information on the velocity ratio u∗/U in the
measured T-profile parameters A(r) and B(r). But, as usual in Rayleigh-Bénard flow, to complete,
check, and confirm theoretical interpretation and explanation will need information also about the
velocity profile and its expected considerable deviations from the model of classical channel or pipe
flow as is used here for a lack of better.
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